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Abstract

A key feature of hub-and-spoke networks is the consolidation of flows at
hub facilities. The bundling of flows allows to reduce transportation costs,
which are frequently modelled using a constant discount factor that is applied
to the flow cost associated with all interhub links. In this paper we study the
modular hub location problem, which explicitly models the flow dependence
of transportation costs on all links of a hub network using modular arc costs.
It neither assumes a fully interconnection between hub nodes nor a particular
topological structure, instead it considers link activation decisions as part of
the decision process. We propose a branch-and-bound algorithm that uses a
Lagrangean relaxation to obtain lower and upper bounds at the nodes of the
enumeration tree. Numerical results are reported for benchmark instances
with up to 75 nodes.
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1. Introduction

Hub location problems (HLPs) lie at the heart of network design planning
in logistics systems such as the trucking and airline industries. These systems
frequently employ hub-and-spoke architectures to efficiently route commodi-
ties or passengers between many origins and destinations. Their key feature
is the use of transshipment or consolidation points, typically called hubs, to
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connect a large number of origin/destination (O–D) pairs with only a small
number of links. This strategy centralizes handling and sorting operations
and reduces set-up costs; most importantly, it makes it possible to achieve
economies of scale on routing costs through the consolidation of flows.

HLPs are a challenging class of NP–hard combinatorial optimization
problems combining location and arc selection decisions. The location deci-
sion problem involves the selection of a set of nodes at which hub facilities
can be located; the arc selection decision problem addresses the design of the
hub network by choosing the links to connect origins, destinations, and hubs,
establishing a framework for the routing of commodities through the network.
Broadly speaking, the aim of HLPs is to determine the locations of the hubs
and the design the hub network so as to minimize the total flow cost (see
Alumur and Kara, 2008; Campbell and O’Kelly, 2012; Zanjirani Farahani
et al., 2013; Contreras, 2015).

HLPs have received increasing attention since the seminal work of O’Kelly
(1986). Analogous to the literature on discrete facility location problems,
several classes of HLPs have been studied, including uncapacitated hub loca-
tion, p-hub median, hub covering, and p-hub center problems. The various
applications within each class give rise to variants that differ in terms of as-
sumptions, such as the required topological structure, the allocation pattern
of nodes to hubs, and the existence of capacity constraints on the hub nodes
or arcs. Nonetheless, there are four common assumptions underlying most
HLPs. The first assumption is that commodities have to be routed via a set
of hubs, so O–D paths must include at least one hub node. The network in-
duced by the solution of a hub location problem consists of two types of arcs:
hub arcs connecting two hubs; and access arcs connecting O–D nodes to hubs.
For some applications, in addition to enabling economies of scale, hub facil-
ities may act as consolidation, sorting, and distribution centers. The second
assumption is that the hubs can be fully interconnected with more efficient,
higher volume pathways that allow a constant discount factor (0 < α < 1)
to be applied to all transportation costs associated with the commodities
that are routed between any pair of hubs. Note that the discount factor is
assumed to be independent of the amount of flow that is sent through hub
arcs. The third assumption is that hub arcs incur no set-up costs, so hubs
can be connected at no extra cost. The forth one is that distances between
nodes satisfy the triangle inequality. As a result, the backbone network is
typically a complete graph, i.e., the hubs are fully interconnected at no cost.

These assumptions and their implications simplify network design deci-
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sions as they are determined mainly by the allocation pattern of O–D nodes
to hub facilities. As a result, classical HLPs have a number of attractive
theoretical features which have given rise to mathematical models that ex-
ploit the structure of the network (Ernst and Krishnamoorthy, 1998a; Labbé
and Yaman, 2004; Hamacher et al., 2004; Correia et al., 2010; Alumur et al.,
2012; Correia et al., 2014; Contreras and Fernández, 2014) and to sophis-
ticated solution algorithms that are able to solve real-size instances (Ernst
and Krishnamoorthy, 1998b; Labbé et al., 2005; Contreras et al., 2011a,b;
Martins de Sá et al., 2015b).

However, these assumptions may lead to unrealistic results. The inde-
pendence of flow discounted costs is appropriate in applications in which the
links between hubs are associated with faster transportation modes, but it
can be an oversimplification in applications where the costs represent the
economies of scale due to the bundling of flows on the hub arcs. For in-
stance, full interconnection between hub nodes could lead to solutions in
which hub arcs carry considerably less flow than access arcs, yet the trans-
portation costs are discounted only on the hub arcs. It may also be the case
that the amounts of flow that are routed on various hub arcs are different,
yet the same discount factor is applied across the board. Under the assump-
tion of flow-independent costs and the use of fully interconnected hubs, the
overall transportation cost may be miscalculated, and the set of hub nodes
selected and the corresponding allocation pattern of O–D nodes to hubs may
be suboptimal.

In this paper, we study the modular hub location problem with single
assignments (MHLP). The MHLP considers explicitly the flow dependence of
transportation costs in all the arcs in the network based on modular arc costs.
Thus, the total transportation cost is measured not in terms of the per unit
flow cost but in terms of the number of facility links used on each arc, avoiding
the use of nonlinear functions and their linearizations to compute the discount
factor for each hub arc. The cost is modeled using a stepwise function that
determines, for each arc on the network, the total transportation cost as a
function of the amount of flow routed through the arc. Our approach can be
interpreted in terms of its ability to incorporate multiple capacity levels on
the arcs. Another advantage is that it neither assumes a fully interconnected
hub network nor a particular topological structure, instead it considers the
design of the hub network as part of the decision process. The MHLP and
other variants involving multiple assignments and direct connections were
initially introduced in Mirzaghafour (2013).
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The assumption of modular (or stepwise) transportation costs is con-
sistent with applications in freight transportation and telecommunications
networks. In the case of ground transportation, trucking companies send
commodities (e.g., goods, express packages, ordinary mail) along hub arcs
between break bulk terminals, and along access arcs between an end-of-line
terminal and a break bulk terminal, using one or more trucks. The number
and capacity of the trucks and the distance traveled can be used to obtain
an accurate estimate of the transportation cost between terminals. Here,
fixed costs represent the cost of leasing or buying a truck, whereas variable
costs may represent the average fuel and labor costs for operating a truck to
travel a given distance. The consolidation of flows at hubs allows trucking
companies to use large line-haul trucks, typically fully loaded, between hub
facilities. Local delivery trucks, typically partially loaded, are used between
break bulk and end-of-line terminals to route commodities from origin to des-
tination nodes. Even though both the fixed and variable costs for line-haul
trucks are greater than those for local delivery trucks, the per unit trans-
portation cost for hub arcs is lower than that for the access arcs because the
trucks have larger capacities. An analogous situation is the use of regional
and hub airports by air cargo companies to efficiently route commodities
between many origins and destinations. The transportation cost between
airports can be estimated based on the number and capacity of the cargo
planes, together with the distance.

In the case of telecommunications networks, hub facilities correspond to
electronic devices such as multiplexors, concentrators, servers, etc. Com-
modities correspond to data transmissions that are frequently routed over
a variety of physical media (i.e., fiber optic cables, co-axial cables, or tele-
phone lines). The number and capacity of these physical media can be used
to provide an estimation of the transmission cost between pair of nodes.
Moreover, the modular cost may also represent the usually large set-up cost
of the communication links.

