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Supply chain management is about making a sequence of decisions over a sequence
of time steps, after making observations at each of these time steps. We illustrate this
with the problem of managing an inventory of nonperishable goods when demand is
stochastic.

We first need to introduce the notion of Markov chains (e.g., weather model, coupon
collector, etc.).

Figure 1: From http://bit-player.org/wp-content/extras/markov/art/

weather-model.png

1 Numerical example

Consider the last horse-drawn carriage dealer in the world, which just took a lease of
N = 4 months on a showroom. At time t = 1, 2, 3, 4, the starting inventory level is st,
the order size is at, and the random demand is dt. The random variables {dt} are i.i.d.
with the following distribution:

dt =


0 w.p. 0.1,
1 w.p. 0.7,
2 w.p. 0.2.
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Figure 2: From exportersindia.com

The inventory level at the next time step t + 1 evolves according to the following
Markov process:

st+1 =


0 if st + at − dt < 0,

st + at − dt if 0 ≤ st + at − dt ≤ 2,
2 if st + at − dt > 2.

(1)

Suppose that the ordering cost of each unit of inventory is 1, and that both the
holding and backorder costs are quadratic, the overall cost is

c(st, at, dt) = at + (st + at − dt)2.

Unsold inventory has no salvage value.
Backward induction starts at t = N = 4, and assigns a value to each inventory

state. Since unsold inventory has no salvage value, we have

V4(0) = V4(1) = V4(2) = 0.

For t = 1, 2, 3, we assign the following values to the states:

Vt(s) = min
a

E{c(s, a, dt) + Vt+1(st+1)}

= min
a

E{c(s, a, dt) + Vt+1([s+ a− dt]20)},

where we used the definition of st+1 in (1) and the notation [·]20 to clamp to state to
the allowed range. Namely, for t = 3, using the distribution of dt above, we obtain

V3(s) = min
a

E{c(s, a, d3) + V4(s4)}

= min
a

E{a+ (s+ a− dt)2 + 0}

= min
a

(
a+ 0.1(s+ a− 0)2 + 0.7(s+ a− 1)2 + 0.2(s+ a− 2)2

)
,
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and

V3(s) =


1.3 if s = 0,
0.3 if s = 1,
1.1 if s = 2.

The optimal order sizes are

a∗3(s) =


1 if s = 0,
0 if s = 1,
0 if s = 2.

Repeat for t = 2 and t = 1:

V2(s) =


2.5 if s = 0,
1.5 if s = 1,
1.68 if s = 2.

a∗2(s) =


1 if s = 0,
0 if s = 1,
0 if s = 2.

V1(s) =


3.7 if s = 0,
2.7 if s = 1,

2.818 if s = 2.

a∗1(s) =


1 if s = 0,
0 if s = 1,
0 if s = 2.

Observe that the optimal order size is 1 if the current inventory is 0, and 0 otherwise.

2 Stochastic inventory management

Consider a single product (e.g., cars), and discrete time steps (e.g., months 1, 2, etc.).
Every time step (e.g., every month), the decision maker oberserves the current inven-
tory level, and decides how much inventory to order from the supplier. There are costs
for holding inventory. The demand is random, but we know the distribution of the
random variable. The goal is maximize the expected value of the profit (revenue minus
costs) over a number N of months.

Assumptions:

• Delivery is instantaneous (no lead-time);

• The demand take integer values;
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• The demand is i.i.d. with given distribution pj = P(Dt = j) for j = 0, 1, . . .;

• Inventory has a capacity M .

For time steps t = 1, 2, . . ., let st denote the inventory level, at the order size, and
Dt the demand at time t—these are all integer-valued. The inventory level from one
time step to the next follows this dynamics:

st+1 = max{st + at −Dt, 0}.

The reward or profit at time t is

rt(st, at) = F (st + at)︸ ︷︷ ︸
present value of inventory

−O(at)︸ ︷︷ ︸
order

−h(st + at)︸ ︷︷ ︸
holding

, for t = 1, . . . , N − 1,

rN(sN , aN) = g(sN , aN)︸ ︷︷ ︸
salvage value

.

where the expected present value of inventory is

F (z) =
z−1∑
j=0

f(j)︸︷︷︸
revenue from j sales

pj +
∑
j≥z

f(z)︸︷︷︸
revenue capped to z sales

pk, for z = 0, 1, . . .

The order and holding cost function can be arbitrary; for instance, O(z) = [K +
c(z)]1[z>0].

Remark 1. Backorder costs (missed sales) are implicitly accounted for in the profit.

2.1 MDP

We can describe the stochastic inventory management problem as an MDP. The inputs
are:

• Holding cost function h, order cost O, sales revenue f , salvage revenue g;

• Probabilities p0, p1, . . .;

• Time horizon: {1, 2, . . . , N};

• State space: S = {0, 1, . . . ,M};

• Action space: A = {0, 1, . . . ,M};

• Expected reward: r1, r2, . . . , rN ;

• State transition probabilities:

P (s′ | s, a) =


0 if s′ ∈ (s+ a,M ],

ps+a−s′ if s′ ∈ (0, s+ a] and s+ a ≤M,∑
k>s+a pk if s′ = 0 and s+ a ≤M.

This is the probability of having an inventory level s′ at the next time step when
the inventory level at the current time step is s and we order a units of inventory.
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The output is a optimal sequence of policies σ1, σ2, . . ., where σj : S → A. These
policies are used to pick the optimal action to take at each time step: suppose that
at time t = 1, 2, . . . , N , we observe the state st (a random variable), then the optimal
action is σt(st).

Remark 2 (Reward vs cost). We can define the MDP in terms of costs by replacing the
expected reward by expected cost, as in the numerical example above, and by replacing
the max by min.

2.2 Solving finite-horizon MDP by backward induction

How do we compute the optimal policies σ1, σ2, . . .? We propose a method of dynamic
programming called backward induction.

The backward induction algorithm for MDPs proceeds as follows.

1. Set j = N , and VN(s) = maxa∈A rN(s, a) = g(s) for all s ∈ S;

2. For j = N − 1, N − 2, . . . , 1:

(a) For s ∈ S:

i. Compute

Vj(s) = max
a∈A

{
rj(s, a) +

∑
s′∈S

P (s′ | s, a)Vj+1(s)

}
;

ii. Output σj(s) ∈ arg maxa∈A
{
rj(s, a) +

∑
s′∈S P (s′ | s, a)Vj+1(s)

}
.

The output policies σ1, . . . , σN are optimal (cf. Puterman, Section 4.3).

3 References

• Markov Decision Processes, M. Puterman, Chapter 1.
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