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Abstract. Stroke is the second leading cause of disability worldwide. Throm‐
bectomy has been shown to offer fast and efficient reperfusion with high recan‐
alization rates and thus improved patient outcomes. One of the most important
indicators to identify patients amenable to thrombectomy is evidence of good
collateral circulation. Currently, methods for evaluating collateral circulation are
generally limited to visual inspection with potentially high inter- and intra-rater
variability. In this work, we present an automatic technique to evaluate collateral
circulation. This is achieved via low-rank decomposition of the target subject’s
4D CT angiography, and using principal component analysis (PCA) and support
vector machines (SVMs) to automatically generate a collateral circulation score.
With the proposed automatic score evaluation technique, we have achieved an
overall scoring accuracy of 82.2% to identify patients with poor, intermediate,
and good/normal collateral circulation.
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1 Introduction

According to the World Heart Federation, each year over 15 million people suffer from
brain stroke, with 6 million dying as a result, and 5 million becoming permanently disa‐
bled1. The two main types of stroke are: (1) hemorrhagic, due to bleeding, and (2)
ischemic, due to a lack of blood flow. In this paper, we focus on ischemic stroke, which

1 http://www.world-heart-federation.org/cardiovascular-health/stroke/.
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accounts for approximately 87% of all stroke cases. In ischemic stroke, where poor blood
flow to the brain causes neuronal cell death, the goal of treatment is to restore blood flow
to preserve tissue in the ischemic penumbra, where blood flow is decreased but sufficient
enough to stave off infarction (i.e. cell death).

It has been shown that recanalization, i.e. restoring blood flow, is the most important
modifiable prognostic predictor for a favorable outcome in ischemic stroke [1]. Timely
restoration of regional blood flow can help salvage threatened tissue, reducing cell death,
and ultimately minimizing patient disabilities. Thrombectomy, where a long catheter
with a mechanical device attached to the tip, is used to remove a clot, has been effective
for treatment for ischemic stroke. However, the inherent risks associated with throm‐
bectomy must be considered, and only patients with certain indications, including a large
penumbra, small infarct, and sufficient collateral circulation should undergo such inter‐
ventions. Collateral circulation (i.e., collaterals) is defined as a supplementary vascular
network that is dynamically recruited when there is an arterial occlusion (e.g. a clot) and
has been shown to be one of the most important factors in determining treatment strat‐
egies [2, 3].

Currently, collaterals are typically evaluated on Computed Tomography Angiog‐
raphy (CTA) or Magnetic Resonance Angiography (MRA), however, there is no
consensus on which imaging modality should be used [4]. For assessment on CTA, a
collateral score is based on visual inspection of the images by a radiologist and can be
graded using scoring systems, such as the Alberta Stroke Program Early CT Score
(ASPECTS) [5]. However, visual inspection is often subject to inter- and intra-rater
inconsistency and can be time-consuming. To the best our knowledge, no automatic
collateral score evaluation methods have been reported previously in the literature.

In this paper, we present an automatic technique for estimating the collateral score
in dynamic 4D CTA images. First, blood vessel patterns are extracted using low-rank
image decompositions, and then collateral scores are assigned using support vector
machines (SVMs) based on eigen blood vessel patterns from principal component anal‐
ysis (PCA). To demonstrate the performance of SVMs for the task, we compared the
results against classification using k-nearest neighbors (kNN) and random forests.

2 Materials and Methods

2.1 Subjects and Scanning Protocols

For this study, we included 29 patients who had suffered a stroke and 8 healthy subjects.
For all subjects (age = 65 ± 15 yo), isotropic computed tomography (CT) imaging was
acquired on Toshiba’s Aquilion ONE 320-row detector 640-slice cone beam CT
(Toshiba medical systems, Tokyo, Japan). The time between symptoms onset and scan‐
ning varies, but for most it is within 24 h. The routine stroke protocol uses a series of
intermittent volume scans over a period of 60 s with a scanning speed of 0.75 s/rotation.
This protocol provides whole brain perfusion and whole brain dynamic vascular analysis
in one examination. A total of 18 volumes are acquired, where a series of low-dose scans
are performed: first for every two seconds during the arterial phase, and then spaced out
to every 5 s to capture the slower venous phase of the contrast bolus. Isovue-370
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(Iopamidol) is used as non-ionic and low osmolar contrast medium (Iodine content,
370 mg/ml).