Several authors have already pointed out that the discount factor should
be regarded as function of the flow volume (see, O’Kelly, 1998; O’Kelly and
Bryan, 1998; Bryan and O’Kelly, 1999; Campbell, 2013). O’Kelly and Bryan
(1998) were among the first to develop a hub location model that expresses
the discount factor on hub arcs as a function of flow. It was later extended by
Bryan (1998), Klincewicz (2002) and de Camargo et al. (2009). The model
uses a nonlinear cost function to compute the transportation costs on a hub
arc as a function of its flow. This function is approximated by a piecewise
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linear function to obtain a linear integer programming formulation for the
problem. Horner and O’Kelly (2001) proposed a nonlinear cost function
based on link performance functions; it is designed to reward economies of
scale in all arcs in the network. Podnar et al. (2002) formulated a network
design model in which the discount factor applies only on arcs that have
flows larger than a given threshold; however, the model focuses on the design
of the network rather than on the location of the hub facilities. Racunica
and Wynter (2005) introduced a nonlinear concave cost hub location model
that determines the optimal location of intermodal freight hubs. The cost
function models the flow-dependent discounted cost only on origin-to-hub and
hub-to-destination legs. Kimms (2006) and O’Kelly et al. (2015) adopted a
different approach, modeling economies of scale on all the arcs in a hub-
and-spoke network. Rather than relying on a nonlinear cost function, they
use linear cost functions which combine variable transportation costs for
flows on arcs and fixed costs for activating those arcs. Cunha and Silva
(2007) designed a hub-and-spoke network for a less-than-truckload trucking
company in Brazil based on a nonlinear cost function that allows the discount
factor on hub arcs to vary according to the total amount of freight between
hubs. Campbell et al. (2005a,b) study hub arc location problems, in which
the goal is to locate a set of hub arcs, therefore, no longer considering a fully
interconnected hub network. To some extent, this mitigates the limitations of
flow-independent costs. Other studies consider hub location models focusing
on the design of particular topological structures such as star-star networks
(Yaman, 2008; Labbé and Yaman, 2008), tree-star networks (Contreras et al.,
2009; Martins de Sá et al., 2013), cycle-star networks (Contreras et al., 2016),
and hub line networks (Martins de Sá et al., 2015a,b).

In this paper, we present two new mixed integer programming (MIP) for-
mulations for the MHLP. The first formulation uses flow variables to compute
the flow through hub arcs, whereas the second formulation uses path variables
to determine whether a specified hub arc lies on the path between a pair of
nodes. We propose a Lagrangean relaxation for the path-based formulation
of MHLP by relaxing the linking constraints of the location/allocation and
routing variables. This makes it possible to decompose the Lagrangean func-
tion into two independent subproblems which can be solved efficiently. We
also propose a heuristic algorithm to obtain feasible solutions. To prove opti-
mality, we develop a branch-and-bound algorithm that uses the Lagrangean
relaxation and the heuristic to obtain lower and upper bounds at the nodes
of the enumeration tree.
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The remainder of this paper is organized as follows. Section 2 formally
defines the problem and presents the proposed formulations. In Section 3,
we describe the proposed Lagrangean relaxation and study the structure of
the subproblems and their solutions. Section 4 describes the primal heuristic
algorithm. While in Section 5, we present a branch-and-bound algorithm.
The computational results and analysis are presented in Section 6, followed
by conclusions in Section 7.

2. Problem Definition and Formulation

Let G = (N,A) be a complete digraph, where N = {1, . . . , n} is the set
of nodes and A is the set of arcs. Let N also represent the set of potential
locations, and let Wij denote the amount of flow between nodes i ∈ N and
j ∈ N . Thus, Oi =

∑
j∈N Wij is the total flow originating at node i ∈ N ,

and Di =
∑

j∈N Wji is the total flow destined to node i ∈ N . For each
i ∈ N , fi is the set-up cost for locating a hub facility. The distances between
nodes i and j, dij ≥ 0, are assumed to be neither symmetric nor satisfy the
triangular inequality. To estimate the transportation cost on both access and
hub arcs, the amount of flow that is routed on each arc is used to explicitly
determine the number of facility links with a given capacity that will be
needed to route the flow on that arc. That is, we model the transportation
costs on arcs using a step-wise function. In particular, for each pair of hub
nodes (k,m), let ckm = lc + bdkm denote the transportation cost for using
one facility link with capacity B on hub arc (k,m), where lc and b represent
the fixed and variable costs, respectively. Similarly, for each pair of non-hub
node and hub node (i, k), let qik = lq + pdik denote the transportation cost
for using one facility link with capacity R on access arc (i, k), where lq and
p represent the fixed and variable costs, respectively. For each i ∈ N , let
v1
i = d

∑
i∈N Wij/Re denote the number of facility links required to route the

flow originating from i directly to a hub, and let v2
i = d

∑
i∈N Wji/Re denote

the number of facility links required to route the flow from a hub directly
to destination i. In order to accurately account for the economies of scale
when consolidating flows at hub facilities and when using more efficient paths
between hubs, we assume that the unit transportation cost on hub arcs is
smaller than the unit transportation cost on access arcs. That is, ckm

B
< qkm

R
,

where B > R, b > p and lc > lq. The MHLP consists of locating a set
of hub facilities, activating a set of facility links (hub and access arcs), and
determining the route of flows through the network such that the total setup
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and transportation cost is minimized.
The MHLP assumes a single assignment pattern of O-D nodes to hubs.

As it is the case in other well-known hub location models with single as-
signments (Ernst and Krishnamoorthy, 1996; Contreras et al., 2011b), this
assumption is consistent with applications in which outgoing and incoming
flows of each non-hub node have to be processed by a single hub facility due
to managerial or contractual reasons. However, an interesting feature of the
MHLP is that it does not make any assumption on a particular topological
structure to connect hub facilities. Instead, it considers a fixed set-up cost
for the activation of hub arcs, allowing the model to select the most cost
effective hub-level network structure. These features make the MHLP a very
challenging problem to solve. Even if the location of hubs and the assignment
of non-hub nodes to hubs are given, the remaining subproblem of activating
facility links on the hub-level network is still NP -hard as it is equivalent to
the well-known network loading problem (Magnanti et al., 1995).

In what follows, we present two MIP formulations for the MHLP based on
the widely used path-based and flow-based formulations for classical HLPs
(see, Contreras, 2015).

