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Fast Strain Estimation and Frame Selection in
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Abstract—Ultrasound Elastography aims to determine the me-
chanical properties of the tissue by monitoring tissue deformation
due to internal or external forces. Tissue deformations are
estimated from ultrasound radio frequency (RF) signals and
are often referred to as time delay estimation (TDE). Given
two RF frames I1 and I2, we can compute a displacement
image which shows the change in the position of each sample
in I1 to a new position in I2. Two important challenges in
TDE include high computational complexity and the difficulty
in choosing suitable RF frames. Selecting suitable frames is
of high importance because many pairs of RF frames either
do not have acceptable deformation for extracting informative
strain images or are decorrelated and deformation cannot be
reliably estimated. Herein, we introduce a method that learns 12
displacement modes in quasi-static elastography by performing
Principal Component Analysis (PCA) on displacement fields of a
large training database. In the inference stage, we use dynamic
programming (DP) to compute an initial displacement estimate
of around 1% of the samples, and then decompose this sparse
displacement into a linear combination of the 12 displacement
modes. Our method assumes that the displacement of the whole
image could also be described by this linear combination of
principal components. We then use the GLobal Ultrasound
Elastography (GLUE) method to fine-tune the result yielding
the exact displacement image. Our method, which we call PCA-
GLUE, is more than 10 times faster than DP in calculating the
initial displacement map while giving the same result. This is due
to converting the problem of estimating millions of variables in
DP into a much simpler problem of only 12 unknown weights
of the principal components. Our second contribution in this
paper is determining the suitability of the frame pair I1 and
I2 for strain estimation, which we achieve by using the weight
vector that we calculated for PCA-GLUE as an input to a multi-
layer perceptron (MLP) classifier. We validate PCA-GLUE using
simulation, phantom, and in vivo data. Our classifier takes only
1.5 ms during the testing phase and has an F1-measure of more
than 92% when tested on 1,430 instances collected from both
phantom and in vivo datasets.

Index Terms—Ultrasound elastography, Principal component
analysis (PCA), Time delay estimation (TDE), Multi-Layer per-
ceptron (MLP) classifier.

I. INTRODUCTION

ULTRASOUND elastography has numerous applications
in medical diagnosis of diseases and in image-guided

interventions [1]–[8]. For example, it could be used in imaging
cancer tumors by estimating the strain image since tumors are
normally more rigid than the surrounding tissue. Ultrasound
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elastography has two main branches which are dynamic and
quasi-static elastography [9]. Dynamic elastography refers to
the quantitative estimation of the mechanical properties of the
tissue. Quasi-static elastography, which is our focus in this
paper, is more related to estimating the deformation of the
tissue when an external force is applied [10], [11]. Recent
work has shown success in performing ultrasound elastography
using different methods such as spatial angular compounding
[12], multi-compression strategy [13], Lagrangian tracking
[14] and guided circumferential waves [15]. In addition, other
work has exploited the power of deep learning to achieve the
same goal [16]–[23].

In spite of the various applications that ultrasound elas-
tography has, it also has some challenges. One of these
challenges is that time delay estimation (TDE) between frames
of radio frequency (RF) data is computationally expensive. The
methods used for calculating the TDE are either optimization-
based [24]–[26] or window-based [27]–[29]. In optimization-
based techniques, the displacement image is estimated by
minimizing a cost function. In window-based techniques,
the objective is to find the displacement that maximizes a
similarity metric such as normalized cross correlation (NCC)
between two windows in the two frames before and after
deformation.

Herein, we propose a computationally efficient technique
for estimating an approximate TDE between two RF frames.
To that end, we first learn the modes of TDE by acquiring a
large training database of free-hand palpation elastography by
intentionally compressing the tissue in different manners. We
then perform principal component analysis (PCA) to extract
the modes of TDE. At the test stage, we first run dynamic pro-
gramming (DP) on only 1% of RF data to extract a sparse TDE
between two frames I1 and I2. We then estimate the weights of
principal components that best approximate this sparse TDE,
and subsequently use the weighted principal components as an
initial TDE for GLobal Ultrasound Elastography (GLUE) [24].
We therefore call our method PCA-GLUE. PCA-GLUE was
inspired by the success of [30] in natural images. Similar work
by Pohlman and Varghese [31] has shown promising results
on displacement estimation using dictionary representations.

