6: Hypothesis Testing

Concordia

We have seen different estimators for the unknown parameter of an unknown probability distribution that belongs to a known set.

In hypothesis testing, we have observations of a random variable, whose distrubition is unknown, up to a set of distributions $\mathcal{P}=\left\{P_{\theta}: \theta \in \Omega\right\}$. A hypothesis is a subset H of \mathcal{P}. There are two decisions: accept or reject the hypothesis.

Example 0.1 (Pride and Prejudice). This situation is like that of the book Pride and Prejudice: one hypothesis is that Darcy is despicable, the other is that Darcy is lovely. You observe samples throughout the book, and must make a decision; the initial samples may lead you astray.

1 Finite-valued distributions

Suppose that the observations X_{1}, \ldots, X_{n} takes values in a finite set $M=\{1, \ldots, m\}$. Consider $\mathcal{P}=\left\{P_{0}, P_{1}\right\}$, and the hypothesis $H_{0}=\left\{P_{0}\right\}$. The complement of the hypothesis is called the alternative and denoted H_{1}.

Let d_{0} and d_{1} denote accepting H_{0} or H_{1} respectively. A nonrandomized decision rule is a mapping $\delta: M^{n} \rightarrow\left\{d_{0}, d_{1}\right\}$. As in the study of control charts, there are two types of errors associated with the two decisions and two hypotheses:

- When X_{1}, \ldots, X_{n} are distributed according to P_{0}, but $\delta\left(X_{1}, \ldots, X_{n}\right)=d_{1}$;
- When X_{1}, \ldots, X_{n} are distributed according to P_{1}, but $\delta\left(X_{1}, \ldots, X_{n}\right)=d_{0}$.

One objective of quality assurance or performance guarantees is to find decision rules that tradeoff the two types of errors.

Let us write $X=\left(X_{1}, \ldots, X_{n}\right)$.
For a given $\alpha \geq 0$, one objective in the choice of δ is to minimize the probability of one type of errors:

$$
\mathbb{P}_{1}\left(\delta(X)=d_{0}\right)
$$

subject to the contraint that the probability of error of the other type is below $\alpha>0$:

$$
\mathbb{P}_{0}\left(\delta(X)=d_{1}\right) \leq \alpha
$$

In other words, we want to minimize false-alarms, subject to a constraint on missed detections. This is equivalent to:

$$
\begin{aligned}
\max _{\delta} & \mathbb{P}_{1}\left(\delta(X)=d_{1}\right) \\
\text { s.t. } & \mathbb{P}_{0}\left(\delta(X)=d_{1}\right) \leq \alpha .
\end{aligned}
$$

Observe that a nonrandomized decision rule δ is described by a subset S_{δ} of M : it is a lookup table of the form

x	$\delta(x)$	$P_{0}(X=x)$	$P_{1}(X=x)$	$P_{0}(X=x) / P_{1}(X=x)$
1	d_{0}	0.1	0.2	0.5
2	d_{1}	0.04	0.02	2
\vdots	\vdots	\vdots	\vdots	\vdots
m^{n}	d_{0}	0.05	0.05	1

The subset S_{δ} contains the elements of M where $\delta(x)=d_{1}$ (reject H_{0}). Observe that

$$
\begin{aligned}
& \mathbb{P}_{1}\left(\delta(X)=d_{1}\right)=\sum_{x \in S_{\delta}} \mathbb{P}_{1}(X=x) \\
& \mathbb{P}_{0}\left(\delta(X)=d_{1}\right)=\sum_{x \in S_{\delta}} \mathbb{P}_{0}(X=x)
\end{aligned}
$$

Therefore, we can find the optimal decision rule δ by finding the subset A which solves the following:

$$
\begin{aligned}
\max _{A \subseteq M} & \sum_{x \in A} P_{1}(X=x) \\
\text { subject to } & \sum_{x \in A} P_{0}(X=x) \leq \alpha .
\end{aligned}
$$

Remark 1 (Continuous-valued random variables). If X is a continuous-valued measurement, and the probability distributions P_{0} and P_{1} have densities f_{0} and f_{1}, then the optimization problem becomes

$$
\begin{aligned}
\max _{A \subseteq M} & \int_{x \in A} f_{1}(x) \mathrm{d} x \\
\text { subject to } & \int_{x \in A} f_{0}(x) \mathrm{d} x \leq \alpha .
\end{aligned}
$$

2 Solution approach

One method to solve the above optimization is to rank all $x \in M$ according to

$$
\frac{P_{0}(X=x)}{P_{1}(X=x)},
$$

and adding elements to S_{δ} until the threshold α is reached. More precisely, consider the following decision rule. Given a threshold $\lambda>0$,

$$
\delta_{\lambda}(x)= \begin{cases}d_{0} & \text { if } \frac{P_{0}(X=x)}{P_{1}(X=x)}>\lambda \\ d_{1} & \text { otherwise }\end{cases}
$$