2.1. Path-Based Formulation

For each i, k ∈ N ; i 6= k, we define binary variables zik equal to one if non-
hub i is assigned to hub k. Note that, when zkk = 1, node k is selected as a
hub and assigned to itself. For each pair of nodes k,m ∈ N , we define integer
variables ykm equal to the number of hub arcs between hub nodes k and m.
For each i, j, k,m ∈ N , we also introduce continuous routing variables xijkm
equal to the fraction of the flow originating from i and destined to j that is
routed via hub arc (k,m). Using these sets of variables, the MHLP can be
formulated as follows:

(PF ) minimize
∑
k∈N

fkzkk +
∑
i∈N

∑
k∈N

qik(v
1
i + v2

i )zik+
∑
m∈N

∑
k∈N

ckmykm

subject to
∑
k∈N

zik = 1 i ∈ N (1)

zik ≤ zkk i, k ∈ N (2)

zik +
∑
m∈N

xijmk = zjk +
∑
m∈N

xijkm i, j, k ∈ N ; i 6= j (3)
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∑
i∈N

∑
j∈N

Wijxijkm ≤ Bykm k,m ∈ N (4)

ymk ≤ Qzmm k,m ∈ N (5)

ymk ≤ Qzkk k,m ∈ N (6)

zik ∈ {0, 1} i, k ∈ N (7)

ykm ∈ Z+ k,m ∈ N (8)

0 ≤ xijkm ≤ 1 i, j, k,m ∈ N. (9)

The objective function minimizes the sum of setup costs for locating hub
facilities and the transportation cost between access and hub arcs. Con-
straints (1) ensure that each non-hub node is assigned to exactly one hub.
Constraints (2) ensure that each node is assigned to an open hub. Con-
straints (3) are the well-known flow conservation constraints, that are used
to model O–D paths. Constraints (4) are capacity constraints that limit the
amount of flow on each hub arc (k,m). Constraint (5) and (6) ensure that
hub arc (k,m) is established only if k and m are hub nodes. Constraints
(7)-(8) are usual integrality and non-negativity constraints.

2.2. Flow-Based Formulation

For each i ∈ N and (k,m) ∈ A, we define Xikm equal to the amount of
flow with origin i ∈ N that traverse hub arc (k,m). We also use the zik and
ykm variables for the location/allocation and network design decisions. The
MHLP can then be formulated as follows:

(FF ) minimize
∑
k∈N

fkzkk +
∑
i∈N

∑
k∈N

qik(v
1
i + v2

i )zik+
∑
m∈N

∑
k∈N

ckmykm

subject to (1)− (2), (5)− (9)∑
j∈N

Wijzjk +
∑
m∈N

Xikm

−
∑
m∈N

Ximk −Oizik = 0 i, k ∈ N (10)∑
i∈N

Xikm ≤ Bykm k,m ∈ N. (11)

Constraints (10) are the flow conservation constraints whereas (11) are
the capacity constraints.

8



3. Lagrangean Relaxation

Lagrangean relaxation (LR) is a well-known decomposition technique
that exploits the inherent structure of the problem to obtain lower bounds
on the optimal solution value. In the case of MHLP, if we relax constraints
(3),(5), and (6), in a Lagrangean fashion, weighting their violations with
multiplier vectors λ1, λ2, λ2 of appropriate dimension, we obtain the follow-
ing Lagrangean function:

L(λ1, λ2, λ3) = min
∑
k∈N

fkzkk +
∑
i∈N

∑
k∈N

qik(v
1
i + v2

i )zik +
∑
m∈N

∑
k∈N

ckmykm

+
∑
i∈N

∑
j∈N

∑
k∈N

λ1
ijk(zik +

∑
m∈N

xijmk − zjk −
∑
m∈N

xijkm)

+
∑
k∈N

∑
m∈N

λ2
km(ykm −Qzmm) +

∑
k∈N

∑
m∈N

λ3
km(ykm −Qzkk)

s.t. (1)− (2), (4), and (7)− (8).

For a given values of the Lagrangean multipliers (λ1, λ2, λ3), the La-
grangean function L(λ1, λ2, λ3) can actually be decomposed into two inde-
pendent subproblems: one in the space of z variables and the other in the
space of (x, y) variables. The subproblem in the space of z variables is:

Lz(λ
1, λ2, λ3) = min

∑
k∈N

F̄kzkk +
∑
i∈N

∑
k∈N

Āikzik

s.t. (1), (2), (7),

where the coefficients of the objective function are:

• F̄k = fk −
∑

m∈N Qλ
2
mk −

∑
m∈N Qλ

3
km,

• Āik = qik(v
1
i + v2

i ) +
∑

j∈N(λ1
ijk − λ1

jik).

Observe that the Lz(λ
1, λ2, λ3) can be evaluated by solving a classical

uncapacitated facility location problem (Cornuejols et al., 1983). Even though
this problem is known to be NP-hard, it can be solved in reasonable CPU
times using ad-hoc solution algorithms.

The subproblem in the space of the (x, y) variables can be expressed as:

Lx,y(λ
1, λ2, λ3) = min

∑
k∈N

∑
m∈N

R̄kmykm +
∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N

M̄ijkmxijkm

s.t. (4), (8), (9),
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where the coefficients of the objective function are:

• R̄km = λ2
km + λ3

km + ckm,

• M̄ijkm = λ1
ijm − λ1

ijk.

Given that each of the ykm variables appear only in exactly one con-
straint, we can futher decompose Lx,y(λ

1, λ2, λ3) into several independent
subproblems, one for each (k,m) pair, of the form:

Lk,mx,y (λ1, λ2, λ3) = min R̄kmykm +
∑
i∈N

∑
j∈N

M̄ijkmxijkm

s.t. (4), (8), (9).

For a given candidate hub arc (k,m), the subproblem computes the op-
timal number of facility links to open and the commodities to be routed on
this hub arc. These subproblems can be efficiently solved by iteratively set-
ting ykm to a non-negative integer value and finding the optimal value for
the associated xijkm variables. That is, upon fixing ykm the problem reduces
to a continuous knapsack problem, which can be optimally solved with a
greedy knapsack algorithm (Lawler, 1979). This algorithm first orders the
xijkm variables so that

M̄(s)km

W(s)

≤
M̄(s+1)km

W(s+1)

,

for s = 1, · · · , n2 − n, where W(s) denotes the demand flow of the sth or-
dered node pair (i, j). Starting from s = 1, the algorithm adds the or-
dered items, i.e., x(s)km = 1, one at a time to the knapsack and contin-
ues until the residual capacity is equal to zero. Note that only a frac-
tion of the last considered item (denoted as r) may have been added, i.e.,
x(r)km =

(
Bykm −

∑r−1
s=1 W (s)

)
/W (r) < 1.

To determine the optimal value of ykm, the algorithms starts from ykm = 1
and evaluates the objective value by solving the corresponding continuous
knapsack problem. If the objective value is strictly negative, ykm is increased
by one to add B extra units of capacity to the knapsack so as to allow more
x(s)km variables to take a positive value. The value of ykm is increased until
the capacity increases to a point that all x(s)km can be set to one or whenever
the next element to be added deteriorates the objective (i.e., M̄(s)km < 0).
A value of ykm = 0 is selected as optimal whenever setting ykm ≥ 1 yields
strictly positive objective values.
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3.1. Solving the Lagrangean Dual Problem

In order to obtain the best possible lower bound, we solve the Lagrangean
Dual problem, which is given by:

(LD) LD = max
λ1,λ2,λ3≥0

L(λ1, λ2, λ3).

