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Ultrasound Scatterer Density Classification Using
Convolutional Neural Networks and Patch Statistics
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Abstract—Quantitative ultrasound (QUS) can reveal crucial
information on tissue properties such as scatterer density. If
the scatterer density per resolution cell is above or below 10,
the tissue is considered as fully developed speckle (FDS) or
under-developed speckle (UDS), respectively. Conventionally, the
scatterer density has been classified using estimated statistical
parameters of the amplitude of backscattered echoes. However,
if the patch size is small, the estimation is not accurate. These
parameters are also highly dependent on imaging settings. In this
paper, we adapt convolutional neural network (CNN) architec-
tures for QUS, and train them using simulation data. We further
improve the network’s performance by utilizing patch statistics
as additional input channels. Inspired by deep supervision and
multi-task learning, we propose a second method to exploit
patch statistics. We evaluate the networks using simulation data
and experimental phantoms. We also compare our proposed
methods with different classic and deep learning models and
demonstrate their superior performance in the classification of
tissues with different scatterer density values. The results also
show that we are able to classify scatterer density in different
imaging parameters with no need for a reference phantom. This
work demonstrates the potential of CNNs in classifying scatterer
density in ultrasound images.

Index Terms—Quantitative Ultrasound, Scatterer density, Con-
volutional Neural Network, Patch statistics.

I. INTRODUCTION

Ultrasound imaging is increasingly attracting the attention
of researchers and clinicians due to being a real-time and
non-ionizing imaging modality, and being less expensive and
more portable compared to other medical imaging techniques.
However, several types of artifacts make interpretation of ul-
trasound images difficult. Cells, collagen, microcalcifications,
and other microstuctural components are often smaller than
the wavelength of the ultrasound wave, and scatter the wave
and create the granular appearance in B-mode images called
speckles. The scattered signal from scatterers provides useful
information about characteristics of the scatterers, which are
highly related to the tissue properties. Quantitative ultrasound
(QUS) measures the tissue characteristics by analysing the
ultrasound signal [1]–[8]. It aims to provide quantitative es-
timations of tissue characteristics which cannot be otherwise
obtained from the B-mode image. It has been employed in
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many different applications such as liver fibrosis and steatosis
assessment [9], [10], bone quality measurement [11], breast tu-
mor classification [12], [13] and cardiac tissue characterization
[14]. Improving QUS techniques can eventually broaden the
applications of this safe and cost-effective method in diagnosis
and treatment of a large number of disorders.

QUS methods can be classified into two broad categories:
spectral-based and envelope-based methods [15]. Parameters
such as the backscatter coefficient and attenuation coefficient
can be estimated by spectral-based methods, usually with
a requirement of a reference phantom to remove system-
dependent effects [5], [7], [16], [17]. In envelope-based meth-
ods, different characteristics of the tissue are usually estimated
by analysing and modelling the envelope of the ultrasound
RadioFrequency (RF) data by fitting a probability density
function. The sample size, wave frequency, and the attenuation
can affect the accuracy of the distribution modelling, and
therefore its parameter estimations [18], [19].

Among different QUS parameters, the scatterer density has
attracted a great attention. If there are many scatterers (more
than 10 in a resolution cell (an ellipsoidal volume defined by
- 6 dB point of the beam profile [20])), the envelope data is
considered as a fully developed speckle (FDS), and when the
number of scatterers is low, it is considered as under-developed
speckle (UDS). Classifying scatterer density into FDS and
UDS is very critical since for estimation of the QUS param-
eters, different assumptions must be taken for UDS regions.
Disregarding the density of scatterers results in unreliable esti-
mates of other QUS parameters [21]. Reliable classification of
UDS and FDS can pave the way for differentiating tissues with
many small scatterers from those with few strong scatterers,
and potentially use them as disease biomarkers. In addition,
many downstream ultrasound applications usually work better
under FDS conditions, such as sensorless 3D ultrasound [22]
and elastography [23]. Furthermore, the presence of UDS can
also affect the accuracy and precision of other biomarkers
that are currently being explored in different clinical settings,
such as the evaluation of fat infiltration in the liver. Detecting
this condition during data acquisition can help define ways
to improve the accuracy of the biomarker by implementing
spatial or angular compounding strategies to compensate for
the limited samples of the scattering process under UDS [24].

The statistics of echo-envelope data, extracted by either
model-based or model-free parameters, provide information
about tissue properties. Model-based parameters try to fit a
distribution to the envelope data. If envelope data is FDS,
the RF data can be modelled by the Gaussian distribution;
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therefore, envelope values follow the Rayleigh distribution [1],
[25], [26]. However, the Rayleigh distribution fails to model
the envelope statistics of UDS regions and other distributions
such as K-distribution [14], Homodyned K-distribution [27],
[28] and Nakagami distribution [12] can be utilized. Among
these, the Homodyned K-distribution is the most comprehen-
sive but the most complex one that does not have a closed-form
solution. The Nakagami distribution provides a good estimate
of the envelope signal with low-complexity and is widely used
in QUS studies.