2.2 Collateral Circulation Scoring for Patients

The collateral circulations of the 29 patients were scored by two radiologists as being
good, intermediate or poor using the Alberta Stroke Program Early CT
score (ASPECTS) [5]. The scoring criteria are as follows: a score of good is given for
100% collateral supply of the occluded middle cerebral artery (MCA) territory; inter‐
mediate score is given when collateral supply fills more than 50% but less then 100% of
the occluded MCA territory; a poor score indicates collateral supply that fills less then
50% but more than 0% of the occluded MCA territory (Fig. 1). Among the patients, we
had 9 good, 14 intermediate, and 6 poor subjects.

Fig. 1. Examples of axial maximum intensity projections (MIPs) for different collateral
circulation scores. The middle cerebral artery (MCA) is annotated with yellow arrows, and the
blue arrow points to calcification at the pituitary gland. The MCA territory is to the lateral region
of the MCAs. The blue and green regions are the projection regions in the coronal and axial
directions that will be used for automatic collateral score computation. (Color figure online)

2.3 Image Processing

Each subject’s 18 CTAs were first rigidly co-registered together, and then spatially
normalized to a population-averaged CTA template created using the first CTA of the
series (with the least blood vessel contrast) with nonlinear registration. The registrations
help ensure all brains were in the same space for analysis, and were completed with the
freely available Advanced Normalization Tools (ANTs) (stnava.github.io/ANTs). The
template was created from 11 healthy subjects that had undergone the same dynamic
4D-CTA imaging protocol. Individual averaged CTAs were deformed and averaged
together through an unbiased group-wise registration scheme as described in [6]. The
resulting template, with a resolution of 1 × 1 × 1 mm3, is shown in Fig. 2. A brain mask
was extracted from the template using the active contour segmentation tool in ITK-
SNAP (www.itksnap.org) and used for the analysis of individual brain volumes.
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Fig. 2. Population-averaged non-linear template (From left to right: axial, sagittal and coronal
views). The brain mask is shown overlaid on the coronal view in the rightmost image.

2.4 Blood Vessel Extraction

The evaluation of collateral circulation is largely determined by the flow of contrast
agent in the blood vessels over time. However, within the CTA images, other brain
anatomy, such as the ventricles and grey matter are still visible. To remove non-vessel
structures that exhibit inter-subject variability and can affect the PCA results intended
only for blood vessels, we employed low-rank decomposition. Previously, low-rank
decomposition has been used to separate foreground and background in a scene from
video footages [7]. In this case, each image in the series can be modeled as the summation
of the low-rank components that contain consistent anatomical structures across time,
and a sparsity term that describes the intensity changes in the blood vessels. For a subject
k, the 4D CTAs are stored in a matrix D =

[
I1

k
, .., Ii

k
,… , I18

k

]
, where Ii

k
 is the ith CTA

image that is converted to a column vector from the time series. The low-rank repre‐
sentation of D is defined as:

{
L̂, Ŝ

}
= argminL,S

(
rank(L) + 𝛾‖S‖0

)
subject to D = L + S (1)

where ‖S‖0 is the counting norm of the sparsity component S, rank(L) is the matrix rank
of the low-rank component L, and 𝛾 is a positive scalar. To make the optimization tract‐
able, the problem is then transformed as:

{
L̂, Ŝ

}
= argminL,S

(‖L‖∗ + 𝜌‖S‖1
)

subject to D = L + S (2)

where ‖L‖∗ is the nuclear norm of L, ‖S‖1 is the L1-norm of S, and 𝜌 is a positive scalar
that controls the approximated rank of matrix L. There have been many methods to solve
this optimization problem. For our application, we employed the augmented Lagrange
multiplier method [8] to recover the low-rank and sparsity components. As a result, each
image Ii

k
 is represented as Ii

k
= li

k
+ si

k
, where li

k
 and si

k
 are the low-rank and sparse repre‐

sentation of Ii
k
. For our application, to reduce image noise and inter-subject anatomical

variability (i.e., blood vessels), the CTA images were first blurred by a Gaussian kernel
of 𝜎 = 3 mm (the thickness of main arteries), and then processed with low-rank decom‐
position. All sparse representations for each subject’s CTA series were averaged. Lastly,
the median value projection in the axial direction and mean value projection in the
coronal direction were obtained using the projection regions in Fig. 1. They were then
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used to extract eigen vessel patterns. Examples of the projections are shown in Fig. 3.
Note that on the left hemisphere, as the blood circulation worsens, the intensity of the
blood vessels becomes lower.