Another challenge that ultrasound elastography faces is the
suitability of the RF frames to be used for strain estimation.
The two RF frames used are collected before and after
applying an external force. Depending on the direction of the
applied force, different qualities of strain images would be
obtained. To be more precise, in-plane displacement results in
high-quality strain images, whereas out-of-plane displacement
results in low-quality strain images [32], [33]. This means that
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collecting ultrasound data needs the person to be experienced
in applying purely axial force. For imaging some organs, it
is hard to hold the probe and apply a purely axial force even
for experts. Furthermore, even for pure axial compression, two
RF frames can be decorrelated due to internal physiological
motions, rendering accurate TDE challenging.

Many solutions have been introduced for solving this
problem. Lubinski et al. [34] suggested averaging several
displacement images to improve the quality. The weights used
are not equal, they rather depend on the step size (i.e. certain
images would have higher weights than others). Hiltawsky
et al. [35] tried to tackle the out-of-plane displacement by
developing a mechanical compression applicator to force the
motion to be in-plane. Jiang et al. [36] defined a metric that
informs the user whether or not to trust the pair of RF frames
for strain estimation. This metric is the multiplication of the
NCC of the motion compensated RF field and the NCC of
the motion compensated strain field. Other approaches [37],
[38] used an external tracker so as to pick up the RF frames
that are collected roughly from the same plane. They used the
tracking data to find pairs that have the lowest cost according
to a predefined cost function.

Although all of the previously mentioned approaches
showed an improvement in the quality of the strain image, they
also have some drawbacks. The approaches introduced in [35],
[37], [38] need an external device such as the mechanical
applicator or the external tracker. This not only complicates
the process of strain estimation, but also makes it more
expensive. The approach introduced in [36] gives a feedback
on the quality of the strain image only after estimating TDE,
which means that it is not a computationally efficient method
for frame selection. The method we propose in this paper
selects suitable frames before estimating TDE and is also
computationally efficient.

Herein, we introduce a new method with three main contri-
butions, which can be summarized as follows:

1) We develop a fast technique to compute the initial
displacement image between two RF frames, which is
the step prior to the estimation of the exact displacement
image. Our method could also be used to speed up
different displacement estimation methods by providing
initial estimates.

2) We introduce a classifier that gives a binary decision
for whether the pair of RF frames is suitable for strain
estimation in only 1.5 ms on a desktop CPU.

3) PCA-GLUE, which relies on DP to compute the initial
displacement map, is robust to potential DP failures.

This work is an extension of our recent work [39], [40],
with the following major changes. First, we replace the
multi-layer perceptron (MLP) classifier with a more robust
one that can generalize better to unseen data. Second, we
used automatically annotated images for training the classi-
fier, compared to manual annotation that we previously used
in [40]. Third, testing is now substantially more rigorous
and is performed on 5 different datasets from simulation,
phantom and in vivo data. And last, the criteria for measuring
the performance of the classifier used in this paper are the
accuracy and F1-measure instead of using the signal to Noise

Ratio (SNR) and Contrast to Noise Ratio (CNR) in [40]. Our
code is available at http://code.sonography.ai and on Github
https://github.com/AbdelrahmanZayed.

II. METHODS

In this work, we have two main objectives which are
fast TDE and automatic frame selection. We first propose a
method that computes a superior approximate TDE compared
to DP [41], while being more than 10 times faster.

