CONCORDIA UNIVERSITY FACULTY OF ENGINEERING AND COMPUTER SCIENCE DEPARTMENT OF MECHANICAL ENGINEERING

PROBLEM I [12 pts]

A frictionless piston shown in the figure below has a mass of 16 kg . Heat is added until the temperature reaches $400^{\circ} \mathrm{C}$. If the initial quality is 20%, find:
a) the initial pressure,
b) the mass of the water,
c) the quality when the piston hits the stops,
d) the work done.

P_{1}	120 GPa
m_{2}	0.001373 Kg
x_{2}	0.32
\mathbf{W}	28.3 Jl

PROBLEM II [12 pts]
Two kilograms of air experiences the three-process cycle in the figure below. Calculate the net work.

PROBLEM III [6 pts]

1. Express mathematically the variation of pressure with depth for an ideal gas.
2. Demonstrate that the compressive/expensive work (like in piston-cylinder assembly), can be computed as: $\int P d V$
3. What is thermodynamic equilibrium?

CONSTANTS FOR ALL PROBLEMS: $\mathbf{P}_{\mathrm{atm}}=100 \mathrm{kPa}$ For air: $\mathbf{R}=0.2870 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$

TABLEA-5

TABLE

Ṡaturated water-Pressure table

		Specific volume,\qquad $\mathrm{m}^{3} / \mathrm{kg}$		Internal energy, king			Enthaipy, $\mathrm{kJ} / \mathrm{kg}$			Entropy, $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$		
Press., PkPa	Sat. temp., $T_{\text {sat }}{ }^{\circ} \mathrm{C}$	Sat. liquid, v_{f}	Sat. vapor, v_{g}	Sat. liquid, u_{f}	Evap., $u_{f g}$	Sat. vapor, u_{g}	Sat. liquid, h_{f}	Evap., $h_{f g}$	Sat. vapor, h_{g}	Sat. liquid, s_{f}	Evap., $s_{t g}$	Sat. vapor, S_{B}
1.0	6.97	0.001000	129	02	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.9749
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	8.8270
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	0.2606	8.4621	8.7227
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302	8.6421
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.5765
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.3938
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.2501
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.1488
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8302
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.7675
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
5	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.3589
101.325	99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
5	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0525
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207
300	133.52	0.001073	0.60582	561.11	1982.1	2543.2	561.43	2163.5	2724.9	1.6717	5.3200	6.9917
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6	1.7005	5.2645	6.9650
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0	1.7274	5.2128	6.9402
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.9171
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.6	2133.4	273	1.7765	5.1191	6.8955
450	147.90	0.001088	0.41392	622.65	1934.5	2557.1	623.14	2120.3	2743.4	1.8205	5.0356	6.8561
500	151.83	0.001093	0.37483	639.54	1921.2	2560.7	640.09	2108.0	2748.1	1.8604	4.9603	6.8207
550	155.46	0.001097	0.34261	655.16	1908.8	2563.9	655.77	2096.6	2752.4	1.8970	4.8916	6.7886
600	158.83	0.001101	0.31560	669.72	1897.1	2566.8	670.38	2085.8	2756.2	1.9308	4.8285	6.7593
650	161.98	0.001104	0.29260	683.37	1886.1	2569.4	684.08	2075.5	2759.6	1.9623	4.7699	6.7322
700	164.95	0.001108	0.27278	696.23	1875.6	2571.8	697.00	2065.8	2762.8	1.9918	4.7153	6.7071
750	167.75	0.001111	0.25552	708.40	1865.6	2574.0	709.24	2056.4	2765	2.0195	4.6642	6.683

CONCORDIA UNIVERSITY FACULTY OF ENGINEERING AND COMPUTER SCIENCE DEPARTMENT OF MECHANICAL ENGINEERING

PROBLEM I [12 pts]

A piston-cylinder device with a set of stops initially contains 0.3 kg of steam at 1.0 MPa and $400^{\circ} \mathrm{C}$. The location of the stops corresponds to 60 percent of the initial volume. Now the steam is cooled.
Determine the compression work if the final state is:
a) 1.0 MPa and $250^{\circ} \mathrm{C}$,
b) 500 kPa
c) Also determine the temperature at the final state in part (b).