The Nakagami distribution, applied to ultrasound data for
the first time by Shankar et al. [12], can be used to describe
different probability density functions, and to characterize
various scatterer patterns in tissues. It has been shown to be
useful in discriminating different scatterer and tissue types.
The Nakagami image can depict tissue properties that are not
visible in ultrasound B-mode images, and has been employed
in several studies for tissue characterization [9], [29]–[31].

Model-free parameters such as the envelope signal to noise
ratio (SNR), skewness (S) and entropy [26], [32] are statistical
parameters that change with different scatterer distributions.
Entropy-based parametric imaging is a QUS imaging tech-
nique, which uses a small sliding window throughout the
image to measure the entropy (the overall level of variations)
of the backscattered RF signal. It has been shown to be
effective in differentiating tissues with different scattering
properties, and can provide higher accuracy in a smaller patch
size compared to Nakagami imaging [32].

Deep Learning (DL) techniques have been utilised in many
fields of medical image processing. They have also proved
useful in different ultrasound applications such as segmen-
tation [33], [34], super resolution imaging [35]–[37] and
elastography [38]–[40]. A few studies have also attempted
to tackle the challenge of extracting quantitative measures
from ultrasound images using DL techniques. Byra et al.
[41] used Nakagami images to train a convolutional neural
network for the task of breast lesion classification. Wang et
al. [42] have proposed a 3D convolutional network for breast
cancer detection. However, the appearance and even statistics
of ultrasound images can change with changes in imaging
parameters such as time gain compensation and focal points.
Such changes are well studied in DL and are referred to as
domain shift [43]. If not accounted for, domain shift renders
DL estimates grossly inaccurate. In fact, this is one of the
reasons that DL is less explored in QUS compared to other
ultrasound applications.

In a recent work, we designed a CNN to classify FDS
and UDS [44]. The CNN was fed with envelope data and
the RF data spectrum from small patches of RF data, and
was compared with a Multi-Layer Perceptron (MLP) classifier,
which used SNR and skewness as inputs. We used patches to
analyse a small area of the image and therefore, to provide a
high resolution. The effect of patch size was also investigated
(with patches sized 5 to 10 × wavelength). The results showed
that in small patch sizes, the CNN outperformed the MLP
classifier, whereas for larger patch sizes, where the statistics
of the patch could be reliably estimated, the MLP classifier
outperformed the CNN.

In another recent work, we segmented simulated images
with three different scatterer densities using a U-Net [45]. We
found that the network was able to segment precisely when the
intensity difference between the inclusion and the background
was high and thus the network could associate the intensity to
the scatterer density.

In [46], the mean scatterer intensity, which is another QUS
parameter, was estimated for the whole image. They assumed
that all regions have FDS, which is a limiting factor in real
ultrasound images. In this study, we aim to classify FDS from
UDS regions using CNNs in small patches (Note that the patch
size is different for simulation and experimental phantom data)
where classical statistical parameters commonly used in QUS
studies cannot be estimated accurately. Our ultimate goal is
to reveal tissue scatterer information similar to that of Table
I using ultrasound envelope patches. The intermediate goal of
this paper is to quantitatively evaluate the scatterer density
under arbitrary conditions (i.e. different imaging settings). We
use the ultrasound envelope data as the input to the network,
since statistics such as SNR and Nakagami parameters are
histogram-based, meaning that they ignore image texture. We
hypothesize that the texture of the ultrasound envelope image
contains crucial information which can be useful to determine
the density of scatterers.

We use a large amount of simulated data to train the
networks, and test the networks on simulated and experimental
phantom data. We show that the CNN networks are more
robust to the domain shift [43] compared to statistics used
in conventional QUS methods. We modify well-known classi-
fication networks such as MobileNet V2 [47], Inception [48],
DenseNet [49] and ResNext [50] for the task at hand, and train
them using simulation data. The aforementioned networks are
tested on unseen phantom data which are being imaged by
a different imaging setting. In the next step, we combine
statistics with CNNs by two different methods: fusion strategy
and deep supervision. Our contributions can be summarized
as follows:

• Different CNN architectures are utilized to classify scat-
terer density using envelope data.

• A novel training strategy and input channel are pro-
posed to avoid over-fitting on domain information which
enabled us to classify ultrasound patches without any
reference phantom.

• The networks are further improved by exploiting patch
statistics.

• The three different classifiers of support vector machine
(SVM), random forest and MLP are used to classify based
on patch statistics.

• Experimental phantom data is employed to validate our
work in different imaging settings.

