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Abstract. Convolutional Neural Networks (CNN) have been found to
have great potential in optical flow problems thanks to an abundance
of data available for training a deep network. The displacement esti-
mation step in UltraSound Elastography (USE) can be viewed as an
optical flow problem. Despite the high performance of CNNs in optical
flow, they have been rarely used for USE due to unique challenges that
both input and output of USE networks impose. Ultrasound data has
much higher high-frequency content compared to natural images. The
outputs are also drastically different, where displacement values in USE
are often smooth without sharp motions or discontinuities. The general
trend is currently to use pre-trained networks and fine-tune them on a
small simulation ultrasound database. However, realistic ultrasound sim-
ulation is computationally expensive. Also, the simulation techniques do
not model complex motions, nonlinear and frequency-dependent acous-
tics, and many sources of artifact in ultrasound imaging. Herein, we pro-
pose an unsupervised fine-tuning technique which enables us to employ
a large unlabeled dataset for fine-tuning of a CNN optical flow network.
We show that the proposed unsupervised fine-tuning method substan-
tially improves the performance of the network and reduces the artifacts
generated by networks trained on computer vision databases.

Keywords: Ultrasound Elastography · Convolutional Neural Networks
(CNN) · Ultrasound-guided intervention · Unsupervised training.

1 Introduction

Ultrasound is one of the most widely used modality in medical imaging, and is the
preferred modality in image-guided interventions [1–3]. UltraSound Elastography
(USE) is an imaging technique which provides relative stiffness properties of
the tissue, and as such, provides additional guidance during interventions. Free-
hand palpation is one of the most popular methods in USE due to simplicity and
availability. The basic idea of free-hand palpation is that the operator compresses
the tissue by ultrasound probe, and the images before and after the compression
are compared to obtain the displacement map [4]. Due to the fact that most
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compression is in the axial direction, axial displacement contains more available
information than the lateral one. The axial displacement map is used to obtain
the strain map, which is generally inversely proportional to the elastic modulus.

Convolutional Neural Networks (CNN) have been proven useful in optical
flow estimation. Many network architectures such as FlowNet [5], FlowNet2 [6],
PWC-Net [7] and LiteFlowNet [8] have been proposed. The displacement es-
timation step of the USE can be performed using optical flow CNNs [9–14].
However, computer vision images and ultrasound data are generally different in
characteristics and the objectives. Computer vision images may contain small
objects with a very different optical flow from the background (for example: a
hand moves and the background is fixed). Whereas in USE, the movement is
generally smooth and continuous. Another difference lies in the objective of the
two tasks. The objective is to find sharp and accurate optical flows in computer
vision, whereas in USE, the main goal is to obtain a differentiable displacement
field. These differences led to the fact that the strain map generated by optical
flow CNNs trained on computer vision images have lower bias but with higher
variance compared to traditional elastography algorithms [11]. The lower bias
of CNNs results in high contrast images but the high variance is amplified in
the spatial differentiation step. Fine-tuning is a viable options to improve the
network performance and reduce this variance [9–11,13].

Many researchers have tried to adopt optical flow CNNs for USE using su-
pervised fine-tuning. The general trend among researchers is to use pre-trained
networks and fine-tune them with generated simulation datasets with known
ground truth [10,11,13,15]. They used pre-trained well-known optical flow CNNs
such as FlowNet2, PWC-Net and LiteFlowNet, and fine-tuned them using su-
pervised techniques. The structure of the networks are also modified to address
the differences of computer vision and USE in the inputs [11].

Unsupervised fine-tuning is a more appropriate option for several reasons.
First, simulation techniques entail several finite element and interpolation steps,
which render the accuracy of sub-pixel ground truth displacement field inaccu-
rate. Second, the simulation database often cannot model non-linear deformation
and acoustic behaviors. Last but not least, the fine-tuning may cause forgetting
effects [16], if the imaging parameters of ultrasound device is not close to the
simulation data to the point that the fine-tuning with simulation deteriorates
results on real data [11]. By using unsupervised techniques, the network can be
fine-tuned to any target domain, i.e. different ultrasound machines and different
organs.

