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We have seen different estimators for the unknown parameter of an unknown prob-
ability distribution that belongs to a known set.

In hypothesis testing, we have observations of a random variable, whose distrubition
is unknown, up to a set of distributions P = {Fp : 8 € Q}. A hypothesis is a subset H
of P. There are two decisions: accept or reject the hypothesis.

Example 0.1 (Pride and Prejudice). This situation is like that of the book Pride
and Prejudice: one hypothesis is that Darcy is despicable, the other is that Darcy
is lovely. You observe samples throughout the book, and must make a decision; the
initial samples may lead you astray.

1 Finite-valued distributions

Suppose that the observations X7, ..., X,, takes values in a finite set M = {1,...,m}.
Consider P = {F, Pi}, and the hypothesis Hy = {Fp}. The complement of the
hypothesis is called the alternative and denoted H;.

Let dy and d; denote accepting Hy or H; respectively. A nonrandomized decision
rule is a mapping § : M™ — {do,d;}. As in the study of control charts, there are two
types of errors associated with the two decisions and two hypotheses:

e When Xi,..., X, are distributed according to Py, but §(X,...,X,) = di;
e When Xi,..., X, are distributed according to P;, but §(Xy,...,X,) = do.

One objective of quality assurance or performance guarantees is to find decision rules
that tradeoff the two types of errors.

Let us write X = (Xy,...,X,).

For a given o > 0, one objective in the choice of ¢ is to minimize the probability
of one type of errors:

P1(0(X) = do),
subject to the contraint that the probability of error of the other type is below o > 0:
Py(6(X) =dy) < a.

In other words, we want to minimize false-alarms, subject to a constraint on missed
detections. This is equivalent to:

st Po(d(X) =
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Observe that a nonrandomized decision rule § is described by a subset Ss of M: it
is a lookup table of the form

r |0z)| P(X=2) | A(X=2)| B(X=2)/P (X =x)
1 dyp 0.1 0.2 0.5
2 dy 0.04 0.02 2
m"™ | dy 0.05 0.05 1

The subset S5 contains the elements of M where 0(x) = d; (reject Hp). Observe that

Therefore, we can find the optimal decision rule § by finding the subset A which solves
the following:

max ZPl(X =)

ACM
T€A

subject to ZPO(X =z) <a.
TEA

Remark 1 (Continuous-valued random variables). If X is a continuous-valued mea-
surement, and the probability distributions P, and P; have densities fy and f;, then
the optimization problem becomes

max / fi(x)dz
z€A

ACM

subject to / fo(z)dx < a.
€A

2 Solution approach

One method to solve the above optimization is to rank all z € M according to

Py(X =1x)
Pl(X 1‘)7

and adding elements to S5 until the threshold « is reached. More precisely, consider
the following decision rule. Given a threshold A > 0,

5,\(!%) — do it iﬁgﬁig > A
d; otherwise.




Lemma 2.1 (Neyman-Pearson). Let X be a random variable taking a finite set M of
values. Suppose that the rule 05 has error probability Po(dx(X) = di) = a. Then for
every other decision rule 6 with Py(6(X) = d1) < «, the probability of correct decision
18 not higher than 6y :

P (8(X) = dy) < Py (5x(X) = dy).

Proof. Let S denote the subset of M where 0, decides d;. Since AP;(X = ) — Py(X =
z) >0 for x € S and \P\(X =1x) — By(X =) <0 for x € S, we conclude that for
every other set A C M:

Z()‘P1<X =1z) — P(X =2)) > Z()‘Pl(X =) — Po(X =2)).
€S €A

By algebra, we obtain:

A (ZPl(X:x)—ZPl(X:x)> > R(X=12)-) Py(X =uz)

zE€S €A €S €A

=Po(6r(X) =di) = Y _ Po(X =z) >0,

T€EA

where the last inequality is by assumption. Hence, we can conclude that ) o P1(X =
r) > s PI(X =2). O

Remark 2 (Randomized rules). Mapping * € M to a probability distribution ¢(z),
then flip a coin with probability ¢(z) to determine accept or reject.

3 Example: finite distribution

Let Xi,...,X, be iid. Bernoulli distributed. Let H, correspond to the Bernoulli
distribution with p = 1/2. Let H; correspond to the Bernoulli distribution N (u, 1)
with p # 1/2. The likelihood ratio is

fO(xl,-..,:L‘n) _ 0.5"
f1($17...,$n) Hipxi<1—p)1_$i

_ o5 <1—p)2i‘”
(L=p»\ »p

Given a A > 0, the decision rule 9, has error probability

Po(éA(X):dl):P()( 05" (1_p>2imigA>.

(I=p\ »p

We can calculate this probability using the fact that the sum of Bernoulli random

variables ) . x; is a binomial random variable.
If we want Py(d,(X) = dy) < 0.1, what value should A\ take?
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4 Example: continuous distribution

Let X4,...,X, beiid. normally distributed. Let Hy correspond to the distribution
N(0,1). Let Hy correspond to the distribution N (u, 1) for a given p > 0. The likelihood
ratio is

folzr, ... xp) e T/2 | =T/

fil@y, ... x,) e @-w?/2  e—(zn—w)?/2

= exp (—% fo + % Z(:I:J - ,U)Q)

J

22 X
:exp(n'u DY )

2

Given a A > 0, the decision rule d, has error probability

Py (5, (X) = dy) = P, (exp (””2 - 22“ 2 Xi) < A) .

If we want Py(0,(X) = dy) < 0.1, what value should A take?

5 References

e Lehmann and Romano’s Testing Statistical Hypotheses.

e Robert W. Keener’s “Theoretical Statistics: Topics for a Core Course.”
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