The idea is simple and logical: we compute N principal
components denoted by b1 to bN from real experiments that
describe TDE under the effect of an external force. In other
words, the approximate displacement image is a linear combi-
nation of these principal components. During data collection,
we applied the force in the 6 degrees of freedom (DOF) to
ensure generality and a dataset of displacement images was
obtained using GLUE. Using PCA, we were able to compute
our principal components. Fig. 1 shows the directions of the
applied force as well as some of the principal components
learned.

For frame selection, our goal was simply to have a classifier
that can classify whether the two RF frames are suitable for
strain estimation. One can consider an approach of having a
classifier that takes the two RF frames, where the samples
are the input features (such as [18] and [20]), and outputs
a binary decision of 1 for suitable frames and 0 otherwise.
This approach would need a powerful GPU as the number
of samples in each RF frame is approximately 1 million. To
simplify the problem, we make use of our representation for
the displacement image by the principal components. We can
think of this as a dimensionality reduction method for the
huge number of features that we had, where the input feature
vector can be simply the N-dimensional weight vector w,
which represents the weight of each principal component in the
initial displacement image. Our low-dimensional weight vector
w is the input to a multi-layer perceptron (MLP) classifier that
would output a binary number 1 or 0 depending on whether
the two RF frames are suitable or not for strain estimation.

A. Feature extraction

Consider having two RF frames I1 and I2 collected before
and after some deformation, each of size m× l, where m is the
number of samples in an RF-line and l is the number a RF
lines. Our goal is to estimate a coarse displacement image that
describes the axial motion that each sample has had [42]. We
start by running the DP algorithm on only p RF lines out of the
total l RF lines (where p << l) to get the integer displacement
of k = m× p pixels. We then form a k-dimensional vector
named c after applying a simple linear interpolation to the k
estimates to make them smoother, so that the integer estimates
become linearly increasing with depth instead of the staircase
approximation, as shown in Fig. 2.

Next, we construct the matrix A such that

A =


b1(q1) b2(q1) b3(q1) . . . bN(q1)
b1(q2) b2(q2) b3(q2) . . . bN(q2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b1(qK) b2(qK) b3(qK) . . . bN(qK)

 (1)
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(a) Directions of ap-
plied force

(b) Axial deformation (z) (c) In-plane rotation (θ )

Fig. 1: Principal components of in-plane axial displacement (in mm) learned from both in vivo and phantom experiments. In
(a), translation of the probe along z and its rotation by θ generates axial deformation in the phantom. In (b), extension and
compression principal components along z are shown. In (c), displacement arising from rotation by θ is shown.

(a) Before interpolation (b) After interpolation

Fig. 2: The displacement of a certain RF line before and after
interpolation.

where the N vectors from b1 to bN represent our N principal
components, q1 to qK correspond to our 2D coordinates
of the sparse features chosen along the p RF lines before
deformation. For example, for an RF frame of size 2304×384,
if we set p to 1 and choose the sparse features to be along
the RF line number 200. Then k = 2304 and q1 to qK would
be {(1,200),(2,200), . . . ..,(2304,200)}.

Next, we compute the weight vector w = (w1, ...,wN)
T

according to the following equation

ŵ = argmin
w
||Aw–c|| (2)

This implies that we choose the weight vector w that decom-
poses the actual displacement image into a linear combination
of the principal components weighted by some coefficients so
as to have the minimum sum-of-squared error.

B. Implementation

1) Implementing PCA-GLUE for strain estimation: Strain
estimation relies on the extracted features to calculate the
integer displacement image d̂.

d̂ =
N

∑
n=1

ŵnbn (3)

Eq. 3 shows how to calculate the integer displacement image
d̂ from the weight vector w, which is then passed to GLUE to
obtain the exact displacement image d. Finally, the resulting

image is spatially differentiated to obtain the strain image.
Algorithm 1 summarizes the procedure followed by PCA-
GLUE.