Fig. 3. Examples of 2D projection images (axial view: median value in axial direction, coronal
view: mean value in coronal direction) for the typical normal, good, intermediate and poor
collateral circulation.

2.5 Eigen Vessel Patterns and Score Assignment

Principal component analysis (PCA) has been commonly used for object recognition [9]
through the generation of eigen image basis. From the training set composed of selected
vectorized image features X =

[
X1, X2,… , Xm

]
⊂ 𝔑n×m, the covariance matrix C can be

decomposed into C = UΛUT, with Λ being the diagonal matrix containing the eigen‐

values 
{
𝜆a

}
a=1…N

 and U being the orthonormal matrix that has the corresponding prin‐

cipal components (or eigen vessel patterns) 
{
∅a

}
a=1…N

. When a new image 𝜓 is

presented, it can be represented as 𝜓 = X +
N∑

a=1
wa𝜙a, where the reconstruction coeffi‐

cient can be found via wa = 𝜙T
a

(
𝜓 − X

)
 and X =

1
m

m∑
j=1

Xj. As we have images from
coronal and axial direction projections for subject k, two sets of reconstruction coeffi‐
cients wk

coronal
 and wk

axial
 were concatenated as wk =

[
w

k
coronal

, w
k
axial

]
 to feed into multi-

class SVMs with the radial basis function (RBF) kernel and one-vs-all scheme [10] to
assign each subject with a collateral score. For a binary SVM classifier, the decision
function is defined as f (w) =

∑
yi𝛼iK

(
w, w

i

)
+ b, where the kernel

K
(
xi, xj

)
= exp

(
𝛽
‖‖‖xi − xj

‖‖‖
2)

 is the radial basis function, w
i
 is the support vector, yi is

the binary class label, and 𝛼i and b are the coefficients and bias term to be trained. In the
one-vs-all type scheme, a binary SVM is trained for each class to separate the examples
in the target class (positive labeled) from the remaining ones (negative labeled). For a
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new subject to be classified, the axial and coronal projection images are first projected
to the eigen vessel patterns obtained from the training data, and the associated feature
vector w is produced by concatenating the reconstruction coefficients. Lastly, the feature
vector w is classified with the associated classifier that has the highest score computed
from all classifiers.

2.6 Training and Validation

As there is almost no visual difference between the 4D CTAs of normal controls and
patients with collateral scores of good, we combined them as one group for training and
classification. Therefore, we categorized all the subjects into three classes: good/normal,
intermediate, and poor. As there are much fewer subjects with poor collateral circulation
and it is desirable to have a balanced dataset for training, we generated 8 more new
subjects by nonlinearly registering these cases to normal controls with the least anatom‐
ical similarity to them. We used CTA images that contain general brain anatomy and
clear vasculature for registration. This way, we ensure that the synthesized anatomy is
distinct from both the original image and the image to be registered to. To further enrich
the training set, we also included the left-and-right mirrored versions of the subjects
since most often a stroke occurs unilaterally, and the equal chance of having a stroke on
the left or right hemisphere should be represented. Finally, we employed a leave-one-
out scheme to validate our computer-assisted scoring system. However, as the dataset
contains both the original and mirrored images, we only validated the classification
results for 45 original images in order to avoid repeated classification. More specifically,
for each target subject to receive a score, the subject’s images (both original and mirrored
versions) will be excluded from the training set. This leaves 88 subjects to generate the
eigen vessel patterns and train the classifier at each round of validation. To assess the
performance of the SVMs for collateral scoring, with the same image features, we
compared the classification results using SVMs against those using k-nearest neighbors
(kNN) and random forests. More specifically, through cross-validation, in terms of
overall scoring accuracy, we found that for kNN, the optimal number of neighbors is 7,
and for random forests, 150 trees offer the best results.

3 Results

3.1 Low-Rank Image Decomposition

A demonstration of low-rank decomposition is shown in Fig. 4 for two different subjects.
Compared with the original image, the pattern of blood vessels is captured in the sparsity
component while the other brain anatomy and calcification in the falx (Subject 1) have
been removed. As for Subject 2 with poor collateral circulation, the absence of bright
blood vessels on the right hemisphere can be observed in the sparsity component.
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Fig. 4. Demonstration of low-rank decomposition using two subjects (different from those in
Fig. 3). The yellow arrows point to the calcifications, and the vasculatures are shown as bright
signals in the sparsity images. (Color figure online)

3.2 Eigen Vessel Patterns

The first 5 most significant principal components (or eigen vessel patterns) ranked by
the eigenvalues for the two projections are shown in Fig. 5. Note that the asymmetric
eigen vessel patterns in Fig. 5 are the results of unilateral collateral clots.