W (a)	22.16 kJ
$W(b)$	36.79 kJ
$\mathrm{~T}_{2}$	$151.8^{\circ} \mathrm{C}$

PROBLEM II [12 pts]

Six grams of air is contained in the cylinder shown in the figure below. The air is heated until the piston raises 50 mm . The spring just touches the piston initially. Calculate:
a) the temperature when the piston leaves the stops,
b) the work done.

T_{1}	530 K
\mathbf{W}	0.804 kJ

PROBLEM III [6 pts]

- Explain physically why C_{p} is higher than C_{v} for an ideal gas?
- Demonstrate that for an ideal gas: $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$.
- What does the area under a Cp .vs T graph represents?

CONSTANTS FOR ALL PROBLEMS: $\mathbf{P}_{\mathrm{atm}}=100 \mathrm{kPa}$ For air: $\mathbf{R}=0.2870 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$

918 I Thermodynamics

TABLE A-5												
Saturated water-Pressure table												
		Specific volume, $\mathrm{m}^{3} / \mathrm{kg}$		Internal energy,\qquad			Enthalpy, $\mathrm{kJ} / \mathrm{kg}$			Entropy, kJ/kg • K		
Press., PkPa	Sat. temp., $T_{\text {sat }}{ }^{\circ} \mathrm{C}$	Sat. liquid, v_{f}	Sat. vapor, v_{g}	Sat. liquid, u_{f}	Evap., $u_{f g}$	Sat. vapor, u_{g}	Sat. liquid, h_{f}	Evap., $h_{t g}$	Sat. vapor, h_{s}	Sat. liquid, s_{f}	Evap., $s_{\text {和 }}$	Sat. vapor, 5_{8}
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.9749
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	8.8270
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	0.2606	8.4621	8.7227
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302	8.6421
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.5765
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.3938
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.2501
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.1488
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8302
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.7675
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.3589
101.325	99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0525
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207
300	133.52	0.001073	0.60582	561.11	1982.1	2543.2	561.43	2163.5	2724.9	1.6717	5.3200	6.9917
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6	1.7005	5.2645	6.9650
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0	1.7274	5.2128	6.9402
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.9171
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738.1	1.7765	5.1191	6.8955
450	147.90	0.001088	0.41392	622.65	1934.5	2557.1	623.14	2120.3	2743.4	1.8205	5.0356	6.8561
500	151.83	0.001093	0.37483	639.54	1921.2	2560.7	640.09	2108.0	2748.1	1.8604	4.9603	6.8207
550	155.46	0.001097	0.34261	655.16	1908.8	2563.9	655.77	2096.6	2752.4	1.8970	4.8916	6.7886
600	158.83	0.001101	0.31560	669.72	1897.1	2566.8	670.38	2085.8	2756.2	1.9308	4.8285	6.7593
650	16198	0.001104	0.29260	683.37	1886.1	2569.4	684.08	2075.5	2759.6	1.9623	4.7699	6.7322

2250
2500 3000
3500
4000
6000
7000
8000
9000
10,000 11,000 12,000
13,000
14,000 15,000
16,000
17,000
18,000
19,000
20,000
21,000 22.00 n

TABLE A-6

Superheated water (Continued)