Algorithm 1 PCA-GLUE

1: procedure PCA-GLUE
2: Choose p equidistant RF lines.
3: Run DP to get the integer axial displacement of the

p RF lines.
4: Solve Eq. 2 to get the vector w.
5: Compute the initial axial displacement d̂ of all RF

lines by Eq. 3.
6: Use GLUE to calculate the exact axial displacement.
7: Strain is obtained by spatial differentiation of the

displacement.
8: end procedure

2) Implementing the MLP classifier for frame selection:
The MLP classifier takes the weight vector w (see Algorithm
1 steps 2 to 4) as the input feature vector. The ground truth
(i.e. whether I1 and I2 are suitable for strain estimation or not)
is obtained according to the procedure described in Algorithm
2.

Algorithm 2 Labelling the dataset for the MLP classifier

1: procedure
2: RF frames I1 and I2 are passed to GLUE to obtain the

displacement image.
3: I2 is deformed and interpolated according to the

computed displacement image yielding I2
′.

4: We calculate the Normalized cross correlation (NCC)
between I1 and I2

′.
5: The final decision is 1 if the NCC is higher than 0.9

and 0 otherwise.
6: end procedure

The issue with this algorithm is that it is slow because
of three computationally expensive steps of 2, 3 and 4. As
such, it cannot be performed on many pairs of RF frames
in real-time. Our goal is to train a classifier that predicts the
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Classifier

 

Algorithm 1 (steps
2-5)

Before Compression After Compression

Fig. 3: The overall procedure used for frame selection. Given
two RF frames (we are showing here the B-mode images for
illustration) collected before and after deformation, we first
estimate the integer displacement image d̂ (in mm) using PCA-
GLUE, by applying Algorithm 1 (steps 2-5). We then use
the weight vector w as the input feature vector to the MLP
classifier.

output of step 5 by bypassing steps 2 to 4. The architecture
of our classifier is relatively simple, with an input layer, 3
hidden layers, and an output layer. The input layer takes the
N-dimensional vector w. The 3 hidden layers contain 256,
128 and 64 hidden units with a Rectified Linear Unit (ReLU)
as the activation function. The output layer contains one unit,
where the predicted value corresponds to the Normalized cross
correlation (NCC) between I1 and I2

′ such that

NCC =
∑i(I1(i)− Ī1)(I2(i)′− ¯I2

′)√
∑i(I1(i)− Ī1)2 ∑i(I2(i)′− ¯I2

′)2
∀i ∈ I1∩ I2

′ (4)

where Ī1 and ¯I2
′ are the mean values of the RF frames I1 and

I2
′ respectively.
NCC has been widely used as a similarity metric by several

image registration methods [43]–[46]. In this work, we claim
that the NCC between I1 and I2

′ is an indicator for the
suitability of I1 and I2 for elastography. Therefore, we apply
a threshold on the value of both the predicted NCC and the
ground truth NCC to compute the binary equivalent, which is 1
when the NCC is higher than 0.9 and 0 otherwise. One possible
criticism to our work might be that we do not directly estimate
the binary output. This is because better results were obtained
when training is done to estimate the NCC, as opposed to
training to obtain a binary decision. The reason is that the
NCC value provides more information to the network for better
training compared to its thresholded binary number. It also
makes the derivative of the loss function smoother, resulting
in improved backpropagation. Another benefit is to be able to
pick up the best possible frame to be paired with a certain
frame, where we pair it with the frame with the highest NCC

Does the classifier 
give a binary 1?

Given 2 RF frames before and after deformation.

The pair of RF 
frames is not 
suitable for 

elastography.

Yes

No

Use GLUE to calculate the exact axial displacement.

Compute the initial axial displacement of all RF lines by Eq. 3.

Solve Eq. 2 to get the vector w and give it to the MLP classifier.

Run DP to get the integer axial displacement of the p RF lines.

Choose p equidistant RF lines.

Strain is obtained by spatial differentiation of the displacement.

