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Abstract— The brain tissue deforms significantly during

neurosurgery, which has led to the use of intra-operative

ultrasound in many sites to provide updated ultrasound images

of tumor and critical parts of the brain. Several factors

degrade the quality of post-resection ultrasound images such

as hemorrhage, air bubbles in tumor cavity and the application

of blood-clotting agent around the edges of the resection. As

a result, registration of post- and pre-resection ultrasound is

of significant clinical importance. In this paper, we propose a

nonrigid symmetric registration (NSR) framework for accurate

alignment of pre- and post-resection volumetric ultrasound

images in near real-time. We first formulate registration as the

minimization of a regularized cost function, and analytically

derive its derivative to efficiently optimize the cost function.

We use Efficient Second-order Minimization (ESM) method

for fast and robust optimization. Furthermore, we use inverse-

consistent deformation method to generate realistic deformation

fields. The results show that NSR significantly improves the

quality of alignment between pre- and post-resection ultrasound

images.

I. INTRODUCTION
Infiltrating nature of brain tumors makes their margins

indistinct, which leads to residual tumor in as much as
64% [1] of patients. Therefore, neuro-navigation systems are
commonly used in many sites where image-to-patient regis-
tration is performed by selecting corresponding landmarks
in the pre-operative magnetic resonance (MR) image and on
the skin. Unfortunately, this registration is inaccurate for two
main reasons. First, brain tissue deforms after craniotomy
and during surgery as much as 50 mm [2], which renders
the pre-operative MR image inaccurate. Second, selection of
corresponding landmarks on the skin and in the MR image is
inaccurate, and leads to large registration errors. To allow the
visualization of brain during the surgery, intra-operative MRI
has been used. However, intra-operative MRI is extremely
expensive and requires dedicated operation rooms and MR
compatible surgical equipment.

Alternatively, intra-operative ultrasound imaging is con-
venient and significantly less expensive, and is therefore
used in many neurological centers. An ultrasound volume is
obtained before the tumor resection to allow the visualization
of tumor and critical brain structures. Another ultrasound
scan is acquired after the resection to help the surgeon
minimize the residual tumor. Unfortunately, several factors
such as hemorrhage substantially degrade the quality of
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post-resection ultrasound images. Therefore, registration of
pre- and post-operation ultrasound volumes is of significant
clinical interest. This registration is challenging for several
reasons. First, brain tissue deforms during the resection, and
therefore, this registration has to be deformable. Second, the
intensity and contrast of the same tissue can be different
in two images due to variations in the acquisition angle
and location, as well as possible changes in Time Gain
Compensation (TGC). And third, because of the removal of
partial tissue during the resection, some regions of pre- and
post-resection images do not correspond to each other.

We recently proposed an automatic registration technique
called RESOUND [3], which is based on gradient descent
optimization of a regularized cost function and addresses
the three aforementioned challenges as follows. First, it uses
free-form B-splines to model tissue deformation. Second, it
uses Normalized Cross Correlation (NCC) as the similarity
metric, which can be reliably computed over small patches
and is also invariant to affine intensity variations. And third,
it proposes a novel outlier rejection technique to find areas
of non-correspondence. An important issue with RESOUND,
however, is that free-form B-splines are not invertible and can
generate folds and ruptures that are physically unrealistic.
Another issue lies in the optimization scheme used in RE-
SOUND, which is slow and can get trapped in local minima.
This can hinder the clinical application of RESOUND where
robust and accurate performance is critical.

Registration of ultrasound volumes is an active field of
research with numerous new advances. Some previous work
is listed below. Mercier et al. [4] performed deformable
registration between pre- and post-resection images in neu-
rosurgery by manually segmenting the tumor and resection
cavity. Simplex optimization of a regularized cost function
with cross correlation as the similarity metric is performed
in the next step. Presles et al. [5] used intensity and gradient
of ultrasound volumes in a mutual information similarity
metric, and performed stochastic gradient descent optimiza-
tion. Khallaghi et al. [6] exploited corresponding attribute
vectors in the two volumes to estimate the deformable
transformation. And Schneider et al. [7] performed feature-
based rigid registration.

In this work, we build on RESOUND and propose a
novel robust deformable registration technique for align-
ment of pre- and post-resection ultrasound images called
nonrigid symmetric registration (NSR). We use symmetric
deformation fields that are invertible and therefore create
high quality deformation fields. In addition, we incorporate
Efficient Second-order Minimization (ESM) method [8] into
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our optimization technique to allow fast and reliable con-
vergence. We validate our technique on ultrasound images
of 13 patients and show that NSR accurately registers these
challenging images.

