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Abstract. Recent evidence suggests an association between low back
pain (LBP) and changes in lumbar paraspinal muscle morphology and
composition (i.e., fatty infiltration). Quantitative measurements of mus-
cle cross-sectional areas (CSAs) from MRI scans are commonly used
to examine the relationship between paraspinal muscle characters and
different lumbar conditions. Current investigation primarily uses manual
segmentation that is time-consuming, laborious, and can be inconsistent.
However, no automatic MRI segmentation algorithms exist for patholog-
ical data, likely due to the complex paraspinal muscle anatomy and high
variability in muscle composition among patients. We employed deep
convolutional neural networks using U-Net+CRF-RNN with multi-data
training to automatically segment paraspinal muscles from T2-weigthed
MRI axial slices at the L4-L5 and L5-S1 spinal levels and achieved aver-
aged Dice score of 93.9% and mean boundary distance of 1mm. We also
demonstrate the application using the segmentation results to reveal tis-
sue characteristics of the muscles in relation to age and sex.
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1 Introduction

Low back pain (LBP) is the most common musculoskeletal disorder in adults,
with a lifetime prevalence of up to 84% [1]. To better understand the underly-
ing pathology and facilitate treatment and rehabilitation, there is an increasing
interest to study the association between LBP and changes in morphology and
composition (e.g., fat vs. muscle ratio) of lumbar paraspinal muscles. Most com-
monly, paraspinal muscle cross-sectional area (CSA) measurements are obtained
from axial magnetic resonance imaging (MRI) scans, with published studies only
relying on time-consuming and expertise-intensive manual segmentation for their
analyses. So far, only a few methods [2-4] have been proposed for automatic



paraspinal muscles segmentation, mostly based on computed tomography (CT)
images and healthy subjects. However, much higher morphometric and composi-
tion variations exist in patients with LBP. In this paper, we use deep learning to
automatically identify paraspinal muscles, including the multifidus and erector
spinae muscles, as well as the intervertebral disc, spinal bone (i.e., spinous and
transverse processes), and psoas muscles for computer-assisted analysis of LBP.
More specifically, we leverage the strength of U-Net [5] and conditional random
fields (CRF)-based probabilistic graphical modelling, which is reformulated as a
Recurrent Neural Network (RNN) [6] to incorporate spatial information in tis-
sue labeling. Furthermore, we also demonstrate the application of the proposed
technique to help characterize muscle tissue properties in relation to the factors
of sex and age, among a small cohort of patients with LBP.

2 Materials and Methods

2.1 Subjects, imaging, and preprocessing

Lumbosacral T2-weighted (T2w) MR images of 112 patients (59 male, age=30∼59y)
were selected from the European research consortium project, Genodisc, on com-
monly diagnosed lumbar pathologies (physiol.ox.ac.uk/genodisc). For each sex,
the subjects’ ages are roughly uniformly distributed for the included range. Ax-
ial MRI slices of the L4-L5 and L5-S1 spinal levels at mid-disc were acquired
for analysis. The multifidus (MF), erector spinae (ES) and psoas muscles, as
well as the disc and spinal bone (9 labels) were manually segmented for all sub-
jects at the L4-L5 and L5-S1 levels, using the software ITK-SNAP (itksnap.org).
All cross-sectional MR images were first processed with N4 inhomogeneity cor-
rection [7] to remove field non-uniformity in the image (see Fig. 1). Then, the
processed images were linearly transformed to the space of population-averaged
paraspinal muscle atlases [8] at L4-L5 and L5-S1 spinal levels, and resampled to
a standard image size of 256×256 with the resolution of 1x1 mm2. This miti-
gates the large individual body size variation and images resolution differences
for efficient feature learning. The manual segmentations were also transformed
with the associated transformation and resampled to the same image size and
resolution with nearest-neighborhood interpolation.

2.2 Deep convolutional neural networks

With deep learning, many biomedical image segmentations can be performed
with close-to-human accuracy. Instead of hand-crafting features to identify the
target object, the discriminative image features can be learned automatically
from examples via convolutional neural networks. In 2015, Ronneberger et al.
[5], developed U-Net, which contains feature map concatenations and multiple
de-convolution layers with learnable weight filters. In this study, we use U-Net
to obtain the probability of each label given input MR image,P (li|I) and we
train a standard U-Net to directly predict all 9 labels from the input MRI image



Fig. 1. Cross-sectional MRIs of paraspinal muscles at the L4-L5 and L5-S1 levels with
different tissue classes using population-averaged MRI atlases.

simultaneously. As described in [5], the standard U-Net consists of a contracting
and expanding path, each with 4 resolution steps with a total of 23 convolution
layers. We train our network using a combination of Dice coefficient and cross-
entropy loss [9]: Ltotal = LDice + LCE , where the Dice loss is computed for all
samples individually and averaged over the batch.