Fig. 4: Flowchart of RF frame selection and strain estimation.

in a specified window of the 16 nearest frames, which has
only one solution (assuming that there exist good frames in
the window), compared to multiple solutions if the result is just
a binary number. Our loss function is the mean square error
(MSE) between the estimated NCC and the actual NCC before
thresholding. We use Adam optimizer [47] with a learning rate
of 1e−3. The code is written in Python using Keras [48]. Fig.
3 shows the overall procedure followed by our algorithm for
frame selection. Fig. 4 contains a flowchart that shows how
strain estimation and frame selection are augmented together.

C. Data Collection

1) PCA-GLUE: We collected 4,055 RF frames from 3
different CIRS phantoms (Norfolk, VA), namely Models
040GSE, 039 and 059 at different locations at Concordia Uni-
versity’s PERFORM Centre. Model 040GSE has 3 different
cylindrical regions with elasticity moduli of 10, 40 and 60
kPa. The 039 and 059 models have spherical inclusions that
are distributed throughout the phantoms. The elasticity moduli
of the inclusions are 27 kPa for Model 039 and in the range
of 10-15 kPa for model 059. The compression was applied in
3 different directions: in-plane axial motion, in-plane rotation
and out-of-plane lateral motion. The ultrasound device used is
the 12R Alpinion Ultrasound machine (Bothell, WA) with an
L3-12H high density linear array probe at a center frequency
of 8.5 MHz and sampling frequency of 40 MHz.

We also have access to 298 RF frames collected at Johns
Hopkins Hospital from 3 different patients who were undergo-
ing liver ablation for primary or secondary liver cancers using
Antares Siemens system (Issaquah, WA) at a center frequency
of 6.67 MHz with a VF10-5 linear array at a sampling rate
of 40 MHz. The study has the approval of the institutional
review board and an informed consent was obtained from the
patients. 3,635 RF frames out of the total 4,055 phantom RF
frames, along with 137 in vivo RF frames out of the total
298 in vivo RF frames were used for obtaining the principal
components b1 to bN by following the procedure in Algorithm
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3, leaving 420 phantom RF frames and 161 in vivo RF frames
for validating our method. It is important to note that the
training data was excluded from further evaluation.

The simulation data was generated using Field II software
[49]. ABAQUS (Providence, RI) software was used to apply
some compression, and the ground truth displacement was
generated using finite element method (FEM).

2) MLP classifier: We used the data that we collected for
PCA-GLUE for training our MLP classifier. It was trained on
4,662 instances from both phantom and in vivo data, which
were partitioned between training and validation with a ratio
80:20. Testing was done on a different dataset composed of
1,430 frames. The ground truth was obtained by following the
procedure in Algorithm 2.

D. Metrics used for performance assessment

In order to be able to quantitatively measure the perfor-
mance of the strain estimation algorithm PCA-GLUE, we use
two quality metrics which are the SNR and CNR [50], such
that:

CNR =
C
N

=

√
2(s̄b− s̄t)2

σ2
b +σ2

t
,SNR =

s̄
σ

(5)

where s̄t and σ2
t are the strain average and variance of the

target window, s̄b and σ2
b are the strain average and variance of

the background window respectively. We use the background
window for SNR calculation (i.e. s̄=s̄b and σ=σb). The back-
ground window is chosen in a uniform region where the strain
values do not vary considerably. It is worth mentioning that
the SNR and CNR values are obtained as the average over 10
different experiments.

Precision and recall are two important metrics for assessing
the performance of a classifier. The F1-measure incorporates
both metrics as follows:

F1−measure = 2
(Precision×Recall)
(Precision+Recall

(6)

III. RESULTS

For our results, we set N = 12. This means that every
displacement image is represented by 12 axial principal com-
ponents in the form of a 12-dimentional vector w. For results
with different number of principal components, please refer to
the Supplementary Material of this paper. We found that this
representation captures 95% of the variance in the original
data. For the NCC method, we used windows of size (5.42
× 12.49) λ . For DP estimation, the tunable parameter αDP is
set to 0.2. For GLUE, the parameters used during phantom
experiments are α1 = 5, α2 = 1, β1 = 5 and β2 = 1. During in
vivo experiments, we change GLUE’s parameters to α1 = 20,
α2 = 1, β1 = 20 and β2 = 1, to account for the increased
noise. For NCC, GLUE and PCA-GLUE, the strain image
is obtained from the displacement image using least square
strain estimation [51].