We apply the subgradient optimization method to solve problem LD. It
is well known that the classical subgradient algorithm tends to suffer from
slow convergence. To overcome this difficulty, we use a deflected subgradient
algorithm. This algorithm uses a linear combination of the current subgradi-
ent direction st and the direction used in the previous iteration dt−1 to obtain
the next direction of movement. That is, at every iteration t, dt = st+θtdt−1.
The efficiency of this method depends on selecting the deflected subgradient
parameter θt (see for instance, Camerini et al., 1975; Brännlund, 1995). To
this end, we use the following rule based on geometrical arguments (see,
Guta, 2003):

θt =

{
−π ‖s

tdt−1‖
‖dt−1‖2 if stdt−1 < 0

0 otherwise.,

where 0 ≤ π ≤ 2. For a given vector (λ1, λ2, λ3), let z(λ), y(λ), and x(λ) be
the optimal solution to L(λ1, λ2, λ3). Thus, a subgradient of L(λ1, λ2, λ3) is
given by

γ(λ1, λ2, λ3) =

((
zik(λ) +

∑
m∈N

xijmk(λ)− zjk(λ)−
∑
m∈N

xijkm(λ)

)
(i,j,k)

,(∑
i∈N

∑
j∈N

Wijxijkm(λ)−Bykm(λ)

)
(k,m)

,(
ykm(λ)−Qzkk(λ)

)
(k,m)

,(
ykm(λ)−Qzmm(λ)

)
(k,m)

)
.

At each iteration t of the subgradient algorithm, the dual multipliers are
update as:

(λ1, λ2, λ3)(t+1) = (λ1, λ2, λ3)(t) + δt
φ̄− L((λ1, λ2, λ3)t)

||Γ(λ1, λ2, λ3)t||2
dt,
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where φ̄ denotes an upper bound on the optimal solution value and δ is a
constant between 0 and 2.

3.2. Primal Heuristic

We exploit the information generated at some iterations of the subgradi-
ent algorithm to construct feasible solutions. In what follows, solutions are
represented by a set of hub nodes H, a set of hub arcs D, and an assignment
mapping M . Solutions are designated in the form s = (H,D,M), where H
represents the set of selected sites at which hubs are located, i.e., H(i) = 1 if
site i ∈ N is chosen to be a hub, D((i, j)) : A → Z+ represents the number
of facility links installed on hub arcs (i, j) and M : N → H is the assignment
mapping, i.e., M(j) = k if node j ∈ N is assigned to hub k ∈ H.

The proposed heuristic constructs feasible solutions as follows. Let ẑt, ŷt

and x̂t be the optimal solution to the Lagrangean subproblems Lz(λ) and
Lx,y(λ) at a given iteration t of the subgradient algorithm. The optimal so-
lution of the subproblem Lz(λ

t) provides a set of hubs and an assignment
mapping of non-hub nodes to hubs, that is H = {k : ẑkk = 1, k ∈ N}, and
M(i) = k̄ where ẑik̄ = 1. Since Lz(λ

t) and Lx,y(λ
t) are solved independently,

the solution obtained from the subproblem Lx,y(λ
t) might not be feasible

for the set H of hubs obtained in solving Lz. Therefore, once the loca-
tion/allocation variables are fixed, the next step is to determine the number
of facility links to be activated on each hub arc in order to route the flows at
minimum cost. This subproblem is actually equivalent to solving a network
loading problem (NLP) in an auxiliary network.

Let Ĝ = (Ĥ, Â) be a directed graph where Ĥ = {k ∈ N : ẑkk = 1} is the
set of open hubs at iteration t and Â = {(k,m) : k,m ∈ Ĥ} is the set of can-
didate hub arcs. For each pair (k,m) ∈ Ĥ × Ĥ, let wkm =

∑
i∈N(k)

∑
j∈N(m)

denote the amount of flow that needs to be routed from k to m, where
N(k) = {i ∈ N : ẑik = 1}. Recall that ckm represents the (transportation)
cost for using one facility link with capacity B on hub arc (k,m). Using the
ykm and xijkm variables defined in Section 2, the NLP can be formulated as:

minimize
∑

(k,m)∈Â

ckmykm

subject to
∑
i∈Ĥ

∑
j∈Ĥ

Wijxijkm ≤ Bykm (k,m) ∈ Â
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∑
m∈Ĥ

xijkm −
∑
m∈Ĥ

xjikm =


1 if k = i,
−1 if k = j.
0 if k 6= i, j.

i, j, k ∈ Ĥ

0 ≤ xijkm ≤ 1 i, j, k,m ∈ Ĥ
yij ∈ Z+ (i, j) ∈ Â.

Even though the NLP is known to be a NP-hard, for instances of rea-
sonable size it can be solved efficiently using a general purpose solver. The
output of the NLP is a set of hub arcs to open and the associated routing
decisions for all demand flow of the MHLP. Thus, the optimal solution of the
NLP provides a feasible solution to the MHLP.

This constructive phase of the heuristic is executed every time the subgra-
dient algorithm improves the best known lower bound. Once the subgradient
algorithm terminates, we apply a local search procedure on the best known
solution obtained so far. This procedure iteratively explores two neighbor-
hoods namely classical shift and swap neighborhoods. The shift neighbor-
hood improves the current solution by changing the assignment of one node,
whereas the swap neighborhood considers all solution that differ from the
current one by swapping the assignment of two nodes. Let s = (H,A,M) be
the current solution, then

Nshift(s) = {s′ = (H,A,M
′
) : ∃!j ∈ N, M ′

(j) 6= M(j)},

and

Nswap(s) = {s′ = (H,A,M
′
) : ∃!(j1, j2), j

′

1 = M(j2), j
′

2 = M(j1), ∀j 6= j1, j2}.

All pairs of the form (i, j) in Nshift are considered, where M(j) 6= i. Sim-
ilary, all pairs of the form (j1, j2) in Nswap are considered, where M(j1) =
M(j2). The local search procedure explores Nshift first until a local optimal
solution is found. The algorithm then tries to improve the solution by ex-
ploring Nswap. Each time the search improves the best known solution, the
procedure starts with Nshift. In both neighborhoods, a best improvement
strategy is used. Note that in order to reoptimize the arc selection and rout-
ing decisions in each neighbour, we solve one NLP to optimality. The overall
Lagrangean relaxation algorithm is depicted in Algorithm 1.
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Algorithm 1: Lagrangean relaxation heuristic

Initialize zD ← −∞; (λ1, λ2, λ3)0 ← 0; δ0 ← 2; φ̄←∞; t← 0
while (Stopping criteria not satisfied) do