II. METHOD
A. registration

Many registration algorithms, including RESOUND, find
a free-form B-spline transformation that maps one image to
another. Several issues arise in such registration frameworks:
the resulting transformation is not symmetric with respect
to the two images, is biased towards one of the images, is
not invertible, and can cause physically implausible folds
or ruptures. To overcome these problems, inverse consis-
tent registration methods have been proposed in [9], [10].
They reduce the bias by calculating forward and backward
transformations T

1

and T

2

, and penalizing the difference
between T

1

�T

2

�1 and the identity transformation. In this
work, we use a symmetric and inverse consistent method
similar to [11], and apply the iterative approach of [12]
to invert transformations. The full forward and backward
deformation can then be calculated as T

1

(0.5) �T

2

(0.5)�1

and T

2

(0.5)�T

1

(0.5)�1 respectively, where 0.5 means half
of the deformation field and � represents composition of
transformations.

Let V

1

and V

2

represent the two ultrasound volumes, and
x ⇢ R

d

be the global coordinates, where d = 3 for 3D vol-
umetric images. Also, T

u

(x) = x+u represents the forward
and backward deformation. The goal of image registration is
to find the 3D deformation fields u

1

from V

1

to V
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and u

2

from V

2

to V

1

. To find u
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and u
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, a regularized cost function
can be formulated as:
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where D is the dissimilarity metric, V
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middle volume from V
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ume from V

2

, a is the regularization weight, tr is the trace
operator and tr(—u

T —u)2 is the diffusion regularization term.
Hierarchical registration from coarse to fine levels is also

applied in this work to speed up the registration process and
avoid getting trapped in local minimum.

Moreover, instead of using -NCC as the dissimilarity met-
ric, we use �NCC2 to make it adapt to quadratic optimization
methods. Then we divide the volume into small patches,
calculating �NCC2 in each patch, and add the results up
to generate a global cost:
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where as before, D is the dissimilarity metric, V1i

and V2i

are
the mean intensity of the patch i in V

1

and V

2

respectively, N

is the number of patches in the volume and n is the number
of pixels in every patch. The tumor is removed during the
resection and therefore does not correspond to the resection
cavity in the post-resection ultrasound image. Orientation of
the descent direction of individual pixels is proposed in [13]
to find outliers and limit their effect. We use this technique in
this work to eliminate patches that fall in non-corresponding
regions.

B. optimization

To calculate the optimal deformation fields, we have to
minimize the cost function. Usually, non-linear minimization
problems are solved in an iterative manner. Several opti-
mization algorithms can be applied to obtain the incremental
update. Steepest gradient descent (SGD) is used in [3] to
optimize the cost function. However, SGD moves perpendic-
ularly to the isolines and generally has a low convergence
rate [8]. In this work, we use pseudo-inverse of the mean
of the Jacobian matrices as the optimization method, which
is one of the ESM methods [8]. ESM uses first-order
derivatives to approximate second-order derivatives, making
the optimization computationally efficient. In this algorithm,
the forward deformation Jacobian is combined with the
backward one to generate more accurate incremental updates.
Despite the fact that ESM uses only first-order derivatives,
it is shown to have a cubic convergence rate [14].

When we calculate the �NCC2 in each patch, we can
also obtain the value of NCC and the derivative of NCC
with respect to intensity. We assign the NCC to every pixel
in that patch to act as the residual function:
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where r
i

is the NCC of patch i and ∂r
i

∂ I

is the derivative of
NCC with respect to the intensity of each pixel in patch i.
Since we need the NCC value and derivative at each voxel,
we define P as:
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where r
j

is the NCC value of pixel j and M is the total
number of voxels in the volume. In an abuse of notation, we
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where ∂r
j

∂ I

j

is the derivative of NCC in pixel j with respect to
the intensity of that pixel. Using the chain rule, we obtain:
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where ∂ I

V

∂u

is the gradient of intensity, —
u

1

P is the Jacobian of
NCC with respect to the forward deformation field and —

u

2

P

is the Jacobian with respect to the backward deformation
field. Given the Jacobian of two directions, we can find
the optimal deformation fields following an iterative rule.
First the forward Jacobian is combined with the backward
Jacobian to generate the average Jacobian, which will be
used in subsequent computation:
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where —
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are the average Jacobian for
forward and backward deformation respectively. We use
these two to replace —
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P for following formulas.
Afterwards the incremental updates can be computed with
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P, where P is the vector of
NCC values. Since the regularization term is added to the
cost function to solve the ill-posed problem, the update rule
becomes [11]:
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where I is the identity matrix, a is the coefficient and
—2

u
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is the Laplacian of the summation of all previous
updates. The incremental update D

u

is calculated using the
successive over-relaxation solver. Compared with the Jacobi
and Gauss-Seidel methods, it is more accurate and flexible
for solving equations. Subsequently, the deformation fields
can be updated by adding the incremental updates, formulas
are as:
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where l is the step size, D
u

1

is the incremental update of
forward deformation field and D

u

2

is the update of backward
deformation field.