II. METHODS

In this section, we first describe different datasets we
analysed. We then present the scatterer density classification
methods developed in this work, which include both classical
(SVM, random forest and MLP) and DL methods (CNN and
CNN with patch statistics as additional inputs), and provide
intuitions for using different inputs.
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A. Data

We employed two different datasets to investigate the per-
formance of our proposed methods as outlined below.

1) Simulation data: We simulated 200 phantoms of size 30
mm× 30 mm× 1 mm using the Field II pro toolbox [51], with
the center frequency of 6.67 MHz. The sampling frequency
was 100 MHz and the RF signals were then downsampled
to 50 MHz. Other imaging parameters can be found in
Supplementary Materials.

We randomly distributed point scatteres in the phantoms. In
100 FDS phantoms, we included 16 scatterers per resolution
cell. In the remaining 100 UDS phantoms, we included 2
scatterers per resolution cell. The resolution cell size was
determined by calculating the correlation between the data
and a moving window in different regions [52]. The size was
0.15 mm2 at the focal point (The out of plane resolution cell
size is not computed). We randomly cropped 5000 patches
of size 256×32 (4.04 mm × 5 mm which is 17 and 21 ×
wavelength in axial and lateral directions, respectively) from
different depths as the training set and 1000 patches as the
validation set. For the test set, we simulated 20 more phantoms
with a random scatterer density value of 2 or 16 ± 10% in
order to make the test data more challenging. We randomly
selected 500 patches from these phantoms as the test set to
evaluate the methods. This dataset will be publicly available
online at data.sonography.ai.

2) Experimental phantom: Three different phantoms were
used to validate our method. The phantoms were of size
15cm× 5cm× 15cm, built from homogeneous mixture of
agarose gel media and glass beads as scattering agents. The
glass bead diameter range and bead concentration in the phan-
toms are reported in Table I. For more information on con-
struction details, the speed of sound and attenuation coefficient
of these phantoms refer to [53]. The phantoms were imaged
using an 18L6 transducer operating at 10 MHz frequency
using an Acuson S2000 scanner (Siemens Medical Solutions,
Malvern, PA) and we used envelope of RF data which was
acquired using Axius Direct Ultrasound Research Interface
[54]. There are 456 A lines, separated by 0.1242 mm and
the depth is 40mm. The sampling frequency is 40MHz and the
exact operation frequency was 8.89MHz. However, because of
attenuation, the center frequency of the spectrum was lower.
We computed the resolution cell size using correlation method
at different depths and it varied between 0.284 mm3 (at the
top where resolution was poor) and 0.036 mm3 (at the focal
point where resolution was the highest). This high variation
of the resolution cell size can have an adverse effect on the
classification, especially when this variation is not observed
by the network during training. The numbers of scatterers per
resolution cell for different depth are given in Table I.

We used the experimental phantoms as the test data to
evaluate the performance of different models optimized or
trained on the simulation data. Phantom A (high concentra-
tion) belongs to the FDS class and Phantoms B (medium
concentration) and C (low concentration) belong to the UDS
class. The B-mode images of these phantoms are illustrated in
Supplementary Materials.

B. Classical Statistical Parameters

Several parameters have been proposed in literature for
estimating the scatterer density in ultrasound images. SNR and
skewness are among the most important parameters proposed
to classify different scatterer densities:

R = SNR =
Av√

A2v − (Av)2
,

S = skewness =
(Av −Av)3

(A2v − (Av)2)1.5

(1)

where A is the envelope of RF data, v is the signal power and
(...) denotes mean operation. While in [1], v smaller than 1
was suggested due to having higher dynamic range and lower
estimation error, Prager et al. proposed 1.8 as the optimal
value [55] in terms of the estimation error. We analysed both
recommended values of 0.5 and 1.8, and obtained significantly
better results on the validation set using the 0.5 value (Area
Under Curve (AUC) of 0.894 vs. 0.876 when employing
the MLP, and 0.802 vs. 0.794 when employing the SVM
classifier). We, therefore, set v to 0.5 in this study.

When the patch size is big enough, the estimation error of
R and S, and therefore the classification error based on these
parameters is low. But for small-size patches, the classification
becomes difficult [1], [44]. This is especially important in
clinical applications where tissues are rarely homogeneous and
a large patch may include different scattering properties [26],
[27].

Entropy has been employed for scatterer density classifica-
tion [32]:

E =

N∑
n=1

p(i)log[p(i)] (2)

where E denotes entropy, and statistical histogram of the
envelope data square is represented by p, and N is the number
of bins for calculating the histogram, which is arbitrarily set to
100 in this study (changing the number of bins might results
in different outcomes and it is investigated in Supplementary
Materials). Entropy increases as the density of scatterers
increases (moving from UDS to FDS). The entropy measure
is shown to be effective when using a small window for QUS
analysis [32].