For the running time, we trained PCA-GLUE in 5 hours, but
training is done only once. For testing, we estimate the initial
displacement in just 258 ms for two very large RF frames of

Algorithm 3 Obtaining the principal components

1: procedure
2: Run GLUE on the 3,772 RF frame pairs collected

(3,635 from the phantom dataset and 137 from the
in vivo dataset), yielding 3,772 displacement images.

3: Reshape every displacement image from a 2304×384
matrix into an 884,736×1 vector.

4: Form the data matrix X of size 884,736×3,772 by
concatenating the 3,772 vectors.

5: Compute the covariance matrix as follows:
S = 1

n×X′×X′T , where X′ is the matrix X after subt-
racting the mean value of the elements in each row
(we set n to 3,772).

6: Obtain the eigenvalues of the matrix S and sort them
descendingly.

7: Compute the eigenvectors corresponding to the largest
12 eigenvalues.

8: Obtain the 12 principal components for the axial displ-
acement images (Fig. 1 (b) and (c)) by reshaping each
of the 12 eigenvectors from an 884,736×1 vector into
a 2,304 × 384 matrix.

9: end procedure

sizes 2304×384 using an 8th generation 3.2 GHz Intel core i7
compared to 2.6 seconds if we use DP. For the frame selection,
feature extraction and labeling the data took 30 hours, which
included the procedure in Algorithm 2. The actual training
of the MLP classifier took 29.16 seconds, while testing takes
only 1.5 ms.

TABLE I: The SNR and CNR values of the axial strain images
for the phantom experiment. Target windows and background
windows are of size 3 mm × 3 mm and 5 mm × 5 mm
respectively as shown in Fig. 5. SNR is calculated for the
background window.

Method used SNR CNR

NCC 18.18 16.86
GLUE 22.31 20.65
PCA-GLUE 23.52 21.46

A. Phantom Results

1) Strain Estimation: Fig. 5 shows a comparison between
the strain estimated using NCC, GLUE and PCA-GLUE for
the phantom experiment, where the dashed circles point to the

TABLE II: The accuracy and F1-measure of our classifier on
the phantom and in vivo test data.

Dataset Size Accuracy F1-measure

Phantom 353 instances 85.11% 93.20%
Patient 1 147 instances 89.74% 96.86%
Patient 2 707 instances 70.43% 93.2%
Patient 3 223 instances 91.58% 92.52%
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(a) B-mode (b) NCC (c) GLUE (d) PCA-GLUE

Strain color bar

Fig. 5: The B-mode ultrasound and axial strain image using NCC, GLUE and PCA-GLUE for the real phantom experiment.
The target and background windows are used for calculating SNR and CNR. Dashed contour outlines the inclusion.

(a) B-mode (b) Strain from Skip 1 method (c) Strain from Skip 2 method (d) Strain from our method

Strain color bar

Fig. 6: The B-mode ultrasound and PCA-GLUE axial strain image for the phantom experiment using different frame selection
methods. Note that the pair of RF data used for estimating strain is different from that of Fig. 5.

(a) B-mode patient 1 (b) NCC (c) GLUE (d) PCA-GLUE

Strain color bar

Fig. 7: The B-mode ultrasound and axial strain image using NCC, GLUE and PCA-GLUE for the in vivo liver data before
ablation. Dashed contour outlines the tumor.

TABLE III: The SNR values of the axial strain images for the
in vivo data.

Dataset NCC GLUE PCA-GLUE

Patient 1 13.23 21.11 21.19
Patient 2 2.09 21.33 21.20
Patient 3 13.21 25.66 23.94

inclusion. The results of GLUE and PCA-GLUE look almost

TABLE IV: The CNR values of the axial strain images for the
in vivo liver data.

