INSE6300		Jia Yuan Yu
	6: Hypothesis Testing	
Concordia		November 26, 2017

We have seen different estimators for the unknown parameter of an unknown probability distribution that belongs to a known set.

In hypothesis testing, we have observations of a random variable, whose distribution is unknown, up to a set of distributions $\mathcal{P} = \{P_{\theta} : \theta \in \Omega\}$. A hypothesis is a subset H of \mathcal{P} . There are two decisions: accept or reject the hypothesis.

Example 0.1 (Pride and Prejudice). This situation is like that of the book Pride and Prejudice: one hypothesis is that Darcy is despicable, the other is that Darcy is lovely. You observe samples throughout the book, and must make a decision; the initial samples may lead you astray.

1 Finite-valued distributions

Suppose that the observations X_1, \ldots, X_n takes values in a finite set $M = \{1, \ldots, m\}$. Consider $\mathcal{P} = \{P_0, P_1\}$, and the hypothesis $H_0 = \{P_0\}$. The complement of the hypothesis is called the alternative and denoted H_1 .

Let d_0 and d_1 denote accepting H_0 or H_1 respectively. A nonrandomized decision rule is a mapping $\delta: M^n \to \{d_0, d_1\}$. As in the study of control charts, there are two types of errors associated with the two decisions and two hypotheses:

- When X_1, \ldots, X_n are distributed according to P_0 , but $\delta(X_1, \ldots, X_n) = d_1$;
- When X_1, \ldots, X_n are distributed according to P_1 , but $\delta(X_1, \ldots, X_n) = d_0$.

One objective of quality assurance or performance guarantees is to find decision rules that tradeoff the two types of errors.

Let us write $X = (X_1, \dots, X_n)$.

For a given $\alpha \geq 0$, one objective in the choice of δ is to minimize the probability of one type of errors:

$$\mathbb{P}_1(\delta(X)=d_0),$$

subject to the contraint that the probability of error of the other type is below $\alpha > 0$:

$$\mathbb{P}_0(\delta(X) = d_1) \le \alpha.$$

In other words, we want to minimize false-alarms, subject to a constraint on missed detections. This is equivalent to:

$$\max_{\delta} \quad \mathbb{P}_1(\delta(X) = d_1)$$
s.t.
$$\mathbb{P}_0(\delta(X) = d_1) \le \alpha.$$

Observe that a nonrandomized decision rule δ is described by a subset S_{δ} of M: it is a lookup table of the form

\overline{x}	$\delta(x)$	$P_0(X=x)$	$P_1(X=x)$	$P_0(X=x)/P_1(X=x)$
1	d_0	0.1	0.2	0.5
2	d_1	0.04	0.02	2
÷	:	:	:	:
m^n	d_0	0.05	0.05	1

The subset S_{δ} contains the elements of M where $\delta(x) = d_1$ (reject H_0). Observe that

$$\mathbb{P}_1(\delta(X) = d_1) = \sum_{x \in S_{\delta}} \mathbb{P}_1(X = x),$$

$$\mathbb{P}_0(\delta(X) = d_1) = \sum_{x \in S_{\delta}} \mathbb{P}_0(X = x).$$

Therefore, we can find the optimal decision rule δ by finding the subset A which solves the following:

$$\max_{A\subseteq M} \quad \sum_{x\in A} P_1(X=x)$$
 subject to
$$\sum_{x\in A} P_0(X=x) \le \alpha.$$

Remark 1 (Continuous-valued random variables). If X is a continuous-valued measurement, and the probability distributions P_0 and P_1 have densities f_0 and f_1 , then the optimization problem becomes

$$\max_{A \subseteq M} \quad \int_{x \in A} f_1(x) dx$$

subject to
$$\int_{x \in A} f_0(x) dx \le \alpha.$$

2 Solution approach

One method to solve the above optimization is to rank all $x \in M$ according to

$$\frac{P_0(X=x)}{P_1(X=x)},$$

and adding elements to S_{δ} until the threshold α is reached. More precisely, consider the following decision rule. Given a threshold $\lambda > 0$,

$$\delta_{\lambda}(x) = \begin{cases} d_0 & \text{if } \frac{P_0(X=x)}{P_1(X=x)} > \lambda, \\ d_1 & \text{otherwise.} \end{cases}$$