Another parameter that has been shown useful in estimation
of scatterer density is the Nakagami model parameters m (a
maximum likelihood estimator of the shape parameter) and T
(a generalized likelihood ratio test statistic) [25]:

m =
(A2)2

var[A2]
,

T = 2K(log
mm

Γ(m)
+ (m− 1)[log(I)− log(I)− 1])

(3)

where A is the envelope data and Γ represents the Gamma
function. I is a vector representing K independent and identi-
cally distributed samples of the intensity from a specific patch.
Different values of m explain different properties; when the
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TABLE I: Characteristics of the experimental phantoms and their scatterer concentration per resolution cell using 18L6
transducer (the range shows the minimum and maximum values derived from different depths).

Phantom
Diameter of Random

Scatterers (µm)
Scatterers Concentration

per mm3
Scatterers Concentration

per resolution cell
A (High) 5-40 236 8.50-67

B (Medium) 75-90 9 0.32-2.55
C (Low) 126-151 3 0.11-0.85

m parameter approaches 1, the distribution approaches the
Rayleigh distribution. The m parameter above and below 1
represent post- and pre-Rayleigh distributions, respectively,
which are forms of a more general family of distributions,
called Rician [1], [12], [20], [56].

There is a strong correlation between features m and T . The
features m and R are also highly correlated. We therefore,
remove the feature m from the feature list to eliminate the
redundancy between different features. We consider aforemen-
tioned parameters as a set of features to classify FDS and
UDS patches. The Supplementary Materials contain detailed
correlation analysis of these statistical parameters.

Fig. 1 shows the distribution of different features, extracted
from the simulation training data for UDS and FDS classes.
The patch size is small so that for all features, a considerable
overlap exists between the distributions of the two classes,
which makes the classification highly erroneous using only a
single feature. As opposed to our previous work [44] where
only parameters R and S were used for classification, we use
R, S, entropy and T together to obtain higher performance in
classification. As shown in Fig. 1, the dynamic ranges of the
features are not similar, hence we employ normalization (they
are normalized to be in range 0-1) across each feature in the
training data. The test and validation data were also normalized
using the same coefficient obtained from the training data.

C. Machine Learning Methods

In order to classify FDS and UDS classes, we developed
classical machine learning techniques in addition to DL meth-
ods. In this section, we describe the details of these classic
techniques.

1) Support Vector Machine (SVM): We used SVM as a
classical machine learning algorithm to classify FDS versus
UDS. We analysed different SVMs with linear and non-linear
(Radial Basic Function (RBF) and polynomial) kernels. An
SVM with an RBF kernel led to the best results on the
validation set, and was selected throughout this manuscript.
We did a search to find optimum value of the C parameter of
SVM, and subsequently, C = 2.65 was chosen.

2) Random forest classifier: Random forest is a learning
method based on the decision tree algorithm and ensemble of
different trees’ outputs, and is among the top classification
algorithms. By changing different parameters of a random
forest model, we found the best performing model on the
validation set, and used this model to classify different patches
of simulation and experimental phantom data.

(a) R (b) S

(c) Entropy (d) T

Fig. 1: The distribution of the patch statistics for FDS and UDS
in simulated training data. The patch size is small enough such
that FDS and UDS classes overlap.

D. Deep Learning Methods

1) Multi-Layer Perceptron (MLP): We proposed an MLP
structure to classify FDS and UDS groups. To find the best
network architecture for classifying scatterer density using
the aforementioned features, we investigated the performance
of different MLP architectures on the validation data. We
obtained the best results with a 3-layer network. Further
increase in the number of layers did not improve the results
and lead to overfitting, a common problem with MLPs. We
also analysed different numbers of neurons in each hidden
layer. We incrementally increased the number of neurons in
two hidden layers. Including 128 neurons in the first hidden
layer, and 32 neurons in the second hidden layer led to the best
result. However, it is important to note that the results reached
a plateau and did not change substantially by changing the
number of neurons. We employed Dropout [57] in the second
layer. The activation functions were Leaky Relu for the first
two layers and Sigmoid for the last layer. The loss function
was binary cross entropy and the network was optimized using
the Adam optimizer.

2) Convolutional Neural Network (CNN): We used dif-
ferent state-of-the-art pretrained CNN networks to classify
scatterer density. ResNext [50], MobileNet V2 [47], Inception
[48] and DenseNet [49] were employed. In order to use
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these networks, we replaced the last fully connected layer
with a fully connected layer with one output having Sigmoid
activation function. We used the pre-trained weights of the
networks for initialization to facilitate the training and avoid
over-fitting.

