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Suppose that you produce integrated circuits (computer chips), voltage measure-
ments can be taken on these chips. Many things can go wrong in the supply chain
(silicon wafer, photoresist, etching, etc.). How do we quickly detect that something
went wrong somewhere?

The general setting is the following: we take measurements X1, X2, . . . In the be-
ginning, for chips 1, 2, . . . , ν, everything is fine and the measurements are distributed
according to a known distribution function F . However, at an unknown time ν, some-
thing breaks, and the subsequent chips ν+1, ν+2, . . . generate measurements according
to another unknown distribution F ′. The unknown ν is called the changepoint. We
make the i.i.d. assumption for the subsequences before and after ν.

Control charts are tools for detecting changes in the distribution that characterize
a sequence of measurements (random variables).

1 Shewhart X̄ control chart

The Shewhart X̄ chart is designed to detect changes in distribution that affect the
mean.

Suppose that the measurements are X1, X2, . . . , Xn and i.i.d. We assume that the
mean µ and the variance σ2 are given (e.g., estimated using data . . . , X−2, X−1, X0).
The Shewhart X̄ chart simply raises an alarm when the empirical average X̄n =
1
n

∑n
i=1Xi falls outside the region[

µ− 3σ√
n
, µ+

3σ√
n

]
of three times the standard deviation σ/

√
n around the mean µ.

This is repeated for the following batches of measurements:

Xn+1, Xn+2, . . . , X2n,

X2n+1, X2n+2, . . . , X3n,

. . .

1.1 Why does this work?

Suppose that we use data X−n+1, . . . , X−2, X−1, X0 to estimate µ:

µ̂ =
X−n+1 + . . .+X−2 +X−1 +X0

n
.
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Figure 1: From A. Di Bucchianico, Applied Statistics, Technische Universiteit Eind-
hoven, 2008.

By the Hoeffding Inequality (Lecture 1), µ̂ is a good estimate of the true mean µ.
Similarly,

µ̂′ =
X1 + . . .+Xn

n
.

is also a good estimate of the true mean µ. Hence, with high probability, we have
|µ̂− µ̂′| ≤ ε.

How well does this alarm perform? Let’s look at the probability of false alarm and
the probability of missing a change.

1.2 Probability of false alarm

The probability of false alarm is

1− P
(
µ− 3σ√

n
≤ X̄n ≤ µ+

3σ√
n

)
= Φ(−3) + (1− Φ(2)) = 0.0027.

1.3 Probability of missed change

Suppose that there was an incident is the supply chain at time 7n, such that the
measurement X7n+1, . . . , X8n are distributed according to a new distribution with a
new mean γ.
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The probability of missed change is

P
(
µ− 3σ√

n
≤ X̄8n ≤ µ+

3σ√
n

)
= P

(
µ− γ + γ − 3σ√

n
≤ X̄8n ≤ µ− γ + γ +

3σ√
n

)
This can be easily approximated with the central limit theorem and integrating (cf.

Figure 1.3).

Figure 2: From Wikimedia

1.4 Examples

• Check that σ√
n

is the standard deviation of X̄n.

• What if instead of 3 standard deviations, we raise an alarm at 2 standard devi-
ations?

• Generate an i.i.d. random sequence in R and test the Shewhard X̄ chart.

2 Variance R control chart

What if an incident produces a change in distribution without changing the mean? If
the variance changes, then we can use a control chart for variance.

Using sample variance is one approach to detect changes in the variance. However,
there is another approach that requires less computation. For i = . . . ,−1, 0, 1, . . .,
let X i

(1) and X i
(n) denote the smallest and largest random variables in the dataset

Xin+1, . . . , X(i+1)n. Let Ri = X i
(n) − X i

(1) denote the range over the ith dataset. We
define the interval:

[D3(n)R̄,D4(n)R̄],
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where R̄ is the true expectation of Ri for i < 0, i.e., before any change in distribution,
and D3 and D4 are functions with values taken from handbooks1. This R̄ can also be
estimated if unknown:

R̄m =
1

m

−m∑
i=−1

Ri.

Figure 3: From A. Di Bucchianico, Applied Statistics, Technische Universiteit Eind-
hoven, 2008.

The R control chart simply raises an alarm when Ri, for i ≥ 0, falls outside the
interval [D3(n)R̄,D4(n)R̄].

3 CUSUM

Suppose that the distribution before and after the changepoint are functions of a
parameter θ, e.g.,

fθ0 , θ = θ0 for X1, . . . , Xν ,

fθ1 , θ = θ1 for Xν+1, Xν+2 . . . .

This parameter can be the mean, the variance, or any other parameter of the distribu-
tion function. In this setting, we can use the cumulative sum control chart to detect
the changepoint.

Let

Zi = log

(
fθ1(Xi)

fθ0(Xi)

)
, for i = 1, 2, . . .

and

C1 = 0,

Ci = max(0, Ci−1 + Zi), for i ≥ 2.

1Montgomery, Douglas (2005). Introduction to Statistical Quality Control. Hoboken, New Jersey:
John Wiley & Sons.
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Figure 4: From Wikimedia
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For a fixed constant b > 0, the CUSUM control chart raises an alarm at the first time
i when Ci ≥ b. The value of b is chosen to trade-off false detections and delays in
detection.
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