In each iteration, according to the definition of symmetric
and inverse-consistent registration, the full deformation fields
will be calculated by:

u

1

f ull

= u

1

(0.5)�u

2

(0.5)�1 (14)

u

2

f ull

= u

1

(0.5)�1 �u

2

(0.5) (15)

III. EXPERIMENTS AND RESULTS
To validate the performance of our registration framework,

pre- and post-resection ultrasound images of 13 patients
are used from the BITE database [15]. The experimental
procedures involving human subjects in BITE were approved
by McGill University’s Institutional Review Board. These
volumes are reconstructed from 2D ultrasound image se-
quences with the voxel size of 1⇥1⇥1 mm

3. This database
also includes corresponding homologous anatomical land-
marks in pre- and post-resection ultrasound volumes. To

Fig. 1. The boxplot of minimum TRE.

quantitatively measure the performance of NSR, we use the
mean target registration errors (mTRE) metric, which is the
distance between these landmarks. To calculate mTRE, let x

and x

0 represent the corresponding landmarks in V

1

and V

2

respectively. Therefore mTRE can be calculated as [16]:
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where T

u

1

is the forward deformation and n is the number
of landmarks.

The original mTRE and final mTRE of all patients are
shown in Table I. NSR takes approximately 20 seconds on a
3GHz processor to perform a typical 3D registration. As can
be seen from the table, every mTRE decreases to a relatively
small value after registration. Even the mTRE of the patient
11, whose initial value of 10.5 mm is decreased to 2.8 mm
after registration. Also, the distribution of minimum TRE
is shown in Fig. 1. Compared with RESOUND, NSR pro-
vides similar mTRE and better minimum TRE using fewer
iterations. This improvement is caused by both improved
optimization and inverse consistent registration of NSR.

In order to visually demonstrate the effect of our regis-
tration framework, pre- and post-registration alignment of
images of two patients are shown in Fig. 2. Here, we choose
one frame from the pre-resection volume and automatically
find edges using a Canny edge detector. Fig. 2 (a) shows
the Canny edge of the frame from the pre-resection volume,
and Fig. 2 (b) shows the initial alignment of the contour
and the post-resection frame before registration. We can find
that the contour and the frame do not correspond well. Fig.
2 (c) shows the alignment after NSR, and it provides a
distinct evidence for judging the residual tumor. Fig. 2 (d)
shows the result of RESOUND. As can be seen from the
comparison between (c) and (d), the final alignment of NSR
is significantly better than the RESOUND’s result. Arrows
point to differences between alignment of RESOUND and
NSR. Such qualitative results have significant advantages
over mTRE because they show the level of alignment over a
much larger region, compared to few points used in mTRE



TABLE I
MTRE VALUES BEFORE AND AFTER REGISTRATION WITH RESOUND

AND NSR. LGG AND HGG REPRESENT LOW AND HIGH GRADE GLIOMA

RESPECTIVELY. RESOUND DATA ARE FROM [3] AND ALL SMALLER

VALUES ARE IN BOLD.

Patient Tumor type Tumor size(cm

3) Initial RESOUND NSR
P1 LGG 79.2 2.3(0.6-5.4) 1.8(0.5-4.0) 1.4(0.3-3.9)
P2 HGG 53.7 3.9(2.8-5.1) 1.4(0.5-1.9) 1.2(0.6-2.4)
P3 HGG 31.6 4.6(3.0-5.9) 1.4(0.7-2.2) 1.1(0.3-2.2)
P4 HGG 0.2 4.1(2.6-5.5) 1.2(0.3-2.4) 1.1(0.2-2.0)
P5 HGG 32.3 2.3(1.4-3.1) 1.0(0.2-1.7) 1.2(0.7-2.4)
P6 HGG 13.9 4.4(3.0-5.4) 1.0(0.4-1.7) 1.0(0.6-1.7)
P7 HGG 63.1 2.7(1.7-4.1) 1.7(0.9-3.6) 1.6(0.2-3.7)
P8 HGG 4.8 2.2(1.0-4.6) 1.4(0.6-3.2) 1.3(0.4-3.4)
P9 HGG 10.4 3.9(1.0-6.7) 1.9(0.7-4.1) 2.6(0.4-4.9)

P10 LGG 39.7 2.9(0.8-9.0) 2.2(0.6-5.3) 2.1(0.4-5.9)
P11 LGG 49.1 10.5(7.8-13.0) 2.5(1.1-4.2) 2.8(0.3-6.4)
P12 HGG 31.9 1.6(1.3-2.2) 0.7(0.2-1.6) 0.8(0.4-1.4)
P13 LGG 37.3 2.2(0.6-4.0) 1.3(0.2-2.8) 1.3(0.4-3.0)

mean - 34.4 3.7(2.1-5.7) 1.5(0.5-3.0) 1.5(0.4-3.3)

(around 9/patient in this dataset).

IV. CONCLUSIONS
A novel robust technique is proposed in this work for

deformable registration of pre- and post-resection volumetric
ultrasound images of neurosurgery. NCC, which is invariant
to affine distortions of intensity values, is used as the similar-
ity metric. ESM method is used to optimize the regularized
cost function to achieve fast and reliable registration. We also
use inverse-consistent deformation method to generate more
realistic deformation fields. NSR outperforms RESOUND,
as indicated in Fig. 2, for two main reasons: improved
deformation model and more reliable optimization scheme.
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