Solve the Lagrangean function L((λ1, λ2, λ3)t)
if (L((λ1, λ2, λ3)t)) > zD) then

zD ← L((λ1, λ2, λ3)t)
Apply constructive heuristic to obtain upper bound UBt

if (UBt < φ̄) then
φ̄← UBt

end if
end if
Evaluate the subgradient γ(λ1, λ2, λ3)t

if( γ(λ1, λ2, λ3)tdt−1 < 0) then
θt = ρ ‖ γ(λ1, λ2, λ3) ‖ / ‖ dt−1 ‖

else
θt = 0

end if
Obtain the direction dt = γ(λ1, λ2, λ3)t + θtdt−1

Calculate the step length st ← δt φ̄−L((λ1,λ2,λ3)t)
||γ(λ1,λ2,λ3)t||2 ,

Set (λ1, λ2, λ3)(t+1) ← (λ1, λ2, λ3)(t) + stdt

Set t← t+ 1
end while
Apply local search on best found solution

4. Branch-and-Bound Algorithm

We now describe a branch-and-bound algorithm for solving the MHLP
to optimality. It uses the Lagrangean relaxation algorithm to obtain lower
and upper bounds at every node of the enumeration tree. It is composed of
three phases. In the first phase, the enumeration tree is created by branching
on the location variables zkk, producing terminal nodes in which all location
variables have been fixed. The second phase proceeds from each unfathomed
node, creating an enumeration tree by branching on the assignment variables
zik. When all the location and allocation variables are fixed, the third phase
finds the optimal link activation and routing decisions for each unfathomed
node by solving an associated NLP.
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Let (z̄, ȳ, x̄) the best solution found at the end of the Lagrangean relax-
ation algorithm at any node of the tree. The branching strategy used in the
first phase of the enumeration tree is as follows. If there are any unfixed
location variables such that z̄kk = 1, we select among these the one with the
largest reduced cost F̄k and explore the 1-branch. We store the associated
0-branch on a list of unexplored nodes for later. When there are no more
unfixed location variables such that z̄kk = 1, we branch on the remaining un-
fixed variables by selecting the one with the largest reduced cost and explore
the 1-branch. The first phase is completed once all locational decisions have
been fixed.

When some of the nodes of the first phase have not been eliminated, we
continue with the second phase. In this phase, we select each of these unfath-
omed nodes from the previous phase, one at a time, in non-decreasing way
with respect to their lower bounds obtained and branch on the assignment
variables. During this phase, the tree is not binary. That is, the number of
branches generated at a node of the tree when selecting a non-hub node i
for branching is equal to the number of open hubs on its path. The non-hub
nodes are selected to be explored in the order of decreasing values of the
highest reduced cost associated with the z̄ik variables.

When all nodes of the second phase have been explored, but a subset of
terminal nodes (i.e., nodes of depth n) have not been eliminated we move
to the third and last phase of the algorithm. Note that at this point all
locational and assignment decisions have been fixed and thus, the resulting
subproblems reduces to a NLP. For each of these unfathomed nodes, we solve
an associated NLP to optimality using a general purpose solver. We explore
the entire enumeration tree in a depth first search fashion. At each node of
the tree, the dual multipliers are initialized using the dual solutions from its
parent node.

5. Computational Experiments

We run computational experiments to compare and analyze the perfor-
mance of the formulations, Largrangean relaxation and branch-and-bound
algorithm. All formulations and algorithms were coded in C++ and run on
an HP station with an Intel Xeon CPU E3-1240V2 processor at 3.40GHz
and 24 GB of RAM under windows 7 environment. All MIP problems were
solved using Concert technology of CPLEX 12.5.1. We generate a set of
benchmark instances for the MHLP by using the well known Australian post
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(AP) instances which can be downloaded from the OR library
(http://mscmga.ms.ic.ac.uk/jeb/orlib/phubinfo.html). The AP data set con-
sists of postal flow and Euclidean distances between 200 districts in an Aus-
tralian city. In our experiments, we have selected problems with |N | =10,
20, 25, 40, 50, 60 and 75 nodes. For each N , we generated 9 instances in such
a way that an equivalent discount factor of α = {0.2, 0.4, 0.63} is obtained.
In particular, each instance comprises a hub facility link capacity B with a
variable cost b and a facility link capacity on access arcs H with a variable
cost p. For α = 0.2, we generated three instances: L1 :(B = 750, R =
100, b = 600, p = 400), L2 :(B = 750, R = 100, b = 450, p = 300) and L3 :
(B = 600, R = 100, b = 600, p = 500). For α = 0.4, we generated three
instances L4 : (B = 400, R = 100, b = 800, p = 500), L5 : (B = 650, R =
150, b = 600, p = 345) and L6 : (B = 500, R = 100, b = 600, p = 300).
Finally, For α = 0.63, we generated three instances: L7 : (B = 200, R =
100, b = 500, p = 400), L8 : (B = 300, R = 150, b = 500, p = 400) and L9 :
(B = 400, R = 200, b = 500, p = 400).

In all experiments, the subgradient algorithm terminates when one of the
following criteria is met: i) the difference between the upper and lower bound
is below a given threshold value, i.e.|φ̄− ztD| < ε, ii) the improvement on the
lower bound after tmax consecutive iterations is below a threshold value ψ,
iii) the maximum number of iterations itermax is reached.

After some tuning, we set the following parameters to: ε = 10−6, tmax =
150, ψ = 0.05. For the first stage in the branch-and-bound algorithm, we set
the maximum number of subgradient iterations at the root node to Itermax =
4, 000 and to Itermax = 25 for the rest of the nodes. The parameter δ is
reduced by 0.25 after 100 consecutive iterations without improvement in the
lower bound. In the second stage, the maximum number of subgradient
iterations is fixed to itermax = 300 at the root node and to itermax = 25 for
the rest of the nodes.

The first set of computational experiment is performed to compare the
path-based formulation with the flow-based formulation when solved using
CPLEX. For this experiment, we used the default settings of CPLEX. The
detailed results of this comparison on a set of instances ranging from 10 to 40
nodes are reported in Table 1. The first column provides the number of nodes
n and the instance name (n−name). The next set of columns reports the lin-
ear programming relaxation gap (%LP ), the linear programming relaxation
gap after adding CPLEX cuts (%LPcut), the percent deviation between the
final upper and lower bounds (%GAP ), the CPU time in seconds (CPU),
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and the number of explored node in the enumeration tree (Nodes), for both
formulations. The %LP gap is computed as (UB − LP )/UB × 100, where
UB is the best upper bound (or the optimal solution value), and LP is the
optimal value of the LP relaxation. The final percent gap %GAP is evalu-
ated as (UB − LB)− UB × 100, where UB and LB denote the best upper
and lower bounds obtained at termination, respectively. Throughout exper-
iments, the maximum time limit is set to one day of CPU time. Instances
that fail to solve to optimality within this time limit are marked with the
label ”time”.