3) CNN with patch statistics as additional inputs: To
further enhance the network, we proposed to utilize the patch
statistics (R, S, entropy and T ) as additional inputs. We tested
different settings to determine the optimal way to fuse the
information of patch statistics to the CNN. Fig. 2 shows the
outcome (A denotes envelope). The CNN part is the same as
the CNN network described in Section II-D2 and the patch
statistic classifier part is similar to the MLP explained in
Section II-D1. These parameters are fed to an MLP to generate
a feature map, which is concatenated to the feature map
obtained from the CNN. The resulted feature map is then used
for a final classification.

Our first intuition was to train the whole network end to
end. However, the CNN and the MLP have vastly different
numbers of parameters and this resulted in a low generalization
and a large sensitivity to the initial seeds. To mitigate the
imbalanced number of parameters, we proposed training each
part separately. We then trained the fusing part while the
CNN and MLP weights were kept fixed. Please refer to
Supplementary Materials for more information.

4) Deeply supervised CNN (Multi-task learning): Another
way of using patch statistics is that using them as additional
outputs. Multi-task learning [58] and deep supervision [59]
have shown to improve the generality and performance of
CNNs. We added R, S and m as additional outputs to force the
networks learn in a way to have more generalization abilities.
Values of R, S and m are highly correlated with the scatterer
density, which led us to train the network to learn these fea-
tures as additional outputs. The loss function for the networks
with additional outputs was defined as a weighted summation
of scatterer classification loss and parameter estimation part
which can be written as:

loss =
1

N

N∑
i=1

(yilog(ỹi) + (1− yi)log(1− ỹi)

+β × ((R̃−R)2 + (S̃ − S)2 + (m̃−m)2))

(4)

where y is the classification labels, ỹ is the predicted scatterer
density, R, R̃, S, S̃, m and m̃ are ground truth and estimated
values of SNR, Skewness and Nakagami parameter, respec-
tively. N is the number of data in the corresponding mini-
batch and β is the weight associated to the axillary loss. The
classification performance is not very sensitive to β, which is
set empirically to 0.2.

E. Training Schedule

To augment the data, random Gaussian noise, elastic defor-
mation and random flipping in lateral direction were employed.
The networks were trained with the Adam optimizer and the
binary cross entropy was used as the loss function. Due to the
fact that there were different networks with different inputs
and to have a good generalization, we adopted a variant of
early stopping which could be considered as a form of implicit

regularization [60]. For early stopping, the validation AUC was
selected as the stopping criteria; when the best validation AUC
was reached during the training and remained the best after
20 epochs, we stopped the training. The cyclic learning rate
was also used in order to avoid bad local minima [61].

1) Reduction of domain specific information: Batch nor-
malization has been used widely in the classification networks.
It has been found to facilitate the training and remove covari-
ance shift [62]. During training, batch normalization layers
compute the mean and standard deviation of the layer. The
output of the layer is normalized by computed mean and stan-
dard deviation. During the test time, the computed mean and
variance of the training data are used for normalization. The
networks we employed contain several batch normalization
layers. Domain information are mostly kept in the estimated
mean and standard deviation of batch normalization layers
[63]. In order to avoid learning domain specific information,
we proposed not to update the mean and standard deviation of
batch normalization layers during the training. We used pre-
trained values of the mean and standard deviation for each
batch normalization layers. The effect of batch normalization
is studied in Section III-C.

F. Input Channels

In [28], log compression of envelope along with the enve-
lope have been used (log(A) and A2×log(A2)) for estimating
statistics using the Homodyned K-distribution. Inspired by
their work, we used A × log(A) as a novel input to the
proposed CNNs. We therefore used the amplitude A and
A × log(A). We also tested other inputs including log(A)
and
√
A but did not observe any improvements. For brevity,

the results are not included in the manuscript. The effect of
including A× log(A)) is studied in Section III-C.

G. Evaluation Metrics

To evaluate the classification performance, we used AUC of
the Receiver Operating characteristic Curve (ROC), accuracy,
sensitivity (recall), precision and also Youden’s Index [64].
We estimated the 95% confidence interval of the metrics
by employing boot strapping (i.e. sampling the data with
replacement, for 1000 times). Youden’s Index is a measure
of both sensitivity and specificity:

J =
TP

TP + FN
+

TN

TN + FP
− 1

= Sensitivity + Specificity − 1
(5)

where TP , FN , TN and FP denote true positive, false
negative, true negative and false positive, respectively. It
should be noted that accuracy, sensitivity and precision are
reported for the threshold of 0.5. We calculated the Youden’s
Index for different threshold values and the highest values are
compared between different models. The value of threshold
which results in highest Youden’s index can be considered
as the optimal threshold value to have highest average of
sensitivity and specificity. F1 score is also reported in the
Supplementary Material.
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Pre-Trained 
Network

A
A log(A)

Entropy

R

S

T

Patch parameter 
estimation

MLP

CNN

CNN + Deep Supervision

Fusion

Networks Number of 
Parameters

DenseNet121 7.978 M

Inception 6.624 M

MobileNetV2 3.504 M

Resnext50_32x4d 25.028 M

0: UDS
1: FDS

R
S
m

Fully Connected
Layer

Fig. 2: Proposed architectures for different networks. MLP, CNNs, CNNs with deep supervision and CNNs with fusion with
MLP. The pre-trained networks with their number of parameters in Million are specified.

