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Abstract. In order to provide cyber environment security, analysts need
to analyze a large number of security events on a daily basis and take
proper actions to alert their clients of potential threats. The increasing
cyber traffic drives a need for a system to assist security analysts to relate
security events to known attack patterns. This paper describes the en-
hancement of an existing Intrusion Detection System (IDS) with the au-
tomatic mapping of snort alert messages to known attack patterns. The
approach relies on pre-clustering snort messages before computing their
similarity to known attack patterns in Common Attack Pattern Enumer-
ation and Classification (CAPEC). The system has been deployed in our
partner company and when evaluated against the recommendations of
two security analysts, achieved an f-measure of 64.57%.
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1 Introduction

With the increasing dependence on computer infrastructure, cyber security has
become a major concern for organizations as well as individuals. Cyber security
refers to the collection of tools, approaches and technologies which are used to
prevent unauthorized behavior in cyber environments [1]. In order to detect and
prevent harmful behaviour, sensors are typically installed in computer networks.
Each sensor is equipped with several security systems, such as Intrusion Detec-
tion Systems (IDS) or Asset Detection Tools [2]. These systems perform network
traffic analysis in real-time, detect suspicious activities and generates security
events. Snort [3] is a widely used IDS system installed in many sensors [4]. By
capturing and decoding suspicious TCP/IP packets, snort generates messages
regarding network traffic data to facilitate the task of security analysts to recog-
nize suspicious behaviours and act accordingly [3]. Fig 1 shows seven examples
snort messages.
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1. APP-DETECT Apple OSX Remote Mouse usage
2. FILE-IDENTIFY RealPlayer skin file attachment detected
3. SQL generic sql exec injection attempt - GET parameter
4. FILE-OTHER XML exponential entity expansion attack attempt
5. MALWARE-OTHER Win.Exploit.Hacktool suspicious file download
6. BROWSER-PLUGINS MSN Setup BBS 4.71.0.10 ActiveX object access
7. BROWSER-IE Microsoft Internet Explorer asynchronous code execution attempt

Fig. 1. Examples of 7 snort messages

Recognizing suspicious behaviours from snort messages is difficult as the mes-
sages are typically short. Thus, today the task is still mostly performed by human
security experts. However, because of the increasing volume of network traffic,
the workload of security analysts has become much heavier and the possibility
of not detecting a security risk has become critical. In order to allow security
analysts to better assess risks, the automatic mapping of security events to at-
tack patterns is desired. The goal of this paper is to enhance the performance
of an existing Intrusion Detection System with the automatic mapping of snort
alert messages to known attack patterns.

2 Previous Work

An Intrusion Detection System (IDS) is an essential part of a typical Security
Information and Event Management System (SIEM). An IDS is responsible for
detecting unauthorized behaviours by matching security events to known net-
work and host-based attack patterns stored in knowledge bases [5]. If an attack
pattern does not exist in the knowledge base, the IDS cannot detect the related
malicious behaviour [6]. Therefore, it is necessary to keep this knowledge base
up to date as new attack patterns are discovered. Much research in this area has
thus focused on the automatic curation of knowledge bases of attack patterns.

As many novel attack patterns or cyber security related concepts are dis-
cussed online in forums and chat rooms (e.g. [7]), several natural language pro-
cessing techniques have been proposed to extract security concepts from these
unstructured texts (e.g. [8–12]). In particular, a system to extract cyber security
concepts from semi-structured and unstructured texts, such as online documents
and the National Vulnerability Database (NVD) [13], was introduced in [7]. It
consists of an SVM classifier to identify cyber security related texts, a Wikitol-
ogy [14] and a named entity tagger [15] to extract security concepts [10,12,16].

In addition to work on mining known attack patterns from the Web, the re-
search community has also curated and made publicly available several resources
of vulnerability, cyber attack patterns and security threats. These include the



Semantic Mapping of Security Events to Known Attack Patterns 3

U.S. National Vulnerability Database (NVD) [13], Common Weakness Enumer-
ation (CWE) [17] and Common Attack Pattern Enumeration and Classification
(CAPEC) [18]. The CWE inventories software weakness types; while the NVD
is built upon the CWE to facilitate data access. On the other hand, CAPEC not
only provides common vulnerabilities, but also contains attack steps that hack-
ers mostly use to explore software weaknesses as well as the suggested mitigation.