In this paper, we propose a novel unsupervised technique to fine-tune pre-
trained optical flow CNNs using real ultrasound images. Our method can be
considered as a form of semi-supervised learning since the pre-trained network
is trained by labeled data, whereas the fine-tuning is done using data with un-
known ground truth. We use LiteFlowNet [8] since it is light and has shown good
performance in optical flow. However, the proposed framework can be applied
to any optical flow CNN. The network estimates 2D displacements for strain
values ranging from 0.5 to 5 %, the performance of the algorithm in transient
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elastography [17] where displacements are very small is an area of future work.
Our contribution can be summarized as follows:

1. Our results show that training on computer vision images is not enough since
the statistics of ultrasound RF data and physics of the displacement field
are different in these two domains.

2. We propose an unsupervised fine-tuning method in elastography.
3. We use real ultrasound images for fine-tuning, thanks to our unsupervised

technique which does not need ground truth displacements.
4. We propose an automatic frame and region selection algorithm which en-

ables the user to employ real ultrasound images without any supervision
and expertise.

5. We propose a novel loss function, considering statistics of RF data and
physics of the displacement field.

2 Material and Methods

2.1 Unsupervised training of optical flow networks

A critical component of unsupervised techniques is the loss function, which can
be expressed as [18–21]:

Loss = lossd + losss + lossc (1)

where lossd is the data loss, losss is the smoothness loss which can also
be described as smoothness regularization, and lossc is the consistency loss,
which shows how different the forward and backward flows are. Data loss can be
described as the difference between the first image and the warped second image.
Smoothness loss controls smoothness of the displacement and usually first- and
second-order derivatives are utilized for this loss [19–21]. In [18], a combination
of L1 norm and structural similarity (SSIM) is employed for data loss, an edge-
aware smoothness regularizer is utilized as the smoothness loss, and L1 norm is
used for consistency loss. In [19], the robust generalized Charbonnier penalty [22]
of census transform [23] is employed as the data loss. The Charbonnier penalty of
forward and backward displacement as consistency loss have also been exploited
in [19]. Finally, this paper also used an occlusion mask to remove the occluded
pixels from the loss terms to avoid back propagation of occluded regions.

2.2 Proposed Method

Inspired by other unsupervised optical flow networks, we propose a fine-tuning
strategy well-adapted to USE. Let I1 and I2 be the first and the second images,
wf and wb be forward (I1→I2) and backward flows (I2→I1). We define the data
loss as:

lossd =
〈

Φ(I1 − Ĩ2)
〉
Of

(2)
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where 〈.〉Of
is the mean of non-outlier pixels. Ĩ2 is the warped I2 toward I1 using

wf and Φ denotes Charbonnier penalty:

Φ(x) = (x2 + ε)γ (3)

We set γ to 0.2 similar to the fine-tuning loss in [6, 7, 11] and ε denotes a small
number. There is no occlusion in USE. We borrow ideas from occlusion detection
to find the outlier regions of displacement estimates and exclude them in all loss
terms. In order to find outlier displacement estimates, we compare forward and
backward displacement using the following equation:

Of =
∣∣wf + wb

∣∣ < α (4)

we set α empirically to 1 as we observed that in case of outlier the difference
between forward and negative of the backward displacement is much larger than
1. The Of image can be considered as a mask that selects reliable regions for
the loss function. In unsupervised training, frame selection is critical since many
pairs of frames are not suitable for displacement estimation due to a very large
decorrelation between their ultrasound data, and grossly incorrect displacement
estimates can back propagate wrong values to the network. In order to do frame
selection during the training, image pairs wherein the Of mask is 0 in more
than 50% of pixels are excluded. The outlier mask can be considered as a hard
threshold consistency loss.

Regarding the smoothness loss, the derivative of axial displacement is often
the main concern. This derivative operation amplifies variance of the displace-
ment estimates, reducing the contrast to noise ratio (CNR). In optimization-
based elastography methods, smoothness constrains are imposed on the axial
displacement [24,25]. Here, we enforce smoothness on both displacement and its
derivative. The latter is insensitive to affine deformations and performs better
in the boundaries [19]. Let axial displacement be wfa , and a and l denote axial
and lateral direction, respectively. The first order smoothing loss can be given
as:

loss1s = λ1

〈
Φ

{
∂

∂a
wfa− <

∂

∂a
wfa >

}〉
Of

+ λ2

〈
Φ

{
∂

∂l
wfa− <

∂

∂l
wfa >

}〉
Of

(5)
where λ1 and λ2 are weights associated to the axial and lateral derivative, respec-
tively and 〈.〉 denotes mean. The average of derivatives are subtracted from the
regularization term to reduce the regularization bias [11, 25]. We also consider
to penalize changes in the second order axial derivative of axial displacement:

loss2s = λ3

〈
Φ

{
∂2

∂a2
wfa

}〉
Of

(6)

The network structure for unsupervised training is shown in Fig. 1. The final
loss function for training can be written as:

Loss = lossd + loss1s + loss2s (7)
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Fig. 1: Proposed network structure for unsupervised training.