TABLE II: Simulation Results

Model Fusion DS AUC Sensitivity Precision Accuracy Youden’s Index

SVM 7 7 0.892 (0.867-0.920) 0.816 0.800 0.802 0.620 (0.51)
Random Forest 7 7 0.894 (0.868-0.919) 0.816 0.806 0.806 0.620 (0.04)

MLP 7 7 0.890 (0.860-0.917) 0.850 0.786 0.806 0.610 (0.52)
MobileNet V2 7 7 0.949 (0.929-0.964) 0.867 0.870 0.866 0.7529 (0.31)
MobileNet V2 3 7 0.905 (0.887-0.927) 0.831 0.830 0.828 0.656 (0.50)
MobileNet V2 7 3 0.950 (0.930-0.965) 0.847 0.885 0.866 0.755 (0.38)

Inception 7 7 0.969 (0.952-0.981) 0.988 0.823 0.886 0.825 (0.90)
Inception 3 7 0.970 (0.953-0.981) 0.906 0.913 0.908 0.837 (0.61)
Inception 7 3 0.945 (0.923-0.960) 0.914 0.857 0.878 0.766 (0.45)

ResNext50 32x4d1 7 7 0.975 (0.957-0.984) 0.926 0.920 0.920 0.848 (0.47)
ResNext50 32x4d1 3 7 0.918 (0.893-0.939) 0.851 0.819 0.828 0.677 (0.52)
ResNext50 32x4d1 7 3 0.973 (0.956-0.984) 0.988 0.850 0.906 0.855 (0.73)

DenseNet121 7 7 0.964 (0.947-0.976) 0.863 0.917 0.889 0.798 (0.16)
DenseNet121 3 7 0.947 (0.923-0.961) 0.925 0.840 0.872 0.759 (0.59)
DenseNet121 7 3 0.967 (0.952-0.978) 0.851 0.923 0.888 0.801 (0.45)

III. RESULTS

In this section, we provide the results of the proposed
models for classification of FDS and UDS classes when
analyzing different datasets. We tested three classifiers without
including any CNN (i.e. a SVM, a random forest and an MLP
model). Different CNNs were also analyzed, by exploiting the
patch statistics using fusion (Fusion) and also deep supervision
(DS). All DL models were trained according to the training
schedule explained in Section II-E. The weights of the top-
performing networks will be publicly available online after
acceptance of this paper at code.sonography.ai.

A. Simulation Results

All proposed models were evaluated on the simulation data.
Envelope and envelope multiplied by log compressed envelope

are the input channels of all CNNs. Networks alone, fused
with patch statistics (section II-D3) and with axillary outputs
(section II-D4) are evaluated. The results are shown in Table II.
The values inside the parenthesis in the AUC column represent
the confidence interval and the value inside parenthesis in
Youden’s index represents the threshold which results in the
highest Youden’s index. As seen in Table II, CNN-based
models provide better results compared to the MLP and SVM
and random forest models which use only patch statistics.
ResNext50 32x4d1 has the highest AUC (0.975) and accuracy
(0.920). Whereas DenseNet121 with deep supervision has the
highest precision (0.923). Both sensitivity and precision of
CNN models are high meaning that the networks perform
very well on identifying both positive and negative classes.
The most of the optimum threshold of the Youden’s Index was
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close to 0.5 which is the threshold value used for classification.

B. Experimental Phantom Results

The results of classifying small patches from phantom A vs.
phantoms B and C are provided in Table III. The patch size in
terms of number of pixels is the same as the simulation data
but it differs in terms of size in mm (4.92 mm× 4.28 mm).
Due to the presence of domain shift, machine learning methods
which use only patch statistics (SVM, random forest and MLP)
have good precision but poor sensitivity. While, CNN models
have high sensitivity and moderate precision (as opposed to
simulation results where both sensitivity and precision were
high). we expected that by adding patch statistics information,
the sensitivity is decreased and precision improves. The effect
of domain shift can be seen in the optimal threshold value of
Youden’s index. While in simulation the optimal values are
close to 0.5, in experimental results most of them are far from
0.5.