To our knowledge, not many novel techniques have been proposed to auto-
matically match security events messages to known attack patterns based di-
rectly on their natural language descriptions. [4] proposed a system based on a
KNN classifier to address this issue. However no formal evaluation of the quality
of the output is provided. Our work builds upon this work by formally evaluating
its performance with real cyber security data and enhancing it to improve its
recall.

3 Original System

The approach of [4] was used as our baseline system. Its purpose is to map
security events to known attack patterns in CAPEC [18] based solely on their
natural language descriptions.

3.1 Description of the Original System

The system of [4] uses snort alert messages as input and tries to identify the
n most relevant CAPEC fields to propose to cyber security analysts. CAPEC
(Common Attack Pattern Enumeration and Classification [18]) is a publicly
available knowledge base containing 508 known attack patterns. As shown in
Fig. 2, an attack pattern in CAPEC is composed of various fields that are de-
scribed in natural language. These include a Summary of the attack pattern,
Attack Steps Survey, Experiments, Attack Prerequisites etc. On average, each
CAPEC pattern contains 10 fields for a total of 5,096 fields.

Since the snort messages are relatively short (only 8 tokens on average), not
much information can be extracted from them to be used in building automated
model for detecting the attacks. To overcome this limitation, they are first ex-
panded by replacing common domain keywords with a richer description. To
do this, security experts analyzed 32,246 snort alert messages, and identified
68 important terms. For each term, they then wrote a description of about 5
words. Figure 3.2 shows the expansion of 3 such terms. By replacing domain
terms in the original snort messages with their longer descriptions, the length
of each snort message increased from an average of 8 words to an average of 15
words. To map these expanded security events to specific fields in CAPEC, both
snort messages and CAPEC fields are pre-processed (tokenized, stop words re-
moved and stemmed), and unigrams, bigrams and trigrams are used as features.
Frequency variance (FV) is then used to filter out features that appear either
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too often or too rarely. Using TF-IDF and the cosine similarity, the distance
between snort messages and each CAPEC field is then computed. Finally, the 3
most similar CAPEC fields that have a distance smaller than some threshold t,
are selected.

Fig. 2. Example of a CAPEC attack pattern

3.2 Evaluation of the Original System

In [4], the system was only evaluated in terms of coverage, i.e. the number of
snort messages that were matched to at least one CAPEC field. However, the
quality of the recommended CAPEC fields were not evaluated. To address this
issue, we created a gold-standard dataset by asking 2 cyber security experts to
evaluate the mapping of 3,165 snort messages mapped to at most 5 CAPEC
fields. This gave rise to 16,826 mappings. Each mapping was annotated by the
2 experts with one of 3 levels of quality:

– a correct mapping: the analysts could use the CAPEC field directly as a
solution,

– an acceptable mapping: the analysts could use the CAPEC field in order to
generate a solution, or

– a wrong mapping: the recommended CAPEC field was not useful.



Semantic Mapping of Security Events to Known Attack Patterns 5

Term Expanded Description

file-identify file extension file magic or header found in the traffic
server-webapp web based applications on servers
exploit-kit exploit kit activity

Fig. 3. Examples of Domain Term Expansion

Table 3.2 shows statistics of the gold-standard. As the table shows, 9,222
mappings were labelled as correct; 5,496 mappings were tagged as acceptable
and 2,108 mapping were judged wrong.

Table 1. Statistics of the gold-standard dataset

Tag Number of Mappings

Correct 9,222
Acceptable 5,496
Wrong 2,108
Total 16,826

The output generated by the original system was then evaluated against the
gold-standard dataset. We used the same 3,165 snort messages and evaluated the
overlapping answers; mappings provided by the system that were not included
in the gold-standard data were therefore not evaluated.