It should be noted that LiteFlowNet is a multi-scale network with intermediate
outputs. For training, intermediate loss and labels are required, but as suggested
by [11], we only consider the last output since only small changes are required
in fine-tuning.

2.3 Training and Practical Considerations

Unlike computer vision images, a large input size (for example, 1920×768 in
this work) is required in USE to maintain the high frequency information of the
radio frequency (RF) data. This is a limiting factor for current commercial GPUs,
which generally have less than 12 GB of RAM. In addition, we estimate both
forward and backward displacements in our unsupervised training framework,
which further intensifies the memory limitation.

To mitigate the aforementioned problem, we employ gradient checkpoint-
ing [26], where all values of forward pass are not saved into memory. When back
propagation requires the values of the forward pass, they are re computed. Ac-
cording to [26], it decreases memory usage up to 10 times with a computational
overhead of only 20-30%. Moreover, the network’s weight are kept fixed in back-
ward flow computation (the gray block in Fig. 1) to further reduce the memory
usage.

Envelope of RF data along with RF data and imaginary parts of analytic
signal were used as three separate channels. As suggested by [11], envelope along
with RF data is used to compensate the loss of information in RF data by the
downsampling steps in the network.

We used the pre-trained weights of [8], which was obtained by training on
72,000 pairs of simulated computer vision images with known optical flows. Fine-
tuning was performed on 2200 pairs of real ultrasound RF data with unknown
displacement maps. The test images were not seen by the network during fine-
tuning. The network was trained for 20 epochs on NVIDIA TITAN V using
Adam optimizer. The learning rate was set to 4e-7 and the batch size was 1 due to
memory limitations. Regarding the weights of each part of the loss function, there
is a trade-off between bias and variance error. Higher weights of the smoothing



6 Ali K. Z. Tehrani

5 10 15 20 25 30
Width (mm)

5

10

15

20

25

30

D
ep

th
 (

m
m

)

(a) GLUE

5 10 15 20 25 30
Width (mm)

5

10

15

20

25

30

D
ep

th
 (

m
m

)

(b) LiteFlowNet

5 10 15 20 25 30
Width (mm)

5

10

15

20

25

30

D
ep

th
 (

m
m

)

(c) Unsupervised

5 10 15 20 25 30
Width (mm)

5

10

15

20

25

30

D
ep

th
 (

m
m

)

(d) B-mode Image5 10 15 20 25 30

5

10

15

20

25

30

-14 -12 -10 -8 -6 -4 -2 0

#10-3

Fig. 2: Strain images of the experimental phantom with two hard inclusion. The
windows used for CNR and SR computation are highlighted in the B-mode image
(d). The strain of the line highlighted in red is shown in Fig. 3.

loss result in smoother but more biased results and lower weights lead to lower
bias but higher variance. We empirically set λ1, λ2 and λ3 to 0.5, 0.005, 0.2, as
we observed that these weights had a good balance between bias and variance
error.

3 Results

We validated our proposed unsupervised fine-tuning using an experimental phan-
tom and in vivo data. We compare LiteFlowNet, our unsupervised fine-tuned
LiteFlowNet and GLobal Ultrasound Elastography (GLUE) [24], which is a well
known non-deep learning elastography method. Codes associated with all of
these methods are available online.

3.1 Quantitative Metrics

Contrast to Noise Ratio (CNR) and Strain Ratio (SR) are two popular metrics
used to assess the elastography algorithms in experimental phantoms and in vivo
data where the ground truth is unknown. These metrics are defined as [4]:

SR =
st
sb
, CNR =

√
2(sb − st)2
σb2 + σt2

, (8)

where sb and st are average values of strain in the background and target regions
of the tissue, and σb and σt denote variance values of strain in the background and
target regions, respectively. CNR is a proper metric to measure a combination of
bias and variance error. SR sheds light on the estimator bias in real experiments
wherein the ground truth strain values are unknown [11].