Table 1: Comparison between path-based and flow-based formulations
Instance Path-based formulation (PF ) Flow-based Formulation (FF )

% LP % LPcut %GAP CPU Nodes % LP % LPcut %GAP CPU Nodes
10-L1 7.75 2.03 0.00 39 374 8.61 3.84 0.00 < 5 935
10-L2 4.30 1.87 0.00 < 5 39 4.80 2.05 0.00 < 5 48
10-L3 9.06 2.58 0.00 142 2,521 8.30 4.31 0.00 35 6,576
10-L4 10.15 4.35 0.00 1,187 23,408 11.48 6.96 0.00 129 43,548
10-L5 4.01 2.65 0.00 < 5 35 4.59 3.03 0.00 < 5 25
10-L6 5.85 3.10 0.00 23 452 6.44 3.28 0.00 < 5 317
10-L7 4.47 3.05 0.00 28 715 6.31 3.39 0.00 < 5 676
10-L8 3.61 1.54 0.00 < 5 52 4.50 2.13 0.00 < 5 69
10-L9 5.02 3.99 0.00 11 199 6.24 4.52 0.00 < 5 467
20-L1 5.72 2.16 1.07 time 3,529 6.14 4.01 0.00 1,027 20,977
20-L2 2.96 1.44 0.00 6,543 603 3.36 2.10 0.00 67 1,451
20-L3 8.22 2.85 2.74 time 3,098 7.44 4.64 0.00 8,708 98,281
20-L4 5.93 2.17 0.00 78,393 6,547 6.68 4.04 0.00 1,707 34,623
20-L5 3.48 1.69 0.00 1,286 472 3.92 3.70 0.00 72 1,485
20-L6 5.05 3.74 0.00 24,329 3,276 5.24 5.18 0.00 133 5,224
20-L7 3.35 2.80 0.00 24,049 3,960 4.15 3.53 0.00 166 8,135
20-L8 2.98 2.32 0.00 6,055 575 3.80 3.05 0.00 101 2,633
20-L9 2.97 2.26 0.00 3,116 357 3.67 2.78 0.00 56 1,091
25-L1 8.82 4.07 4.07 time 0 9.02 6.29 0.00 74,023 312,521
25-L2 3.84 1.84 1.79 time 3 4.36 3.57 0.00 3,300 14,906
25-L3 9.15 3.97 3.97 time 0 8.50 5.76 2.15 time 262,447
25-L4 8.39 3.17 3.14 time 200 8.82 8.69 0.29 time 378,612
25-L5 3.94 2.30 2.14 time 1,330 4.68 4.34 0.00 1,503 14,439
25-L6 4.11 2.89 2.89 time 539 4.96 4.72 0.00 2,180 24,962
25-L7 2.21 1.74 1.16 time 1,329 3.97 3.69 0.00 1,928 17,138
25-L8 2.45 1.77 0.00 time 873 3.39 3.05 0.00 560 4,023
25-L9 3.36 2.15 2.00 time 1,038 4.61 3.94 0.00 646 4,987
40-L1 n.a n.a n.a time n.a 6.91 6.89 4.08 time 167,604
40-L2 n.a n.a n.a time n.a 3.52 3.23 0.00 51,740 37,187
40-L3 n.a n.a n.a time n.a 7.43 7.38 5.14 time 162,711
40-L4 n.a n.a n.a time n.a 7.41 6.79 4.84 time 148,985
40-L5 n.a n.a n.a time n.a 5.12 4.88 2.63 time 69,828
40-L6 n.a n.a n.a time n.a 4.67 4.64 0.75 time 52,983
40-L7 n.a n.a n.a time n.a 4.21 4.12 0.86 time 107,754
40-L8 n.a n.a n.a time n.a 5.41 4.99 3.08 time 82,524
40-L9 n.a n.a n.a time n.a 5.73 4.71 3.55 time 38,074

As can be seen in the Table 1, the PF is able to optimally solve 16
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out of the 36 instances within the time limit. The percent LP gap of PF
ranges from 2.21% to 10.15%. The column %LPcut shows that the addition
of CPLEX cuts has a significant impact on the improvement of the lower
bound at the root node of the tree. Nevertheless, CPLEX is unable to solve
the LP relaxation for all 40-node instances in one day of CPU time. In the
case of the FF , CPLEX is able to solve 26 out of the 36 instances within
the time limit. The %LP gaps for the instances that were solved using PF
are slightly better than that for obtained in the FF . However, given that
there is a considerably smaller number of variables and constraints in FF ,
CPLEX is able to optimally solve all 25-node instances and one of the 40-
node instances that the PF cannot solve. Moreover, FF was able to provide
optimality gaps for the remaining unsolved 40-node instances.

In order to analyze the performance of our proposed exact algorithm, we
conduct a second series of computational experiments using a set of instances
ranging from 10 to 50 nodes. The results are summarized in Table 2. The
first six columns have the same meaning as in Table 1. The next two columns
under heading LR provide duality gap to the best lower bound obtained with
Lagrangean relaxation (%LR) and the CPU time in seconds needed to obtain
both lower and upper bounds using Lagrangean relaxation (CPU). The
results of the columns under heading Branch and Bound report: the final
percent deviation at termination (%Gap), the CPU time in second (CPU),
and the number of the explored nodes in the enumeration tree (Nodes).

The results in Table 2 show that by using FF , we were able to solve 26
out of the 45 problem instances to optimality using CPLEX (final gaps on
the remaining instances range from 0.29% to 8.87%). The exact algorithm,
on the other hand, was able to confirm the optimality of the solutions ob-
tained in 35 out of the 45 instances within the CPU time limit. For the
remaining 10 unsolved instances, the final percent deviation is below 2.8%.
In all considered instances, the % deviation of the LR is smaller than the
one obtained with FF even after the addition of CPLEX cuts. As a result,
the proposed algorithm produces significantly smaller enumeration trees and
is much faster than CPLEX for all instances, except on the small size, 10-
node instances. Moreover, our exact algorithm is able to optimally solve
9 instances that CPLEX is unable to solve within the time limit. For the
instances that were not solved to optimality, our algorithm always provides
much smaller %gaps as compared to CPLEX. We note that the percent of
time taken by the algorithm for solving the UFLPs at every iteration and the
NLPs during the local search and at the end of the enumeration tree never
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exceeds 5% for the larger instances with n equal to 40 and 50 nodes.

Table 2: Results of branch-and-bound algorithm for small to medium-size instances
Instance Flow-based Formulation LR Branch and Bound