Following the recommendation of our security analysts, recall was deemed
more important than precision. Indeed, in this domain, it is preferable to alert
clients too often with false alarms than to miss potential cyber threats. To ac-
count for this, we used lenient definitions of precision (PL) and recall (RL)
where acceptable mappings are considered correct. In addition, two values of β
were used to compute the f-measure: β = 1, and β = 0.5, where recall is more
important than precision. This gave rise to two f-measures: FL

1 and FL
0.5.

When evaluated against the gold-standard dataset, the original system3 achieved
a lenient recall RL of 35.22%, a lenient precision of PL of 97.96%, an FL

0.5 of
72.23% and an FL

1 of 51.82%. Although precision was high, recall was particu-
larly low.

3 with the parameters FV = 0.98 and t = 0 (see Sect. 3.1).
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4 Enhancing the Original System

After analyzing the result of the original system, we noticed that many snort
messages share similar content, hence it would seem natural that they be mapped
to similar CAPEC fields. To ensure this, we experimented with clustering the
snort messages prior to mapping them. Each snort message within a cluster is
then mapped to the same CAPEC field. Specifically, snort messages are first ex-
panded (see Sect. 3.1), then clustered into n clusters using k-means clustering.
All messages in the same cluster are then concatenated into a single long mes-
sage, and the resulting longer message is then mapped using the same approach
as in the original system.

We experimented with various numbers of clusters (n) which as a side-effect
also varied the length of the resulting message to map. The trade-off is that
a larger number of clusters (n) should lead to a greater number of possible
CAPEC fields being mapped to each snort message, but should also lead to a
shorter message and sparser representation.

4.1 Results and Analysis

Table 4.1 shows the results of the system with and without clustering as part
of the pre-processing for various values of n. As shown in Table 4.1, the best
configurations in terms of f-measure are when using clustering with values of n
between 500 and 3000. With these values, the results are not statistically differ-
ent, with FL

0.5 ≈ 80% and FL
1 ≈ 64%. Recall itself has reached ≈ 48% from a

low 35.22% in the original system. Recall from Sect. 3 that the average length of
CAPEC fields is 214 words. Hence using n = 2000 allows us to bring the average
size of snort messages (235 words) at par with the size of CAPEC fields.

Table 4.1 also shows the trade-off between the use of a smaller number of
clusters (smaller n) which leads to a smaller number of possible output CAPEC
fields and the use of a larger n which leads to a sparser snort representation.
Hence leading to lower f-measures with n ≥ 2000 and n ≤ 100.

5 Conclusion and Future Work

In this paper, we described an enhancement to the approach proposed by [4] to
maps security events to related attack fields in CAPEC. We have shown that by
expanding domain terms and clustering snort messages prior to mapping them,
the recall of the approach can be increased significantly without much loss in
precision.

As future work, we plan to investigate the use of automatic snort expansion,
by using existing knowledge bases such as the Common Weakness Enumera-
tion [17] rather than relying on hand-written term expansion. In addition, it
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Table 2. Results of the system with different cluster numbers

System n PL RL FL
0.5 FL

1 Snort Length

Original n/a 97.96% 35.22% 72.23% 51.82% 15
Clustering 5000 85.66% 47.93% 74.01% 61.47% 94
Clustering 4000 85.83% 47.70% 73.99% 61.32% 117
Clustering 3000 95.86% 48.46% 80.18% 64.38% 157
Clustering 2000 95.40% 48.18% 79.77% 64.03% 235
Clustering 1000 95.71% 48.18% 79.94% 64.09% 470
Clustering 500 95.39% 48.80% 80.10% 64.57% 941
Clustering 100 93.80% 36.69% 71.53% 52.75% 4,707
Clustering 50 94.13% 36.23% 71.34% 52.33% 9,415
Clustering 20 94.17% 36.11% 71.25% 52.20% 23,539

would be interesting to look beyond the mapping of individual snort messages,
but try to identify and match entire patterns/groups of snort messages as an
indication of possible cyber attacks.
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