Comparing the networks, MobileNet V2 has the highest
sensitivity but the precision is low. Inception has the highest
average of sensitivity and precision among the CNNs that
do not exploit patch statistics. DenseNet121 achieves the
highest precision (0.688) compared to other CNNs (without
supervision or fusion). Exploiting patch statistics by fusion
method increases the precision of the most of the networks
(except Inception) and decreases the sensitivity in some mod-
els. By adding the patch statistics using deep supervision, the
precision which is low in CNN models (0.562-0.688) was
improved (0.628-0.809) with a slight decrease of sensitivity
in some cases. Networks exploiting the patch statistics by
deep supervision have higher AUCs compared to CNNs and
CNNs with fusion. DenseNet + deep supervision achieves
the highest accuracy among all the evaluated models. Please
refer to Supplementary Materials for graphs of AUCs versus
different networks.

C. Ablation Experiment

We conducted ablation experiments [65] (note that we are
not referring to the thermal ablation treatment) on one of the
networks (DenseNet121) to validate the input choice (Section
II-F) and training strategy (Section II-E). The results are listed
in Table IV. DenseNet121+BN denotes training DenseNet121
with updating batch normalization layers (training all layers).
DenseNet121-Alog(A) represents that the network input is
only envelope and the proposed input (Alog(A)) has been
removed. Although precision of DenseNet121+BN is slightly
better than the proposed method (0.755 Vs 0.688), the sensi-
tivity is very poor (0.223 Vs 0.875). Accuracy is also lower
(0.717 Vs 0.826); therefore, it can be concluded that freezing
batch normalization statistics is beneficial. Regarding the se-
lection of the input channels, it can be observed that adding
envelope multiplied by log compressed envelope deteriorates
the simulation results. However, it substantially improves the
experimental phantom results which indicates that adding
Alog(A) can reduce over-fitting on the simulation data.

D. Visualizing Experimental Phantoms and Ablation Experi-
ment Results

Fig. 3 depicts some examples of the studied images using
different models. We split each image into overlapping patches
(50% overlap), and feed all patches to the networks. As seen
in Fig. 3, CNNs perform very well in classification of patches
from phantoms A and C but they perform modestly for patches
from phantom B which belongs to the class 0 (UDS). Whereas,
MLP produces low probability for all three phantoms. The
main reason is that the statistics are also system dependent. It
can be observed that by using proposed training strategy, the
CNNs have less system dependency and produce better results
compared to MLP, which uses only patch statistics. Among the
CNNs, the model with deep supervision (DenseNet121+DS)
has the best results on the challenging phantom B with
introducing slight error on the phantom A. DenseNet121+BN
which mean and standard deviation of batch normalization
layers are trained as well as other layers, produces poor results
on phantom A that shows the benefits of using the proposed
training strategy.

We should also mention that the networks estimate higher
probability of FDS in the top and bottom regions of the
phantoms. The main reason is that in these regions, the
resolution cell size is larger than that at the focal region,
leading to a larger number of scatterers per resolution cell.
Please refer to the Supplementary Materials for more results
including ROC curve of different settings of DenseNet.

IV. DISCUSSION

The density of scatterers in different parts of a tissue is
an important property of that tissue which may discriminate
normal and abnormal regions. Ultrasound images can be
utilized to estimate this property non-invasively. This will
eventually guide invasive procedures such as biopsy, leading to
less expensive and safer diagnosis methods for different types
of diseases.

In this work, we employed DL techniques to classify the
scatterer density in ultrasound images. Based on our results,
different numbers of scatterers result in different texture pat-
terns in the ultrasound image. We used CNNs to detect texture
patterns and employ histogram-based features (SNR, skew-
ness, entropy and T ) to improve the performance. Regarding
the choice of features, we only used histogram-based features
since CNNs can detect texture-based features but they need a
large receptive field (as large as the entire patch) to be able
to detect histogram-based features. Further investigations may
reveal effectiveness of other features for CNNs.

The network trained on simulation data was able to classify
the experimental phantom data, despite the fact that the
number of scatterers and the imaging properties are completely
different in these two datasets.

Comparing the two methods of exploiting patch statistics,
deep supervised networks have higher AUCs than the fusion
method. In addition to this, deep supervision does not need
calculation of the patch statistics separately which reduce
computation overhead. The networks we employed have a
large receptive field which enables them to estimate statistic
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TABLE III: Experimental phantom results.

Model Fusion DS AUC Sensitivity Precision Accuracy Youden’s Index

SVM 7 7 0.646 (0.623-0.669) 0.235 0.873 0.733 0.350 (0.03)
Random Forest 7 7 0.895 (0.880-0.913) 0.389 0.821 0.768 0.710 (0.46)

MLP 7 7 0.887 (0.879-0.895) 0.303 0.558 0.744 0.716 (0.20)
MobileNet V2 7 7 0.941 (0.935-0.948) 0.978 0.562 0.738 0.830 (0.98)
MobileNet V2 3 7 0.886 (0.878-0.894) 0.446 0.754 0.767 0.707 (0.11)
MobileNet V2 7 3 0.947 (0.940-0.953) 0.978 0.530 0.703 0.830 (0.99)