Fig. 5. Eigen blood vessel patterns of axial and coronal projection images.

3.3 Automatic Collateral Circulation Scoring Results

The score assignment accuracy for each class and in total are show in Table 1 for the
SVMs, random forests, and k-nearest neighbors. In general, the SVMs achieved higher
scoring accuracy than the other two methods. To better understand the classification
results with SVMs, the related confusion matrix is shown in Table 2.

4 Discussion and Future Work

We used low-rank decomposition to extract vasculatures from the 4D CTA for three
reasons. First, compared with simple subtraction of pre- and post-contrast CTAs, low-
rank decomposition does not increase the image noise level. Second, the method can
remove or mitigate unwanted image features, such as hyperintense signals from the
calcifications in the pituitary gland, ventricles or the falx. Lastly, the method preserves
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the relative image intensity changes due to blood circulation while removing other
anatomical features. We employed 2D projection images for the classification task.
Compared with directly using 3D volumes, which achieved overall scoring accuracy of
73.3%, 46.7% and 46.7% for SVMs, random forests, and kNN techniques, respectively,
the 2D approach requires less computational burden, and performs better likely due to
further reduction of blood vessel anatomical variability from projection. Here, the
projection methods are chosen with the consideration of the blood flow direction (from
bottom to top of the brain). When a clot occurs, the superior side of the MCA territory
will appear dark, and the more severe the case is, the less blood reaches the region. As
a result, the coronal mean projection captures the blood supply perpendicular to the flow
direction while the axial median projection measures the property along flow direction.
Compared with the selected projection methods, the conventional MIPs did not perform
as well (71.1%, 55.6%, and 57.8% overall classification accuracy for SVMs, kNN, and
random forests).

Table 1. Evaluation of collateral circulation score classification accuracy

Normal/Good Intermediate Poor All
SVMs 82.4% 64.3% 100% 82.2%

Random forest 64.7% 42.9% 85.7% 64.4%
kNN 41.2% 42.9% 85.7% 55.6%

Table 2. Confusion matrix for collateral score classification results using SVMs.

Prediction True class
Normal/Good Intermediate Poor

Normal/Good 14 2 0
Intermediate 2 9 0

Poor 1 3 14

For this work, we only had a small cohort of subjects available, yet the cerebral
vasculature has much higher variability than other anatomical structures in the brain.
Therefore, we blurred the CTA images using a Gaussian kernel with a kernel size of
3 mm, which is the diameter of the main cerebral arteries, to reduce the variability of
the smaller vessels. For training, we synthesized new subjects with poor collateral
circulation due to a highly imbalanced dataset. Since nonlinear registration will signif‐
icantly alter anatomical features, rendering the synthesized datasets sufficiently different
from both the original and the image to be registered, they were included in cross-
validation. With more subjects, the classification results may be further improved, and
we could explore the popular convolutional neural networks to inspect the feature space
and potentially improve the classification. Another limitation of the current techniques
comes from the inter- and intra-variability of the scores in practice. With simple visual
inspection of 3D data, it is challenging to establish consistent and accurate scores partic‐
ularly for images that appear in between the categories (e.g., intermediate vs. good).
This may partially contribute to the lower classification accuracy for the intermediate
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class, as many from the group were assigned to good/normal or poor groups. In addition,
in contrast to the good/normal and poor collateral scores, the wider range of variability
among the population of intermediate collateral circulation also contributes to the lower
classification accuracy. However, in clinical practice, it is most important to differentiate
between good and intermediate collaterals versus poor collateral circulation since in
individuals with poor collaterals the results of thrombectomy are poor. In the future, we
will conduct evaluation on the inter- and intra-rater variability in labelling collaterals,
and further validate our technique in relation to such information. Although averaging
the extracted blood vessels for each subject can help gain information regarding blood
flow over time, we would like to explore other techniques that explore temporal infor‐
mation, as well as more advanced rank-reduction techniques that better preserve relevant
features for more accurate collateral evaluation.

5 Conclusions

We have developed an automatic technique to compute a collateral circulation score
with an overall 82.2% accuracy. To the best of our knowledge, this is the first time that
a computer-assisted classification method has been used for this application, and it is
the first step towards helping radiologists and neurosurgeons more efficiently and accu‐
rately determine the best course of treatment and predict patient outcomes.
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