% LPcut %GAP CPU Nodes % LR CPU %GAP CPU Nodes
10-L1 3.84 0.00 < 5 935 2.02 10 0.00 22 213
10-L2 2.05 0.00 < 5 48 1.86 6 0.00 9 42
10-L3 4.31 0.00 35 6,576 2.48 50 0.00 88 624
10-L4 6.96 0.00 129 43,548 4.52 22 0.00 337 4,537
10-L5 3.03 0.00 < 5 25 2.20 12 0.00 19 87
10-L6 3.28 0.00 < 5 317 3.18 7 0.00 15 127
10-L7 3.39 0.00 < 5 676 3.61 29 0.00 80 714
10-L8 2.13 0.00 < 5 69 1.58 13 0.00 22 137
10-L9 4.52 0.00 < 5 467 4.03 13 0.00 21 180
20-L1 4.01 0.00 1,027 20,977 1.79 35 0.00 102 1,268
20-L2 2.10 0.00 67 1,451 1.47 23 0.00 48 383
20-L3 4.64 0.00 8,708 98,281 1.83 83 0.00 308 4,624
20-L4 4.04 0.00 1,707 34,623 2.05 47 0.00 241 4,173
20-L5 3.70 0.00 72 1,485 1.50 42 0.00 58 349
20-L6 5.18 0.00 133 5,224 3.75 37 0.00 149 3,102
20-L7 3.53 0.00 166 8,135 3.22 79 0.00 356 5,116
20-L8 3.05 0.00 101 2,633 2.38 39 0.00 78 818
20-L9 2.78 0.00 56 1,091 2.32 37 0.00 77 764
25-L1 6.29 0.00 74,023 312,521 1.57 129 0.00 697 9,155
25-L2 3.57 0.00 3,300 14,906 0.95 87 0.00 167 700
25-L3 5.76 2.15 time 262,447 2.01 145 0.00 887 11,632
25-L4 8.69 0.29 time 378,612 2.58 450 0.00 3,163 41,232
25-L5 4.34 0.00 1,503 14,439 2.03 67 0.00 276 1,957
25-L6 4.72 0.00 2,180 24,962 2.79 82 0.00 439 5,147
25-L7 3.69 0.00 1,928 17,138 2.27 168 0.00 1,331 13,750
25-L8 3.05 0.00 560 4,023 1.55 82 0.00 289 3,020
25-L9 3.94 0.00 646 4,987 1.77 101 0.00 249 2,185
40-L1 6.89 4.08 time 167,604 1.78 699 0.00 16,144 78,423
40-L2 3.23 0.00 51,740 37,187 0.64 437 0.00 865 1,177
40-L3 7.38 5.14 time 162,711 1.76 734 0.00 32,290 174,658
40-L4 6.79 4.84 time 148,985 2.68 731 1.91 time 290,062
40-L5 4.88 2.63 time 69,828 1.79 135 0.00 4,153 15,151
40-L6 4.64 0.75 time 52,983 2.48 497 0.00 24,200 101,864
40-L7 4.12 0.86 time 107,754 2.85 786 0.00 40,284 152,099
40-L8 4.99 3.08 time 82,524 2.35 681 0.00 59,693 323,662
40-L9 4.71 3.55 time 38,074 1.87 578 0.00 78,105 431,532
50-L1 8.33 7.69 time 62,875 2.79 1,502 1.84 time 239,520
50-L2 6.52 5.86 time 21,077 2.35 1,613 2.00 time 250,642
50-L3 9.74 8.87 time 56,291 2.41 1,903 2.16 time 166,954
50-L4 8.62 7.49 time 154,566 2.56 3,675 2.01 time 190,193
50-L5 9.21 8.56 time 14,841 4.45 1,224 2.61 time 210,039
50-L6 5.83 5.23 time 30,198 2.23 1,305 1.67 time 226,644
50-L7 5.03 3.56 time 105,850 3.34 2,169 1.79 time 173,901
50-L8 6.53 5.75 time 76,346 3.41 1,963 2.72 time 176,399
50-L9 5.40 5.30 time 9,144 1.87 1,319 0.12 time 283,396

In order to further analyze the performance of our proposed algorithm,
we have run a third series of computational experiments using 60-node and

19



75-node instances. The results are summarized in Table 3. The column
CPULP reports the CPU time in seconds to solve the LP relaxation and
whereas the other columns have the same meaning as in the previous tables.

Table 3: Results of branch and bound algorithm for 60 and 75-node instances
Instance Flow-based Formulation LR Branch and Bound

%LPcuts CPULP %LR CPU %GAP CPU Nodes
60-L1 8.76 4,419 2.00 3,129 1.73 time 118,013
60-L2 7.82 3,338 1.75 2,523 1.53 time 131,604
60-L3 9.78 2,408 2.29 3,347 2.09 time 21,369
60-L4 8.57 1,877 2.95 4,191 2.13 time 15,657
60-L5 8.70 2,682 1.90 2,880 1.61 time 130,091
60-L6 8.03 3,392 2.69 3,128 2.13 time 98,955
60-L7 6.02 1,553 4.33 4,037 2.45 time 14,426
60-L8 7.60 1,920 3.69 3,346 2.56 time 15,460
60-L9 7.04 1,543 2.60 4,772 1.58 time 93,931
75-L1 11.05 11,339 2.30 9,678 2.21 time 5,721
75-L2 8.79 10,851 1.83 8,219 1.52 time 7,680
75-L3 10.09 8,390 2.00 15,620 0.86 time 4,940
75-L4 11.01 11,640 3.18 23,013 2.11 time 2,249
75-L5 12.64 11,727 2.80 9,069 0.28 time 4,391
75-L6 10.85 13,972 3.55 8,070 2.67 time 4,198
75-L7 8.25 11,235 4.96 13,183 3.05 time 2,488
75-L8 9.12 8,639 3.55 13,160 1.70 time 3,883
75-L9 8.61 9,888 2.39 10,451 0.44 time 4,959

As can be seen in Table 3, the lower bounds obtained from Lagrangean
relaxation are significantly tighter than those obtained with CPLEX. In par-
ticular, the LP gaps of FF range from 6% to 13%, whereas the LP gaps of
the Lagrangean relaxation algorithm never exceeds 5%. It is worth mention-
ing that both CPLEX and our algorithm fail to solve any of these instances
within the time limit due to the size and complexity of the problem. However,
the final gap of our algorithm is always below 3.2%.

Tables 4-6 show how optimal network configurations change depending
on the capacity B and the variable cost b of hub arcs as well as the capacity R
and the variable cost p of access arcs. The tables present the optimal network
configuration - hub nodes, hub arcs, facility links, the actual economies of
scale achieved on each hub arc, and the % hub arc utilization. That is, hub
arc utilization measures how much of the available capacity is being used in
each hub arc and is computed as flowkm/ykmR×100%, where flowkm denotes
the amount of flow routed on hub arc (k,m) at the optimal solution. In Table
4, we report the changes in solution network when varying the capacities of
facility links on hub arcs B and access arcs R, while the variable costs p and
b are fixed, in such a way to achieve a target discount factor of α = 0.2.
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Table 4: Effect of varying capacities of hub and access arcs in optimal solutions with
b = 200, p = 150 and target α = 0.2.
Instance Solution network Hub arcs % Utilization Discount

B = 167
R = 25

0

1

2

3

4

5 6 7

8
9

10
11

12 13
14 15

16 17 18 19

1–6
1–8
3–6
6–1
6–3
6–8
6–11
6–13
8–6
8–13
11–6
11–13
13-1
13-6
13–8
13–11
Avg

80.24
100.00
67.41
100.00
90.13
100.00
100.00
100.00
100.00
81.59
73.26
91.60
100.00
100.00
100.00
100.00
92.76

0.25
0.20
0.30
0.20
0.22
0.20
0.20
0.20
0.20
0.28
0.27
0.22
0.20
0.20
0.20
0.20
0.22