$\begin{aligned} & T \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\mathrm{m}^{3} / \mathrm{kg}$	$\begin{aligned} & u \\ & \mathrm{k} / \mathrm{kg} \end{aligned}$	h $\mathrm{kJ} / \mathrm{kg}$	$\begin{aligned} & \mathrm{s} \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \end{aligned}$	$\begin{aligned} & v \\ & \mathrm{~m}^{3} \mathrm{~kg} \end{aligned}$	$\begin{aligned} & u \\ & \mathrm{~kJ} / \mathrm{kg} \end{aligned}$	h $\mathrm{kJ} / \mathrm{kg}$	$\begin{aligned} & s \\ & \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \end{aligned}$	$\begin{aligned} & v \\ & \mathrm{~m}^{3} / \mathrm{kg} \end{aligned}$	$\begin{aligned} & u \\ & \mathrm{~kJ} / \mathrm{kg} \end{aligned}$	$\begin{aligned} & h \\ & \mathrm{~kJ} / \mathrm{kg} \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{kJg} \cdot \mathrm{~K} \end{aligned}$
	$P=1.00 \mathrm{MPa}(179.88 \mathrm{C})$				$P=1.20 \mathrm{MPa}\left(187.96{ }^{\circ} \mathrm{C}\right)$				$P=1.40 \mathrm{MPa}\left(195.044^{\circ} \mathrm{C}\right.$			
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326	258	2783.8	6.5217	0.14078	2591.8	2788.9	6.4675
200	0.20602	2622.3	2828.3	6.6956	0.16934	2612.9	2816.1	6.5909	0.14303	2602.7	2803.0	6.4975
250	0.23275	2710.4	2943.1	6.9265	0.19241	2704.7	2935.6	6.8313	0.16356	2698.9	2927.9	6.7488
300	0.25799	2793.7	3051.6	7.1246	0.21386	2789.7	3046.3	7.0335	0.18233	2785.7	3040.9	6.9553
350	0.28250	2875.7	3158.2	7.3029	0.23455	2872.7	3154.2	7.2139	0.20029	2869.7	3150.1	7.137
400	0.30661	2957.9	3264.5	7.4670	0.25482	2955.5	3261.3	7.3793	0.21782	2953.1	3258.1	7.3046
00	0.35411	3125.0	3479.1	7.7642	0.29464	3123.4	3477.0	7.6779	0.25216	3121.8	3474.8	7.6047
600	0.40111	3297.5	3698.6	8.0311	0.33395	3296.3	3697.0	7.9456	0.28597	3295.1	3695.5	7.8730
700	0.44783	3476.3	3924.1	8.2755	0.37297	3475.3	3922.9	8.1904	0.31951	3474.4	3921.7	8.1183
000	0.49438	3661.7	4156.1	8.5024	0.41184	3661.0	4155.2	8.4176	0.35288	3660.3	4154.3	8.3458
900	0.54083	3853.9	4394.8	8.7150	0.45059	3853.3	4394.0	8.6303	0.38614	3852.7	4393.3	8.55
1000	0.58721	4052.7	4640.0	8.9155	0.48928	4052.2	4639.4	8.8310	0.41933	4051.7	4638.8	8.7595
1100	0.63354	4257.9	4891	9.1057	0.52792	4257.5	4891.0	9.0212	10.45247	4257.0	4890.5	8.9497

FACULTY OF ENGINEERING AND COMPUTER SCIENCE DEPARTMENT OF MECHANICAL ENGINEERING

ENGR-251 THERMODYNAMICS I

Student's Name:
I.D.:

Duration 60 minutes

PROBLEM 1

$0.1 \mathrm{~m}^{3}$ of an ideal gas is compressed from a pressure of 120 kPa and temperature of $25^{\circ} \mathrm{C}$ to a pressure of 1.2 MPa according to the law PV ${ }^{1.2}=$ constant. Determine:

1- The work transferred during the compression.
Note: Demonstrate the formulation of the work for a polytropic process (4 points), otherwise use the formulation:
Work for a polytropic process: $W=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n}$
2- The change in internal energy.
3- The heat transferred during the compression.
Assume: $\mathrm{C}_{\mathrm{v}}=0.72 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and $\mathrm{R}=0.285 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$

Formulas:

Ideal gas law: $P v=R T$
First law of thermodynamics for a closed system: $\Delta U=Q-W$ (neglecting $\Delta \mathrm{E}_{\mathrm{k}}$ and $\Delta \mathrm{E}_{\mathrm{p}}$)
Specific heat at constant pressure: $C_{p}=\frac{\partial h}{\partial T}$
Specific heat at constant volume: $C_{v}=\frac{\partial u}{\partial T}$

PROBLEM 2

Water contained in a piston-cylinder assembly undergoes two processes in series from an initial state where the pressure is 1 MPa and the temperature is $400^{\circ} \mathrm{C}$.

