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Remark 1 (DKW-like inequalities). For other example of inequalities like the DKW
Inequality, see “Understanding Machine Learning” Chapter 31, and Appendix B.4.

Previously, we have considered the problem of estimating the distribution of a
random variable using the DFW Inequality, and the mean and variance of a random
variable in the context of control charts.

Suppose that we know that the unknown distribution Fθ of the data X1, X2, . . .
belongs to a set {Fγ : γ ∈ Ω}. How can we estimate the parameter θ or a function g(θ)
of this parameter. Can we do this more efficiently than applying the DFW Inequality?

There are many methods for estimation: Bayesian, Max-likelihood, unbiased, etc.
We overview some of these.

Uniform
Normal

Parametric distributions

All distributions

1 Unbiased estimation

A function δ is unbiased estimator for g(θ) if

Eθδ(X) = g(θ), for all θ ∈ Ω.

The bias is the estimation error.

1.1 Support of uniform distribution

Suppose that we want to estimate the parameter θ of the support [0, θ] of a uniform
random variable. An unbiased estimation satisfies:

Eθδ(X) =

∫ θ

0

δ(x)
1

θ
dx = g(θ), θ ≥ 0,
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or ∫ θ

0

δ(x)dx = θg(θ), θ ≥ 0.

Suppose that g is differentiable: by the FTC, we have

δ(x) =
d

dx
xg(x) = g(x) + xg′(x).

Remark 2. If g is the identity, then δ(x) = 2x is an unbiased estimator for θ.

1.2 Binomial distribution

Figure 1: From Wikipedia.

The binomial distribution with parameters n (natural number) and θ ∈ [0, 1] is the
PMF of a random variable counting the number of successes in n trials, probability of
success θ. This distribution has mean nθ and variance nθ(1− θ).

Suppose that we want to an unbiased estimator for g(θ) = θ(1 − θ). We need to
satisfy:

Eθδ(X) =
n∑
k=0

(
n

k

)
θk(1− θ)n−kδ(k) = θ(1− θ), θ ≥ 0. (1)

Introduce r = θ/(1− θ), we get

θk(1− θ)n−k = rk(1− θ)k θ
n−k

rn−k
=
rk(1− θ)kθnrk

θkrn
=
rkθn

rn
.
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Equation 1 then becomes:

n∑
k=0

(
n

k

)
rkδ(k) = θ(1− θ)r

n

θn
= r(1 + r)n−2 = r

n−2∑
k=0

(
n− 2

k

)
rk

=
n−2∑
k=1

(
n− 2

k − 1

)
rk,

where we used the Binomial theorem. Hence, an unbiased estimator for θ(1− θ) is

δ(k) =
k(n− k)

n(n− 1)
.

Q: What about the unbiased estimator for θ? Can it be obtained by solving δ(k) =
θ(1− θ).

1.3 Normal distribution

Let X1, . . . , Xn denote measurements of the quality of n items. These are i.i.d. from a
normal distribution with unknown mean µ and unknown variance σ2. We are given a
probability p, and we want to estimate the threshold u such that we can guarantee:

P(Xn+1 ≤ u) = p.

Recall that

P(Xn+1 ≤ u) = Φ

(
u− µ
σ

)
,

so that

u = µ+ σΦ−1(p).

Recall that the unbiased estimator for µ is the sample mean X̄. The unbiased estimator
for the variance is the sample variance S2 = 1

n−1

∑n
i=1(Xi − X̄n)2. However, the

unbiased estimator for σ is not S! The unbiased estimator for σ is1(
n− 1

2

)1/2
Γ((n− 1)/2)

Γ(n/2)
S.

Therefore, the unbiased estimator for u is

X̄n +

(
n− 1

2

)1/2
Γ((n− 1)/2)

Γ(n/2)
SΦ−1(p),

where Γ is the Gamma function, which appears in various probability distributions
(e.g., gamma and χ2).

1See Robert W. Keener’s “Theoretical Statistics: Topics for a Core Course,” Chapter 4.4.
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2 Maximum likelihood estimation

Let X1, X2, . . . , Xn be i.i.d. with probability density function fθ for an unknown θ ∈ Ω.
For a given ω ∈ Ω, the likelihood function is the product of the density fω evaluated
at the data points:

n∏
i=1

fω(Xi).

The maximum likelihood estimator is:

θ̂n ∈ arg max
ω∈Ω

n∏
i=1

fω(Xi).

This is in general a random variable. It can be computed once the data is observed.
Homework: How does θ̂n compare with the unknown θ? Try on simulated random

variables.

Example 2.1 (Binomial distribution). Consider a binomial random variable X with
unknown parameter θ and known parameter n. The likelihood function is(

n

X

)
θX(1− θ)n−X .

We can plot the above likelihood function as a function of p and solve for the maximum
likelihood estimate (cf. Figure 1).

Figure 2: From https://en.wikipedia.org.
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2.1 Normal distribution

Here, the parameter θ is (µ, σ). Observe that

max
ω∈Ω

n∏
i=1

fω(Xi) = max
ω∈Ω

(
1

2πσ2

)n/2
exp

(
−
∑n

i=1(Xi − µ)2

2σ2

)
= max

ω∈Ω
−(n/2) log(2πσ2)− (2σ2)−1

n∑
i=1

(Xi − µ)2

Take the derivative of the objective function with respect to µ and setting it equal to
zero, we get

0 +
2n
∑n

i=1(Xi − µ)

2σ2
= 0,

or µ̂n = 1
n

∑n
i=1Xi. Next, take the derivative of the objective function with respect to

σ and setting it equal to zero, we get

−n/σ +

∑n
i=1(Xi − µ)2

σ3
= 0,

or σ̂n = 1
n

∑n
i=1(Xi − µ)2. Hence, The maximum likelihood estimator is not the same

as the unbiased estimator.

3 References

• TOPE Chapter 2.

• Robert W. Keener’s “Theoretical Statistics: Topics for a Core Course.”
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