B = 200
R = 30

0

1

2
3

4

5
6

7

8

9

10
11

12 13 14
15

16 17 18 19

1

2–8
2–10
2–13
8–2
8–13
10–2
10–8
10–13
13–2
13–8
13–10
Avg

66.5
89.0
99.7
93.0
87.6
93.0
53.1
100.0
100.0
97.5
100.0

89

0.30
0.22
0.20
0.21
0.23
0.21
0.38
0.20
0.20
0.21
0.20
0.23

B = 250
R = 38

0

1

2

3

4

5 6
7

8
9

10

11

12

13
14

15

16
17 18

19

5–10
5–13
10–5
10–13
13–5
13–10
Avg

92.9
71.9
97.5
100.0
85.1
79.4
87.8

0.22
0.33
0.21
0.2
0.24
0.31
0.25
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From Table 4, we observe that as the capacities of facility links on hub and
access arcs increase while variable costs are fixed, the difference of the unit
flow cost between hub and access arcs decreases, therefore, MHLP locates
fewer hub facilities as well as fewer hub arcs to route the flow between all
O − D nodes. For instance, when B = 167 and R = 200 (i.e. unit flow
cost difference is 4.8), the model selects 6 hub locations (1, 3, 6, 8, 11, 13)
and activates only 16 hub arcs to route the flow between all O − D nodes.
Moreover, the average hub arc utilization in the network is 92.76% which
implies that higher flows through the hub arc facilities links and hence higher
flow discounts. As can also be seen in column discount, the average discount
is 0.22. Increasing B to 200 and R to 30 (i.e. unit flow cost difference is 4.0)
leads to locating 4 hub facilities at nodes (2, 8, 10, 13) and activating 13 hub
arcs. In this case, the average utilization is 89% with an average discount
of 0.23. Similarly, when B increases to 250 and R to 38 (i.e. unit flow cost
difference is 3.1) 3 fully interconnected hub facilities are located at nodes
(5, 10, 13). The average utilization is 87.8% with an average discount equal
to 0.25. It can also be seen that, as the difference in unit flow cost decreases,
the location of hub facilities tend to be closer to each other.

Table 5 illustrates the effects of varying the variable costs b and p on
the optimal solution networks while the capacities B and R are fixed with a
target discount factor α of 0.20. As can be seen in the tables, as the variable
costs b and p increase, the MHLP tends to locate more hubs and connect
them with fewer hub arcs. For instance, when b = $600 and p = $500,
MHLP selects four locations for hub facilities (i.e., 2, 8, 10, 13) and activates
six hub arcs to route the flow between all O − D pairs. The average hub
arc utilization is 80.83% and the average discount is 0.26. Decreasing b to
$450 and p to $370 results in locating only three hubs at nodes (5, 10, 13 and
using four hub arcs. Although the average utilization increases to 86.28%,
the average discount increases to α = 0.28. Further decreasing b to $300 and
p to $250 leads to location of three hub facilities but at locations 2, 10 and
13 with four hub arcs. Note that the average utilization increases to 87.1%
with an average discount of 0.26. In all cases, nodes 10 and 13 are chosen as
hubs.
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Table 5: Effect of varying variables costs of hub and access arcs in optimal solutions with
B = 600, R = 100 and target α = 0.20.
Instance Solution network Hub arcs % Utilization Discount

b = $600
p = $500

0

1

2

3

4

5

6

7

8

9
10

11

12

13 14

15

16
17

18 19

2–13
8–13
10–2
10–13
13–8
13–10
Avg

85.1
70.5
95.5
51.0
85.8
97.1
80.83

0.24
0.28
0.21
0.39
0.23
0.21
0.26

b = $450
p = $370

0

1

2

3

4

5

6

7

8

9
10

11

12

13 14

15

16 17

18 19

5–10
10–13
13–5
13–10
Avg

83.2
64.5
97.65
99.78
86.28

0.24
0.45
0.21
0.20
0.28

b = $300
p = $250

0

1

2

3

4

5

6

7

8

9
10

11

12

13 14

15

16
17

18 19

2-13
10–2
10–13
13–10
Avg

85.09
95.44
51.02
97.05
87.1

0.24
0.21
0.39
0.21
0.26

Table 6 illustrates the effect of changing the target discount factor α on
optimal solution networks. Through this experiment, the target α values are
achieved by varying the variable cost p while keeping the other parameters
fixed. As expected, we observe that at lower α, more hubs are opened.
However, the MHLP tries to utilize hub arc facilities by activating fewer
hub arcs and thus, resulting in higher discount factors. For instance, with
p = $634 and α = 0.2, MHLP opens six hubs at nodes (1, 3, 6, 8, 10, 13) with
only nine hub arcs. The average arc utilization is 75.7% and the overall
discount is 0.23. Furthermore, a lower discount factor leads to the selection
of the most isolated node 3 as a hub given that it is one with a highest amount
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of the incoming/outgoing flows. In the second solution, we decrease p to $317
resulting in an increase of α to 0.4. In this setting, the MHLP locates three
hub facilities and activates four hub arcs with an average utilization of 87.7%
and an average discount of 0.47. Finally, with p = $212 and α = 0.6, only
two hubs are opened with an average hub arc utilization of 87.1% and an
average discount of 0.76.

Table 6: Effect of varying discount factor on optimal solution networks with B = 650,
R = 110 and b = 750.
Instance Solution network Hub arcs % Utilization Discount

p = 634
α = 0.20

0

1

2

3

4 5 6

7

8 9
10

11

12 13 14

15

16 17
18 19

1

1–6
3–1
6–3
6–10
8–13
10–6
10–13
13–8
13–10
Avg

55.39
60.45
66.28
86.26
65.05
94.26
98.24
79.24
75.89
75.7

0.36
0.33
0.30
0.23
0.31
0.21
0.20
0.25
0.29
0.23

p = 317
α = 0.40

0

1

2 3

4

5 6

7

8

9 10
11

12
13

14
15

16
17

18 19

5-10
10-5
10-13
13-10
Avg

83.3
95.2
93.8
78.54
87.7

0.48
0.42
0.43
0.55
0.47

p = 212
α = 0.60

0

1

2

3

4

5

6

7

8

9
10

11

12

13 14

15

16
17

18 19

6-13
13-6
Avg

100
74.2
87.1

0.60
0.92
0.76
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6. Conclusions

In this paper, we studied the modular hub location problem with single
assignments. The MHLP explicitly models the flow dependency of trans-
portation cost using modular arc costs on all arcs of the hub-and-spoke
network. Moreover, it does not assume a particular topological structure,
instead it considers the design of the entire hub network as a part of the de-
cision process. We present two mixed integer programming formulations - a
flow-based and a path-based formulation and compared their strengths using
linear programming relaxation bounds. We proposed a Lagrangean relax-
ation of the path-based formulation by relaxing the linking constraints of the
location/allocation and routing variables. We presented a primal heuristic to
construct a feasible soluion and compute an upper bound. Further, we pre-
sented a branch-and-bound based exact algorithm that uses the Lagrangean
relaxation as a bounding procedures at the nodes of an enumeration tree.
Computational results on benchmark instances up to 75 nodes confirm the
efficiency and the robustness of the proposed algorithms. We analyzed the
effect of changing capacities of hub and access arcs, variable costs of hub
and access arcs, and discount factor on the optimal network configuration.
Results show that the proposed model captures the interdepedency of the
hub arc utilization and the actual economies of the scale on transporation
costs.
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Labbé, M., Yaman, H., 2004. Projecting the flow variables for hub location
problems. Networks 44 (2), 84–93.

Labbé, M., Yaman, H., 2008. Solving the hub location problem in a star–star
network. Networks 51 (1), 19–33.
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