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This course is about the interplay between performance metrics, decisions, and
guarantees. We consider two cases: with and without uncertainty.

1 Without uncertainty

First, determine the possible values A of the decision variable a: technology A, B,
engine size X, Y . Next, fix a performance metric Q : A→ R, e.g., pollution output of
the engine. If Q is unknown, measure Q(a) for every possible value of a ∈ A.

We can then easily answer questions of the form: Given a threshold λ, what values
of a guarantee that Q(a) ≥ λ?

Observe that this approach requires |A| measurements.

2 With uncertainty

In many supply chain situations, however, we do not have a deterministic performance
metric Q. We produce a sequence of identical items: item 1, item 2, etc. We then
measure the quality of each item, and denote these measurements (or observations or
data) by X1, X2, . . . Even if there is only a single possible decision, these observations
display a certain uncertainty.

Consider, for instance, the following examples:

• customer satisfaction in support center,

• quality of diamonds in production line,

• weight of apples on a farm.

How do we give performance guarantees in the presence of uncertainty?

3 Review of Statistics

Probability theory and statistics is the most widely used set of mathematical tools for
modeling uncertainty.

• Probability space,

– Set of outcomes Ω,

– Set of events F containing subsets of Ω,
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– A function (probability measure) P : F → R.

• Random variables, distribution functions,

– Real-value random variable is a (measurable) function X : Ω→ R.

– Probability distribution function or cumulative distribution function: F (x) =
P (X ≤ x) for all x.

– Probability density function, if it exists: F (x) =
∫ x
−∞ f(z)dz.

• Examples (Bernoulli, Normal, Uniform, Exponential etc.),

– Bernoulli with parameter p: P (X = 1) = p, P (X = 0) = 1− p.
– Exponential with rate λ: F (x) = (1− e−x)1[x≥0] for all x ∈ (−∞,∞).

– Normal N(0, 1): f(x) = (2π)−1/2e−x
2/2 for all x ∈ (−∞,∞).

• Expectation,

– Bernoulli: EX = p ∗ 1 + (1− p) ∗ 0

Statistics is the study of data using probability theory: we have access to random
variables X1, X2, . . ., but we don’t know their distributions. We want to use X1, X2, . . .
to infer their distributions.

• Classical: Let P denote the joint distribution of X1, X2, . . . , Xn. We assume that
P belongs to a known set {Pθ : θ ∈ Θ}. The goal is to find the true value θ∗ or
a subset containing it.

• Bayesian: Assume that θ∗ is a random variable from a known distribution.

Example 3.1. Consider X1, X2, . . . , Xn corresponding to the measured lifespans of n
light bulbs (no decisions involved). Assume that they are independent and identically
distributed according to a normal distribution P . Estimate the mean of P .

3.1 Probabilistic guarantees

Suppose that for a given decision a, we observe the following sequence of performance
measurements: Xa

1 , X
a
2 , . . . , X

a
n. Suppose that these measurements are i.i.d. with

distribution F . Given δ, we would like to find an λ give guarantees of the form:

P(Xa
n+1 > λ) ≥ 1− δ. (1)

Observe that the above guarantee is equivalent to 1− F (λ) ≥ 1− δ or λ ≤ F−1(δ).
One approach is to find an estimate F̂n of the distribution F using the data

Xa
1 , X

a
2 , . . . , X

a
n. If F̂ is a very good estimate of F , then we can say that

P(Xa
n+1 > F̂−1n (δ)) ≥ 1− δ.