Dataset NCC GLUE PCA-GLUE

Patient 1 11.01 20.34 20.66
Patient 2 -0.46 13.52 17.05
Patient 3 9.87 16.66 15.95

the same, but the advantage of using PCA-GLUE is that it
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(a) B-mode patient 2 after ablation (b) NCC (c) GLUE (d) PCA-GLUE

Strain color bar

Fig. 8: The B-mode ultrasound and axial strain image using NCC, GLUE and PCA-GLUE for the in vivo liver data after
ablation. Dashed contour outlines the tumor.

(a) B-mode (b) Strain from Skip 1 method (c) Strain from Skip 2 method (d) Strain from our method

Strain color bar

Fig. 9: The B-mode ultrasound and PCA-GLUE axial strain image for the in vivo liver data using different frame selection
methods. Note that the pair of RF data used for estimating strain is different from that of Fig. 7.

(a) The correct displacement for a cer-
tain RF line

(b) The incorrect displacement for a cer-
tain RF line

(c) Strain estimated by GLUE (d) Strain estimated by PCA-GLUE

Fig. 10: Strain estimated by both GLUE and PCA-GLUE given that DP failed in computing correct initial estimates. The
failure occured in the RF line shown in red.

estimates the initial estimates more than 10 times faster. Table I
shows the SNR and CNR values obtained using different
methods.

2) Frame Selection: Our frame selection algorithm is com-
pared to the simple method that chooses the pair of RF frames
such that they are one or two frames apart. Fig. 6 shows the
difference between applying our method and the fixed skip
frame pairing while using PCA-GLUE for strain estimation.
Our method considers a window of 16 frames, 8 of them are
before the desired frame and 8 are after it. To choose a good
frame to be paired with the desired frame, we run the MLP
model on the 16 pairs and choose the pair that has the highest

NCC (we don’t apply the thresholding here). We can observe
that our method selects RF frames that are suitable for strain
estimation and it substantially outperforms the fixed skip frame
pairing methods such as Skip 1 and Skip 2.

To make the validation more concrete, we test our classifier
on 353 instances to classify them as suitable or not suitable for
strain estimation. The ground truth is obtained as previously
discussed in Algorithm 2. Table II shows the accuracy and
F1-measure for our classifier on new data that the model has
not seen before. The results show that our classifier is able to
generalize well to unseen data, and that it could be used in
practice.
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B. In vivo Results

1) Strain Estimation: Fig. 7 and 8 show the results obtained
when running NCC, GLUE and PCA-GLUE on the liver
dataset, where both GLUE and PCA-GLUE yield very similar
results. The dashed ellipses point to the tumors. Tables III
and IV show the SNR and CNR calculated.

2) Frame Selection: Fig. 9 shows a comparison between
the strain estimated using both our frame selection method
and the fixed skip frame pairing on two RF frames collected
from the in vivo liver data. Table II shows the accuracy and
F1-measure obtained for the liver dataset.

C. PCA-GLUE robustness

Our method is not only capable of estimating strain or
selecting suitable RF frames, it is also robust to incorrect initial
displacement estimates when DP fails. The main difference
between PCA-GLUE and GLUE is in estimating the initial
displacement image, where GLUE uses DP to estimate the
displacement of every single RF line, whereas PCA-GLUE
applies DP for only 5 RF lines, then uses a linear combination
of previously computed principal components as an initial
displacement image. Therefore, if DP fails in estimating the
correct displacement for a certain RF line, that means that
GLUE would have an incorrect initial displacement image,
which affects the fine-tuned displacement image.

The reason behind this robustness is that PCA-GLUE relies
on the principal components previously computed offline, such
that the resulting initial displacement image is represented as a
linear combination of them. Therefore, if incorrect results were
among the 5 RF lines chosen by PCA-GLUE, it would still
be able to estimate the strain correctly due to the additional
step of estimating TDE as a sum of principal components.