2.3 Conditional random fields

Each muscle or bone component is highly localized and has smooth boundaries.
However, due to image noise and local minima in training, the final label map
tends to have small scattered mis-classifications. To resolve this problem, we
combine conditional random fields [6] as recurrent neural networks with our U-
Net to allow spatial constraints between labels. This can improve the delineation
and integrity of our segmentations. We formulate our final labels as the infer-
ence from CRFs, given the probability map from U-Net and the input image. We
model our CRFs to minimize the energy function: E(x) =

∑
i

φu(li)+
∑
i<j

φp(li, lj),

where φu(li) = −log(P (li|I)) is the unary energy measuring the inverse likeli-
hood of pixel i assigned as label li, and φp(li, lj) is the pairwise energy measuring
likelihood of the neighboring pixel pair i and j assigned as label li and lj , re-
spectively. The pairwise energy term provides an image dependent smoothness
cost, which encourages the neighboring pixels to share similar labels. The label
li that minimizes above cost function, is chosen as our final label and we use
the meanfield approximation algorithm [6] to minimize the cost function with 6
iterations ( Fig.2(b)).

2.4 Multi-data training with gradient magnitude map

We also propose multi-data training to improve the efficiency of learning from
examples with large morphological and intensity variations. Aside from the input
training MRI, we compute the Laplacian gradient magnitude map of the training
MRI and use them as additional samples to expand the training dataset. Instead



of predicting labels based on input MRIs, the same network also has to learn how
to identify the muscles & bones based on the gradient map, which contains no
intensity information. The purpose of such augmentation training is to force the
network to extract shared features between the MRI and its gradient magnitude
for label classification. As a result, the network favors structural and spatial
information from the MRI, and becomes less reliant on its intensity. The added
gradient map is used solely for training and only the MRI is used for testing.
The benefit of this approach is to increase the robustness of the trained model
by reinforcing gradient feature learning (Fig.2 (a)).

Fig. 2. (a) Overview of the proposed MRI segmentation pipeline. (b) Implementation
of CRF-RNN, where G represents gating function and T represents iteration number.

2.5 Implementation and training

Our neural networks were implemented in TensorFlow using the NiftyNet frame-
work [10] and trained on a NIVIDIA Titan XP GPU. We used Adam optimizer
to train the network at a learning rate of 0.001. Of 112 patients, 75 were used
for training, 10 for validation, and 27 for testing. Both training and testing
datasets contained approximately equal splits in terms of gender and sex to
fairly include muscle variations due to these factors. For training, the maximum
iteration number was set at 15000 with a batch size of 20 and early stopping to
prevent over-fitting.



2.6 Muscle-fat separation and analysis

To demonstrate the application of the proposed segmentation method, we em-
ployed the segmentation results of the test dataset (27 patients) to obtain the
CSAs of the multifidus and erector spinae muscles, as well as their fat percent-
ages. We used k-means to separate the fat and muscle tissues while using the
segmented muscle labels to constrain the region of interest. Spearman partial
correlation between each of these metrics and the factor of sex or age was com-
puted to reveal the physiological differences between different subgroups, as this
relationship is being actively investigated in the LBP research.

3 Results

For segmentation, we first use Dice coefficient, sensitivity (recall), and posi-
tive predictive value (PPV) to quantitatively assess the performance of our
trained neural networks. Experimental comparisons with standard U-Net and
U-Net+CRF-RNN trained only with MRIs are also made to demonstrate the
performance improvement using proposed training framework. Since Dice could
be biased for imbalanced classes, we also compute the mean boundary distance
(MBD) between the segmentations and the groundtruth to evaluate the perfor-
mances of trained models. The Dice scores and MBDs are shown in Table 1.
From our testing, we see that U-Net alone can produce highly accurate segmen-
tation results with mean Dice of 92.4%, mean recall of 92.7%, mean PPV of
93.0%, and MBD of 1.93 mm. After CRF-RNN is incorporated, Dice (92.6%),
PPV (93.4%), and MBD (1.48mm) are improved, but there are no significant
improvements for recall (92.7%). In comparison, the proposed multi-data train-
ing yields the best segmentation results for all muscle and bone components with
overall average Dice of 93.8%, recall of 93.9%, PPV of 94.2%, and overall MBD of
1.00 mm. Comparing to U-Net+CRF-RNN trained only with MRIs, introducing
multi-data training can improve the segmentation accuracies for all muscles and
bones, especially for left & right psoas muscles with 3-4% improvements in terms
of Dice and 1-2 mm improvements in terms of MBD. This is further reflected
through the significant decrease in standard deviations for both Dice and MBD
as shown in Table 1, indicating improvements in terms of robustness. We also
performed paired-sample t-test using averaged Dice and MBD over all the la-
bels. Our segmentations with multi-data training shows significant (p<0.05) and
consistent improvement over U-Net+CRF-RNN with only MRI training both in
terms of Dice (p=0.001) and MBD (p= 0.043). As for U-Net vs. U-Net+CRF
only trained with MRIs, there is no significant improvement in Dice (p=0.15),
but there is significant improvement in terms of MBD (p = 0.004).