3.2 Experimental Phantom

We collected ultrasound images at Concordia University’s PERFORM Centre us-
ing an Alpinion E-Cube R12 research ultrasound machine (Bothell, WA, USA)
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Fig. 3: The strain of the line specified in Fig. 2 using small smoothing window
(a). The top left tumor with the edges obtained by the three USE methods (b).

with a L3-12H linear array at the center frequency of 10 MHz and sampling fre-
quency of 40 MHz. A tissue mimicking breast phantom made by Zerdine (Model
059, CIRS: Tissue Simulation & Phantom Technology, Norfolk, VA) is used for
data collection. The phantom contains several hard inclusions with elasticity
values at least twice the elasticity of the tissue. The experimental phantom for
test is from the same phantom but different part of the phantom is imaged. The
composition of the phantom in test data is also different, where regions with
only one inclusion are used for training and regions with two inclusions are used
for testing. The test results are depicted in Fig. 2.

The unsupervised fine-tuning improves the strain quality of LiteFlowNet pro-
ducing a smoother strain with less artifacts. The quantitative results are shown
in Fig. 5. GLUE has the highest CNR which shows the high-quality strain but
the SR is also the highest which indicates that it has the highest bias due to the
strong regularization used in the algorithm. The unsupervised fine-tuning sub-
stantially improves the CNR of the network with very similar SR. In order to
show the improvements better, the line specified in Fig. 2 (d) with small differen-
tiation window is shown in Fig. 3 (a). The strain plots indicate that fine-tuning
substantially reduces the variance error presented in the strain. We calculate the
edges of the strain images using Canny edge detection and superimpose on the
B-mode image to compare the size of different structures in in Fig. 3 (b). Here,
the top left inclusion of Fig. 2 (d) is shown. It can be seen that LiteFlowNet
substantially overestimates the size of the inclusion since the red curve is well
outside of the inclusion. Our unsupervised fine-tuning technique corrects this
overestimation.

3.3 In vivo Data

In vivo data was collected at Johns Hopkins Hospital using a research Antares
Siemens system by a VF 10-5 linear array with a sampling frequency of 40 MHz
and the center frequency of 6.67 MHz. Data was obtained from patients in open-
surgical RF thermal ablation for liver cancer [27]. The study was approved by
the institutional review board with consent of all patients. The strains obtained
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Fig. 4: Strain images of the in vivo data. The two background and the target
windows used for CNR and SR computation are highlighted by green in the
B-mode image (d). The hard tumor and soft vein are marked by yellow and red
arrows, respectively.
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Fig. 5: CNR (a) and SR (b) of experimental phantom and in vivo data. In vivo
(1) and in vivo (2) correspond to the CNR with background of 1 and 2 in Fig.
4 (d), respectively.

by the compared methods are shown in Fig. 4. GLUE (a) produce high quality
strain but it is over smoothed which is evident for the vein (it is marked by
the orange arrow). LiteFlowNet (b) produces a strain with many artifacts and
heterogeneities inside the tumor (the tumor is marked with the yellow arrow),
but it preserves the vein which is a small structure. Unsupervised fine-tuning
(c) not only reduces the artifacts and heterogeneity inside the tumor, but also
maintains the vein similar to LiteFlowNet.

The quantitative results are given in Fig. 5. The first background window (1
in Fig. 4 (d)) is very different than the tumor region, GLUE and the fine-tuned
network produce similar CNRs between the tumor and this window. The second
background (2 in Fig. 4 (d)) has very high amount of artifacts and the strain
value is very close to the strain of tumor. Fine-tuned network has the best CNR
for this challenging background which can be confirmed by visual assessment of
Fig. 4. Regarding SR, LiteFlowNet has the lowest SR but the differences with the
unsupervised fine-tuned network are negligible. Among the compared methods,
GLUE has the worst SR results which indicates the high bias error presented in
this method.
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4 Conclusion

Herein, we proposed an semi-supervised technique for USE. We fine-tuned an
optical flow network trained on computer vision images using unsupervised train-
ing. We designed a loss function suitable for our task and substantially improved
the strain quality by fine-tuning the network on real ultrasound images. The pro-
posed method can facilitate commercial adoption of USE by allowing a conve-
nient unsupervised training technique for imaging different organs using different
hardware and beamforming techniques. Inference is also very fast, facilitating the
use of USE in image-guided interventions.
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