Inception 7 7 0.895 (0.886-0.901) 0.945 0.685 0.835 0.726 (0.51)
Inception 3 7 0.890 (0.883-0.897) 0.950 0.636 0.802 0.684 (0.54)
Inception 7 3 0.946 (0.939-0.952) 0.975 0.617 0.790 0.825 (0.96)

ResNext50 32x4d1 7 7 0.872 (0.864-0.880) 0.967 0.576 0.752 0.720 (0.94)
ResNext50 32x4d1 3 7 0.905 (0.898-0.913) 0.467 0.809 0.786 0.746 (0.17)
ResNext50 32x4d1 7 3 0.932 (0.924-0.938) 0.977 0.544 0.720 0.783 (0.98)

DenseNet121 7 7 0.875 (0.866-0.883) 0.875 0.688 0.770 0.701 (0.15)
DenseNet121 3 7 0.900 (0.893-0.908) 0.872 0.770 0.869 0.789 (0.27)
DenseNet121 7 3 0.918 (0.911-0.925) 0.871 0.768 0.870 0.776 (0.21)

TABLE IV: Ablation experiment on DenseNet121. DenseNet121+BN : Batch normalization layers statistics are updated during
training. DenseNet121-Alog(A) : Only envelope (A) is used as input and Alog(A) is not employed. DenseNet121: Proposed
training strategy which batch normalization layers statistics are kept fixed during the training and Alog(A) is used alongside
the envelope as an input channel.

Simulation Experimental Phantom

Model AUC Sensitivity Precision Accuracy Youden’s Index AUC Sensitivity Precision Accuracy Youden’s Index

DenseNet121+BN 0.955 (0.935-0.969) 0.894 0.884 0.886 0.782 (0.23) 0.751 (0.738-0.762) 0.223 0.755 0.717 0.421 (0.02)
DenseNet121-Alog(A) 0.966 (0.950-0.977) 0.922 0.900 0.908 0.816 (0.57) 0.781 (0.771-0.790) 0.445 0.568 0.702 0.529 (0.02)

DenseNet121 0.964 (0.947-0.976) 0.863 0.917 0.890 0.798 (0.16) 0.875 (0.866-0.883) 0.875 0.688 0.826 0.701 (0.15)

information related to the entire patch. Networks with a small
receptive field are not able to estimate these statistics as well
as deeper ones.

In a fixed imaging setting, a larger number of scatterers
results in a brighter ultrasound image. However, by changing
the imaging machine settings, the image intensity can vary.
Even though the average density of ultrasound images contains
information about the scatterers concentration, it is not a
reliable feature for classifying the number of scatterers, as
it can be easily altered by changing the imaging setting. We
eliminated the effect of the average intensity by normalizing
each individual patch such that the intensity of all studied
patches was in the range [0,1]. It should be noted that
the normalization method is not robust for regions having
saturation. Those regions should be excluded to be able to use
the proposed method correctly. We also reduced the domain
related information by avoiding updating statistic coefficients
of batch normalization layers during the training. Using ref-
erence phantoms to reduce the system specific effects can be
an area of future works.

The effective number of scatterers per resolution cell varies
by depth. Generally, at the focal point, the resolution cell is the
smallest. Therefore, there are fewer scatterers per resolution
cell at the focal point compared to other regions.

We included the data recorded from three phantoms in
this study. The density of the scatterers is not the only

parameter which differs between these phantoms. The size of
the included scatterers is also different (Table I). However,
considering the operating frequency, the size of the scatterers
is still smaller than the wavelength, and does not substantially
affect the results. Phantoms with different scatterer sizes and
densities warrants further investigations.

V. CONCLUSION

In this manuscript, we proposed different CNN models to
classify small patches of ultrasound images as FDS or UDS.
We proposed to use both envelope and envelope multiplied
by log compressed envelope as two separate input channels
to the proposed CNNs. We also proposed to freeze batch
normalization layers during the training to avoid learning
domain specific information. We further benefited from patch
statistics using fusion and axillary outputs (deep supervision).
We did not use any data from experimental phantom during
the training phase, which can degrade the results due to the
domain shift. Nevertheless, we found that CNN models result
in high sensitivity but moderate precision for experimental
phantoms, due to this domain shift. The precision is improved
by using statistic information as additional inputs/outputs with
a slight decrease in sensitivity. On a broad picture, these results
show the ability of our model to learn scatterer density from
simulation data alone without the need to perform transfer
learning on experimental data.
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Fig. 3: The results of MLP, MobileNet V2, Inception,
ResNext50, DenseNet121, DenseNet121+DS (with deep su-
pervision) and DenseNet121+BN (with updating batch norm
coefficients) models on the experimental phantoms. The color
code represents the predicted output of the networks, from 0
(UDS) to 1 (FDS). Correct classes are 0 (UDS) for phantoms
C and B, and 1 for phantom A.
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