Process 1-2: The water is cooled as it is compressed at a constant pressure of 1 MPa to the saturated vapor state.
Process 2-3: The water is cooled at constant volume to $150^{\circ} \mathrm{C}$.

1- For the overall process determine the work, in $\mathrm{kJ} / \mathrm{kg}$.
2- For the overall process determine the heat transfer, in $\mathrm{kJ} / \mathrm{kg}$.

Formulas:

Work: $W=\int_{\text {initial state }}^{\text {final state }} P d v$
First law of thermodynamics for a closed system: $\Delta U=Q-W$ (neglecting $\Delta \mathrm{E}_{k}$ and $\Delta \mathrm{E}_{\mathrm{p}}$)

CONCORDIA UNIVERSITY
 FACULTY OF ENGINEERING AND COMPUTER SCIENCE DEPARTMENT OF MECHANICAL ENGINEERING

Student's Name:

I.D.:

PROBLEM I [40 pt]

Carbon dioxide contained in a piston-cylinder device is compressed from 0.3 to $0.1 \mathrm{~m}^{3}$. During the process, the pressure and the volume are related by $\mathrm{P}=\mathrm{a} \mathrm{V}^{-2}$, where $\mathrm{a}=8 \mathrm{kPa} \mathrm{m}^{6}$.

- Plot the process on a P-v diagram.
- Calculate the work done on the carbon dioxide during this process.

PROBLEM II [40 pt]

Air is compressed from 101.325 kPa and $17^{\circ} \mathrm{C}$ to a pressure of 1000 kPa while being cooled at a rate of $25 \mathrm{~kJ} / \mathrm{kg}$ by circulating water through the compressor casing. The volume flow rate of the air at the inlet conditions is $142 \mathrm{~m}^{3} / \mathrm{min}$, and the power input to the compressor is 522 kW . Determine:
a- The mass flow rate of the air in kg / s.
b- The temperature at the compressor exit.

PROBLEM III [20 pt]

- Explain physically why C_{p} is higher than C_{v} for an ideal gas?
- Express mathematically the variation of pressure with depth for an ideal gas.
- Show under which conditions, the total heat provided to a gas in a piston-cylinder assembly is converted into work?

CONSTANTS FOR AIR

```
R = 0.287 kJ/kg K
C
C
```


CONCORDIA UNIVERSITY
 FACULTY OF ENGINEERING AND COMPUTER SCIENCE DEPARTMENT OF MECHANICAL ENGINEERING

Student's Name:

I.D.:

PROBLEM I [40 pt]

A piston-cylinder device whose piston is resting on top of a set of stops initially contains 0.5 kg of helium gas at 100 kPa and $25^{\circ} \mathrm{C}$. The mass of the piston is such that 500 kPa of pressure is required to rise it. How much heat (in kJ) must be transferred to the helium before the piston starts rising?

Heat	

PROBLEM II [40 pt]

Argon gas enters an adiabatic turbine steadily at 900 kPa and $450^{\circ} \mathrm{C}$ with a velocity of $80 \mathrm{~m} / \mathrm{s}$ and leaves at 150 kPa with a velocity of $150 \mathrm{~m} / \mathrm{s}$. The inlet area of the turbine is $60 \mathrm{~cm}^{2}$. If the power output of the turbine is 250 kW.
Determine the exit temperature of the argon?

PROBLEM III [20 pt]

- Explain physically why C_{p} is higher than C_{v} for an ideal gas?
- Determine the expression of the compressive/expansion work when the process is: a) isobaric; b) isochoric; c) isothermal (consider an ideal gas); d) polytropic.
- Knowing that for an ideal gas the internal energy is only a function of temperature, show then that the enthalpy is also only a function of temperature.

CONSTANTS FOR HELIUM	CONSTANTS FOR ARGON
$C_{v}=3.1156 ~ k J / k g ~ K ~$	$C_{v}=0.3122 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$C_{p}=5.1926 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$	$C_{p}=0.5203 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$