To further illustrate the performance of our network, segmentation results
for the two spine levels from our trained network using proposed framework are
shown in Fig. 3. As seen from Fig. 3(c), U-Net+CRF-RNN reduces the small
scattered false positives and smoothes the segmentation boundary. From Fig.
3(d), our network yields highly accurate segmentations for all muscle and bone
components compared to the ground truth despite large muscle variations.



Table 1. Segmentation performance in different setups measured in Dice and mean
boundary distance as mean ± standard deviation

Dice (%) spine disc left right left right left right overall
psoas psoas MF MF ES ES

U-Net 91.8 96.9 90.5 91.5 94.4 93.9 89.7 90.5 92.4
±2.9 ±1.9 ±15.1 ±15.5 ±2.6 ±3.0 ±6.5 ±5.3 ±3.9

U-Net+CRF 91.3 97.0 90.9 91.9 94.4 94.2 89.9 90.8 92.6
±5.3 ±2.4 ±15.1 ±15.5 ±2.4 ±2.3 ±6.4 ±5.1 ±3.9

Multi-data 92.7 97.4 94.6 94.8 95.0 94.5 90.6 91.3 93.9
training ±2.9 ±1.1 ±4.3 ±4.0 ±2.3 ±1.9 ±5.8 ±4.6 ±0.2

Mean Boundary spine disc left right left right left right overall
Distance (mm) psoas psoas MF MF ES ES

U-Net 1.26 1.09 2.99 4.04 1.10 1.30 1.89 1.80 1.93
±1.4 ±1.8 ±4.6 ±13.6 ±0.7 ±1.0 ±1.1 ±1.3 ±1.9

U-Net+CRF 0.97 0.84 2.10 2.93 0.96 1.05 1.61 1.42 1.48
±1.0 ±0.8 ±2.8 ±13.5 ±0.4 ±0.5 ±0.9 ±0.8 ±1.8

Multi-data 0.68 0.57 1.18 0.93 0.87 0.94 1.46 1.34 1.00
training ±0.2 ±0.3 ±1.0 ±0.6 ±0.4 ±0.4 ±0.8 ±0.6 ±0.3

Fig. 3. Segmentation examples with MRIs at the L4-L5 and L5-S1 levels shown on the
first and second rows, respectively. Columns: (a) Input T2w MRI (b) U-Net segmen-
tation (c) U-Net+CRF-RNN segmentation (d) Our segmentation (e) Ground truth.

The results of the k-means algorithm to separate the muscle and fat tissue
are demonstrated in Fig. 4. From the muscle morphometric analysis in the atlas
reference space, at the L4-L5 level, the female group is significantly correlated
(p < 0.05) with higher fat percentage within the multifidus muscles bilaterally



(r=0.46 for both sides) while controlling for age. At the same time, this metric
within the left erector spinae muscles is positively correlated with increasing age
(r=0.40). At the L5-S1 level, the multifidus muscle fat content is correlated with
sex (female) on both sides (r=0.53 and 0.47 for the left and right). Our analysis
with CSAs did not yield any significant correlations.

Fig. 4. Fat separation using k-means. (a) Input T2w MRI (b) Segmentations of mul-
tifidus and spinae muscles (c) Separated fat within the muscles (in orange color).

4 Discussion and future work

Our results demonstrate that adding gradient magnitude images as additional
training set can significantly improve the segmentation accuracy without increase
network complexity. Hence, it is easy to implement, computationally efficient,
and can be generalized to other MR or CT images. Although this technique is
unconventional as we normally desire the network to learn the gradient features
automatically, it can be very helpful to improve learning efficiency in applications
with small datasets. Leveraging the automatic segmentation results, the muscle
morphometric analysis demonstrates that female sex and aging is correlated
with increased fatty infiltration in multifidus and erector spinae muscles among
patients with lumbar pathologies. This trend is consistent with previous reports
[11]. While the trend of fatty infiltration is similar on both sides of the body,
only the left erector spinae muscle showed significant correlation with age. This
is likely due to the side that is commonly affected by disease.

CRF-RNN is able to reduce issues of island labels when only using U-Net.
Although many directly employ CRFs models as a post-processing step for U-
Net, the RNN implementation allows end-to-end training. However, with high
variations of muscle tissue properties, separation between muscles, especially
between multifidus and erector spinae muscles, can be challenging. Future work
will include improved definition of muscle groups with multi-contrast MRI, and
we will also seek to incorporate models to enhance our network with the implied
shape constraints to further improve the boundary smoothness of the segmen-
tation. In the future, we will also include a wider age range of patients in the
training set to further improve our network.



5 Conclusion

We have proposed the first technique with deep convolutional neural networks to
automatically segment the paraspinal muscles from MRIs in patients with LBP,
and further demonstrated its application to facilitate computer-assisted analysis
of muscle characteristics. With CRF-RNN to help add spatial constraints to the
tissue labeling, we proposed to incorporate additional gradient magnitude maps
of the original images in training to enhance the performance without adding
network complexity. We expect the resulting technique to greatly benefit the
investigation of paraspinal muscle and common lumbar disorders.
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