Remark 1 (Relation to Newsboy problem). Recall that F−1 appears also in the solution
to the Newsboy problem. There, the distribution F is assumed to be known, whereas
in this course, we need to estimate F from data.
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3.2 Estimating distributions

Figure 1: From http://candywow.weebly.com/

Estimation with candies. Suppose that your supply chain produces candies and
that the color of each candy corresponds to a quality value:

• Green = 1

• Yellow = 2

• Orange = 3

• Red = 3

• Purple = 5

Students observe X1, X2, . . . The (unknown) true distribution F is

• P(Xi ≤ 1) = 21/95

• P(Xi ≤ 2) = (21 + 15)/95

• P(Xi ≤ 3) = (21 + 15 + 49)/95

• P(Xi ≤ 5) = (21 + 15 + 49 + 10)/95

We can estimate the distribution F for a sequence of i.i.d. random variables as
follows. Let X1, X2, . . . , Xn denote the samples. Construct the following empirical
distribution function, for every x:

F̂n(x) =
1

n

n∑
i=1

1[Xi≤x].

How well does F̂n estimate F? Good news: exceptionally well!
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Theorem 3.1 (Dvoretzky–Kiefer–Wolfowitz Inequality1). For every ε > 0, we have

P
(

sup
x∈R
|F̂n(x)− F (x)| > ε

)
≤ 2e−2nε

2

.

Remark 2. The ε above is analogous to the notion of “margin of error,” whereas 1− δ
is analogous to “confidence.”

Homework: Combine DKW Inequality with (2).

3.3 Estimating normal distributions

Normal random variables are entirely characterized by the mean µ and variance σ2.
The following sample-mean is an unbiased mean estimator:

µ̂n =
1

n

n∑
k=1

Xk.

The following is an unbiased variance estimator:

σ̂2
n =

1

n− 1

n∑
k=1

(Xk − µ̂n)2.

How well do µ̂n and σ̂2
n estimate µ and σ2? Very well, thank you!

Theorem 3.2 (Hoeffding). Let X1, X2, . . . be i.i.d. random variables that take values
in the interval [a, b], and have mean µ. Let

X̂n =
1

n

n∑
i=1

Xi.

Then, for every n and ε > 0:

P
(∣∣∣X̂n − µ

∣∣∣ ≥ ε
)
≤ 2 exp

(
− 2nε2

(b− a)2

)
.

3.4 Multiple decisions

When the decision maker is faced with a set A of possible decisions, we have a different
sequence of measurements for each decision a ∈ A:

Xa
1 , X

a
2 , . . .

Given δ > 0, we can find a set of values {λa | a ∈ A} such that

P(Xa
n+1 > λa) ≥ 1− δ. (2)

We can then answer questions of the form: What decisions a ∈ A guarantee that an
arbitrary lightbulb has a lifespan above γ with probability 0.99?

Remark 3. Observe that for γ < λa, we have {X > λa} ⊆ {X > γ}, and hence
P(X > γ) ≥ P(X > λa).

1 Dvoretzky, A.; Kiefer, J.; Wolfowitz, J. (1956), ”Asymptotic minimax character of the sample
distribution function and of the classical multinomial estimator”, Annals of Mathematical Statistics
27 (3): 642–669.
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4 Control charts

Next week, we look at the following problem. Suppose that you produce integrated
circuits (computer chips), voltage measurements can be taken on these chips. Many
things can go wrong in the supply chain (silicon wafer, photoresist, etching, etc.). How
do we quickly detect that something went wrong somewhere?

Suppose that the measurements are X1, X2, . . . , Xn and i.i.d. We assume that the
mean µ and the variance σ2 are known. The Shewhart X̄ chart simply raises an alarm
when the empirical average X̄n = 1

n

∑n
i=1Xi falls outside the region[

µ− 3σ√
n
, µ+

3σ√
n

]
of three times the standard deviation σ/

√
n around the mean µ.

Figure 2: From A. Di Bucchianico, Applied Statistics, Technische Universiteit Eind-
hoven, 2008.

How does this alarm perform? Let’s look at the probability of false alarm.

4.1 Probability of false alarm

The probability of false alarm is

1− P(µ− 3σ√
n
≤ X̄n ≤ µ+

3σ√
n

) = Φ(−3) + (1− Φ(2)) = 0.0027.
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