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We have seen different estimators for the unknown parameter of an unknown prob-
ability distribution that belongs to a known set.

In hypothesis testing, we have observations of a random variable, whose distrubition
is unknown, up to a set of distributions P = {Pθ : θ ∈ Ω}. A hypothesis is a subset H
of P . There are two decisions: accept or reject the hypothesis.

Example 0.1 (Pride and Prejudice). This situation is like that of the book Pride
and Prejudice: one hypothesis is that Darcy is despicable, the other is that Darcy
is lovely. You observe samples throughout the book, and must make a decision; the
initial samples may lead you astray.

1 Finite-valued distributions

Suppose that the observations X1, . . . , Xn takes values in a finite set M = {1, . . . ,m}.
Consider P = {P0, P1}, and the hypothesis H0 = {P0}. The complement of the
hypothesis is called the alternative and denoted H1.

Let d0 and d1 denote accepting H0 or H1 respectively. A nonrandomized decision
rule is a mapping δ : Mn → {d0, d1}. As in the study of control charts, there are two
types of errors associated with the two decisions and two hypotheses:

• When X1, . . . , Xn are distributed according to P0, but δ(X1, . . . , Xn) = d1;

• When X1, . . . , Xn are distributed according to P1, but δ(X1, . . . , Xn) = d0.

One objective of quality assurance or performance guarantees is to find decision rules
that tradeoff the two types of errors.

Let us write X = (X1, . . . , Xn).
For a given α ≥ 0, one objective in the choice of δ is to minimize the probability

of one type of errors:

P1(δ(X) = d0),

subject to the contraint that the probability of error of the other type is below α > 0:

P0(δ(X) = d1) ≤ α.

In other words, we want to minimize false-alarms, subject to a constraint on missed
detections. This is equivalent to:

max
δ

P1(δ(X) = d1)

s.t. P0(δ(X) = d1) ≤ α.
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Observe that a nonrandomized decision rule δ is described by a subset Sδ of M : it
is a lookup table of the form

x δ(x) P0(X = x) P1(X = x) P0(X = x)/P1(X = x)
1 d0 0.1 0.2 0.5
2 d1 0.04 0.02 2
...

...
...

...
...

mn d0 0.05 0.05 1

The subset Sδ contains the elements of M where δ(x) = d1 (reject H0). Observe that

P1(δ(X) = d1) =
∑
x∈Sδ

P1(X = x),

P0(δ(X) = d1) =
∑
x∈Sδ

P0(X = x).

Therefore, we can find the optimal decision rule δ by finding the subset A which solves
the following:

max
A⊆M

∑
x∈A

P1(X = x)

subject to
∑
x∈A

P0(X = x) ≤ α.

Remark 1 (Continuous-valued random variables). If X is a continuous-valued mea-
surement, and the probability distributions P0 and P1 have densities f0 and f1, then
the optimization problem becomes

max
A⊆M

∫
x∈A

f1(x)dx

subject to

∫
x∈A

f0(x)dx ≤ α.

2 Solution approach

One method to solve the above optimization is to rank all x ∈M according to

P0(X = x)

P1(X = x)
,

and adding elements to Sδ until the threshold α is reached. More precisely, consider
the following decision rule. Given a threshold λ > 0,

δλ(x) =

{
d0 if P0(X=x)

P1(X=x)
> λ,

d1 otherwise.
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Lemma 2.1 (Neyman-Pearson). Let X be a random variable taking a finite set M of
values. Suppose that the rule δλ has error probability P0(δλ(X) = d1) = α. Then for
every other decision rule δ with P0(δ(X) = d1) ≤ α, the probability of correct decision
is not higher than δλ:

P1(δ(X) = d1) ≤ P1(δλ(X) = d1).

Proof. Let S denote the subset of M where δλ decides d1. Since λP1(X = x)−P0(X =
x) ≥ 0 for x ∈ S and λP1(X = x) − P0(X = x) < 0 for x ∈ S, we conclude that for
every other set A ⊆M :∑

x∈S

(λP1(X = x)− P0(X = x)) ≥
∑
x∈A

(λP1(X = x)− P0(X = x)).

By algebra, we obtain:

λ

(∑
x∈S

P1(X = x)−
∑
x∈A

P1(X = x)

)
≥
∑
x∈S

P0(X = x)−
∑
x∈A

P0(X = x)

= P0(δλ(X) = d1)−
∑
x∈A

P0(X = x) ≥ 0,

where the last inequality is by assumption. Hence, we can conclude that
∑

x∈S P1(X =
x) ≥

∑
x∈A P1(X = x).

Remark 2 (Randomized rules). Mapping x ∈ M to a probability distribution φ(x),
then flip a coin with probability φ(x) to determine accept or reject.

3 Example: finite distribution

Let X1, . . . , Xn be i.i.d. Bernoulli distributed. Let H0 correspond to the Bernoulli
distribution with p = 1/2. Let H1 correspond to the Bernoulli distribution N(µ, 1)
with p 6= 1/2. The likelihood ratio is

f0(x1, . . . , xn)

f1(x1, . . . , xn)
=

0.5n∏
i p

xi(1− p)1−xi

=
0.5n

(1− p)n

(
1− p
p

)∑
i xi

Given a λ > 0, the decision rule δλ has error probability

P0(δλ(X) = d1) = P0

(
0.5n

(1− p)n

(
1− p
p

)∑
i xi

≤ λ

)
.

We can calculate this probability using the fact that the sum of Bernoulli random
variables

∑
i xi is a binomial random variable.

If we want P0(δλ(X) = d1) ≤ 0.1, what value should λ take?
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4 Example: continuous distribution

Let X1, . . . , Xn be i.i.d. normally distributed. Let H0 correspond to the distribution
N(0, 1). LetH1 correspond to the distributionN(µ, 1) for a given µ > 0. The likelihood
ratio is

f0(x1, . . . , xn)

f1(x1, . . . , xn)
=

e−x
2
1/2 . . . e−x

2
n/2

e−(x1−µ)2/2 . . . e−(xn−µ)2/2

= exp

(
−1

2

∑
i

x2i +
1

2

∑
j

(xj − µ)2

)

= exp

(
nµ2 − 2µ

∑
iXi

2

)
.

Given a λ > 0, the decision rule δλ has error probability

P0(δλ(X) = d1) = P0

(
exp

(
nµ2 − 2µ

∑
iXi

2

)
≤ λ

)
.

If we want P0(δλ(X) = d1) ≤ 0.1, what value should λ take?
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