Lemma 2.1 (Neyman-Pearson). Let X be a random variable taking a finite set M of values. Suppose that the rule δ_{λ} has error probability $\mathbb{P}_0(\delta_{\lambda}(X) = d_1) = \alpha$. Then for every other decision rule δ with $\mathbb{P}_0(\delta(X) = d_1) \leq \alpha$, the probability of correct decision is not higher than δ_{λ} :

$$\mathbb{P}_1(\delta(X) = d_1) \le \mathbb{P}_1(\delta_{\lambda}(X) = d_1).$$

Proof. Let S denote the subset of M where δ_{λ} decides d_1 . Since $\lambda P_1(X=x) - P_0(X=x) \ge 0$ for $x \in S$ and $\lambda P_1(X=x) - P_0(X=x) < 0$ for $x \in S$, we conclude that for every other set $A \subseteq M$:

$$\sum_{x \in S} (\lambda P_1(X = x) - P_0(X = x)) \ge \sum_{x \in A} (\lambda P_1(X = x) - P_0(X = x)).$$

By algebra, we obtain:

$$\lambda \left(\sum_{x \in S} P_1(X = x) - \sum_{x \in A} P_1(X = x) \right) \ge \sum_{x \in S} P_0(X = x) - \sum_{x \in A} P_0(X = x)$$
$$= \mathbb{P}_0(\delta_{\lambda}(X) = d_1) - \sum_{x \in A} P_0(X = x) \ge 0,$$

where the last inequality is by assumption. Hence, we can conclude that $\sum_{x \in S} P_1(X = x) \ge \sum_{x \in A} P_1(X = x)$.

Remark 2 (Randomized rules). Mapping $x \in M$ to a probability distribution $\phi(x)$, then flip a coin with probability $\phi(x)$ to determine accept or reject.

3 Example: finite distribution

Let X_1, \ldots, X_n be i.i.d. Bernoulli distributed. Let H_0 correspond to the Bernoulli distribution with p = 1/2. Let H_1 correspond to the Bernoulli distribution $N(\mu, 1)$ with $p \neq 1/2$. The likelihood ratio is

$$\frac{f_0(x_1, \dots, x_n)}{f_1(x_1, \dots, x_n)} = \frac{0.5^n}{\prod_i p^{x_i} (1 - p)^{1 - x_i}}$$
$$= \frac{0.5^n}{(1 - p)^n} \left(\frac{1 - p}{p}\right)^{\sum_i x_i}$$

Given a $\lambda > 0$, the decision rule δ_{λ} has error probability

$$\mathbb{P}_0(\delta_{\lambda}(X) = d_1) = \mathbb{P}_0\left(\frac{0.5^n}{(1-p)^n} \left(\frac{1-p}{p}\right)^{\sum_i x_i} \le \lambda\right).$$

We can calculate this probability using the fact that the sum of Bernoulli random variables $\sum_{i} x_{i}$ is a binomial random variable.

If we want $\mathbb{P}_0(\delta_{\lambda}(X) = d_1) \leq 0.1$, what value should λ take?

4 Example: continuous distribution

Let X_1, \ldots, X_n be i.i.d. normally distributed. Let H_0 correspond to the distribution N(0,1). Let H_1 correspond to the distribution $N(\mu,1)$ for a given $\mu > 0$. The likelihood ratio is

$$\frac{f_0(x_1, \dots, x_n)}{f_1(x_1, \dots, x_n)} = \frac{e^{-x_1^2/2} \dots e^{-x_n^2/2}}{e^{-(x_1 - \mu)^2/2} \dots e^{-(x_n - \mu)^2/2}}$$

$$= \exp\left(-\frac{1}{2} \sum_i x_i^2 + \frac{1}{2} \sum_j (x_j - \mu)^2\right)$$

$$= \exp\left(\frac{n\mu^2 - 2\mu \sum_i X_i}{2}\right).$$

Given a $\lambda > 0$, the decision rule δ_{λ} has error probability

$$\mathbb{P}_0(\delta_{\lambda}(X) = d_1) = \mathbb{P}_0\left(\exp\left(\frac{n\mu^2 - 2\mu\sum_i X_i}{2}\right) \le \lambda\right).$$

If we want $\mathbb{P}_0(\delta_{\lambda}(X) = d_1) \leq 0.1$, what value should λ take?

5 References

- Lehmann and Romano's Testing Statistical Hypotheses.
- Robert W. Keener's "Theoretical Statistics: Topics for a Core Course."