Lemma 2.1 (Neyman-Pearson). Let X be a random variable taking a finite set M of values. Suppose that the rule δ_{λ} has error probability $\mathbb{P}_{0}\left(\delta_{\lambda}(X)=d_{1}\right)=\alpha$. Then for every other decision rule δ with $\mathbb{P}_{0}\left(\delta(X)=d_{1}\right) \leq \alpha$, the probability of correct decision is not higher than δ_{λ} :

$$
\mathbb{P}_{1}\left(\delta(X)=d_{1}\right) \leq \mathbb{P}_{1}\left(\delta_{\lambda}(X)=d_{1}\right)
$$

Proof. Let S denote the subset of M where δ_{λ} decides d_{1}. Since $\lambda P_{1}(X=x)-P_{0}(X=$ $x) \geq 0$ for $x \in S$ and $\lambda P_{1}(X=x)-P_{0}(X=x)<0$ for $x \in S$, we conclude that for every other set $A \subseteq M$:

$$
\sum_{x \in S}\left(\lambda P_{1}(X=x)-P_{0}(X=x)\right) \geq \sum_{x \in A}\left(\lambda P_{1}(X=x)-P_{0}(X=x)\right) .
$$

By algebra, we obtain:

$$
\begin{aligned}
\lambda\left(\sum_{x \in S} P_{1}(X=x)-\sum_{x \in A} P_{1}(X=x)\right) & \geq \sum_{x \in S} P_{0}(X=x)-\sum_{x \in A} P_{0}(X=x) \\
& =\mathbb{P}_{0}\left(\delta_{\lambda}(X)=d_{1}\right)-\sum_{x \in A} P_{0}(X=x) \geq 0
\end{aligned}
$$

where the last inequality is by assumption. Hence, we can conclude that $\sum_{x \in S} P_{1}(X=$ $x) \geq \sum_{x \in A} P_{1}(X=x)$.
Remark 2 (Randomized rules). Mapping $x \in M$ to a probability distribution $\phi(x)$, then flip a coin with probability $\phi(x)$ to determine accept or reject.

3 Example: finite distribution

Let X_{1}, \ldots, X_{n} be i.i.d. Bernoulli distributed. Let H_{0} correspond to the Bernoulli distribution with $p=1 / 2$. Let H_{1} correspond to the Bernoulli distribution $N(\mu, 1)$ with $p \neq 1 / 2$. The likelihood ratio is

$$
\begin{aligned}
\frac{f_{0}\left(x_{1}, \ldots, x_{n}\right)}{f_{1}\left(x_{1}, \ldots, x_{n}\right)} & =\frac{0.5^{n}}{\prod_{i} p^{x_{i}}(1-p)^{1-x_{i}}} \\
& =\frac{0.5^{n}}{(1-p)^{n}}\left(\frac{1-p}{p}\right)^{\sum_{i} x_{i}}
\end{aligned}
$$

Given a $\lambda>0$, the decision rule δ_{λ} has error probability

$$
\mathbb{P}_{0}\left(\delta_{\lambda}(X)=d_{1}\right)=\mathbb{P}_{0}\left(\frac{0.5^{n}}{(1-p)^{n}}\left(\frac{1-p}{p}\right)^{\sum_{i} x_{i}} \leq \lambda\right)
$$

We can calculate this probability using the fact that the sum of Bernoulli random variables $\sum_{i} x_{i}$ is a binomial random variable.

If we want $\mathbb{P}_{0}\left(\delta_{\lambda}(X)=d_{1}\right) \leq 0.1$, what value should λ take?

4 Example: continuous distribution

Let X_{1}, \ldots, X_{n} be i.i.d. normally distributed. Let H_{0} correspond to the distribution $N(0,1)$. Let H_{1} correspond to the distribution $N(\mu, 1)$ for a given $\mu>0$. The likelihood ratio is

$$
\begin{aligned}
\frac{f_{0}\left(x_{1}, \ldots, x_{n}\right)}{f_{1}\left(x_{1}, \ldots, x_{n}\right)} & =\frac{e^{-x_{1}^{2} / 2} \ldots e^{-x_{n}^{2} / 2}}{e^{-\left(x_{1}-\mu\right)^{2} / 2} \ldots e^{-\left(x_{n}-\mu\right)^{2} / 2}} \\
& =\exp \left(-\frac{1}{2} \sum_{i} x_{i}^{2}+\frac{1}{2} \sum_{j}\left(x_{j}-\mu\right)^{2}\right) \\
& =\exp \left(\frac{n \mu^{2}-2 \mu \sum_{i} X_{i}}{2}\right) .
\end{aligned}
$$

Given a $\lambda>0$, the decision rule δ_{λ} has error probability

$$
\mathbb{P}_{0}\left(\delta_{\lambda}(X)=d_{1}\right)=\mathbb{P}_{0}\left(\exp \left(\frac{n \mu^{2}-2 \mu \sum_{i} X_{i}}{2}\right) \leq \lambda\right)
$$

If we want $\mathbb{P}_{0}\left(\delta_{\lambda}(X)=d_{1}\right) \leq 0.1$, what value should λ take?

5 References

- Lehmann and Romano's Testing Statistical Hypotheses.
- Robert W. Keener's "Theoretical Statistics: Topics for a Core Course."