Fig. 10 shows how both GLUE and PCA-GLUE perform
when they get incorrect initial estimates from DP.

Fig. 11 shows a comparison between the strain estimated
by both GLUE and PCA-GLUE on the finite element method
(FEM) simulation data before and after adding a gaussian
noise with µ = 0 and σ2 = 0.1225 to 10% of the RF lines. The
large error on these RF lines could be caused in real life due to
air bubbles between the probe and tissue, or large out-of-plane
motion in some regions.

D. Varying the number of sparse features

Fig. 12 shows the effect of running DP on more than 5
RF lines. We can conclude that the accuracy of the strain
estimation does not improve any further when setting p to
a value more than 5. As more RF lines correspond to more
features and consequently more computations, we choose the
smallest value p= 5 without sacrificing the accuracy. For more
analysis and results at different values of p, please refer to the
Supplementary Material of the paper.

IV. DISCUSSION

We presented a novel method that can estimate a coarse
displacement map from a sparse set of displacement data
provided by DP. For an image of size 2304×384, DP takes

163 ms and estimation of coarse displacement field takes 95
ms, for a total of 258 ms. We also presented a novel method
for frame selection that classifies a pair of RF Data as suitable
or unsuitable for elastography in only 1.5 ms. The input to
our classifier is the w vector and not the RF data or the
displacement image. The reason is that inference with such
low-dimensional input is very computationally efficient.

During training, we tried using datasets with and without
inclusions to obtain the principal components. Our conclusion
is that the presence or absence of inclusions in the training
data does not alter the principal components and consequently
the strain estimated. What is critical for learning the principal
components is the presence of different types of deformation,
such as axial, lateral and rotational deformation.

It is worth mentioning that we were only concerned with
the axial displacement, as we couldn’t compute any principal
components that describe the lateral displacement. The reason
is that by following Algorithm 3 for the lateral displacement,
we found that the variance is not concentrated in the first few
eigenvectors, unlike the axial displacement. It is rather almost
equally distributed over hundreds of eigenvectors (resembling
white noise). We conclude that capturing 95% of the variance
would require us to save hundreds of principal components,
which is not practical. Therefore, we only use the integer
estimates for the k = m× p pixels computed by DP, followed
by bi-linear interpolation which provides an acceptable initial
lateral displacement, compared to the alternative approach
where we run DP on all RF lines. A comparison between the
lateral displacement estimated by the two approaches is shown
in the Supplementary Material. The combination of N = 12
and p = 5 is not a fixed choice of the hyperparameters, as
different datasets would require different tuning. In our case,
this choice is adequate for all the datasets used.

V. CONCLUSION

In this paper, we introduced a new method with two main
contributions which are fast strain estimation and RF frame
selection. In addition, our method is robust to incorrect initial
estimates by DP. Our method is more than 10 times faster
than GLUE in estimating the initial displacement image, which
is the step prior to the exact displacement estimation, while
giving the same or better results. Our MLP classifier used
for frame selection has been tested on 1,430 unseen pairs
of RF frames from both phantom and in vivo datasets, and
the F1-measure obtained was always higher than 92%. This
proves that our method is efficient and that it could be used
commercially.
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(a) B-mode before noise addition (b) ground truth (c) GLUE (d) PCA-GLUE

Strain color bar

(e) B-mode after noise addition (f) ground truth (g) GLUE (h) PCA-GLUE

Strain color bar

Fig. 11: The B-mode ultrasound and ground truth axial strain as well as the result of both GLUE and PCA-GLUE for the
simulation data before and after adding gaussian noise with µ = 0 and σ2 = 0.1225 to 10% of the RF lines.

(a) B-mode (b) Strain using 5 RF lines (c) Strain using 15 RF lines (d) Strain using 30 RF lines

Strain color bar

Fig. 12: The B-mode ultrasound and axial strain image using PCA-GLUE for the real phantom experiment as we increase the
number of RF lines p from 5 to 30.
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