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This chapter provides an overview of the field of Natural Language Pro-
cessing (NLP), a sub-field of Artificial Intelligence (AI) that aims to
build automatic systems that can understand or produce texts in natu-
ral language. The intended audience is a non-technical reader with no
particular background in linguistics or computer science.

The chapter first characterizes natural language and explains why
dealing with such unstructured data automatically is a challenge. Ex-
amples of typical applications of NLP are then provided ranging from
low-level tasks to end-user everyday systems. As much of the work in AI,
NLP has gone through three main eras: symbolic approaches, machine
learning driven approaches, and more recently, deep learning driven ap-
proaches. These three paradigms will be described, with a particular
emphasis on the current one, deep learning, which, in only a few years,
has led to exciting results and allowed applications, such as conversa-
tional agents and machine translation, to become accessible and usable
to the public.

1. Introduction

Today, an overwhelming quantity of textual information is available in elec-

tronic form. These texts are written in natural language, for example,

English, French, Spanish, . . . but are aimed for human consumption. De-

veloping automatic tools so that machines can understand the content of

such documents or produce them automatically is the goal of Natural Lan-

guage Processing (or NLP). This includes 1) understanding the content of
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documents written in natural language, also known as Natural Language

Understanding (or NLU) and 2) generating texts in natural language, also

known as Natural Language Generation (or NLG). Practical applications of

NLP include systems such as web search engines, text summarizers, word

completion, question answering systems, conversational agents, sentiment

analyzers, . . . to name only a few.

1.1. Natural versus Artificial Languages

Natural language refers to the language used for human communication

such as English, French, . . . As opposed to natural language, artificial lan-

guage refers to a language that was designed. These languages may include

human-like languages created for entertainment purposes (such as J.R.R.

Tolkien’s Elvish language1 or David J. Peterson’s Valyrian and Dothraki

languages2), for specific practical purposes (such as Esperanto), or for tech-

nological and scientific reasons (such as programming languages).

Natural languages have several key differences with artificial languages

that make them challenging to process automatically:

Natural languages evolve due to human unconscious and conscious

factors, including social, historical, and psychological factors. As natural

languages evolve, new words and expressions are created and included in the

language. A sentence such as I forgot my iPhone in your SUV would have

been incomprehensible only a few years ago. NLP systems will therefore

need to deal with issues such as an open lexicon, unknown words, . . .

Natural languages are robust as they are meant for human communi-

cation. Syntactic rules, although typically rather complex, are often flexi-

ble. If a semi-colon is required by the grammar, one can easily substitute it

for a colon, and the reader will still very likely understand the text. If a word

is misspelled, or a word in unknown by the reader, the text will still likely

be understandable. NLP systems therefore need to address issues such as

informally written texts, misspelled words, ungrammatical sentences, . . .

Natural languages are ambiguous at many levels. For example, a

single word may have different meanings (e.g. a chair may be a person

or a piece of furniture), a sentence may have different syntactic parses

(e.g. in the sentence The man saw Jane with the telescope, the phrase



June 2, 2022 19:33 ws-rv9x6 Book Title output page 3

Natural Language Processing: An Overview 3

with the telescope can qualify either the verb saw or the noun Jane), or a

sentence may have different interpretations depending on its context. These

ambiguities create challenges for NLP systems. For example, a human will

easily understand that in the sentence the chair cancelled the meeting, the

word chair refers to a person, but automatically ruling out the sense of

furniture will need to be addressed.

1.2. Natural Language Understanding versus Generation

The field of NLP is composed of two sub-fields:

(1) Natural Language Understanding (NLU) takes texts as in-

put. NLU tries to develop techniques to understand and interpret

texts in natural language in order to perform a variety of decisions:

act according to some instructions, extract relevant information

from a text, provide an answer to a question, classify or summarize

a document, or create an intermediary representation of the text

that can be used for further processing in other applications.

(2) Natural Language Generation (NLG) produces texts as out-

put. As opposed to NLU, NLG takes as input some representation

of the content to communicate (which can be of various forms3)

and tries to generate as output a human-like textual data such as

an answer, an article, an email. . .

The ultimate goal of NLU is to understand a text as well as a human

would; while the ultimate goal of NLG is to produce a text as well as a

human would. These two tasks can be seen in action in conversational

agents, where the system must understand the user’s sentences (NLU) in

order to respond accordingly (NLG).

1.3. Components of Natural Language Processing Systems

In order to process natural language automatically, systems are tradition-

ally divided into different components, each of which deals with a different

aspect of language. Following the field of linguistics, it is standard to con-

sider the following components:

Lexical Analysis studies individual words. Automatically, converting a

sequence of characters into a sequence of words and sentences is the task
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of lexical analysis. This includes tasks such as tokenization (e.g. I don’t →
I / don’t), lemmatization (e.g. I / do / not), sentence boundary detection,

. . .

Syntax refers to the set of rules that govern how words can be arranged

together in order to form grammatical sentences. For example, in English,

the sentence I like to read is grammatical, but the same set of words in

a different order, for example, like I read to, is not. Understanding the

underlying structure of a sentence gives very strong cues about its meaning.

Semantics refers to the meaning of words, phrases and sentences and

how these meanings are related. Lexical semantics studies the meanings

of individual words and the semantic relations that they have with other

words. For example, lexical semantics is involved when determining that

the word chair in the sentence The department voted for Jane to be the

new chair refers to a person rather than a piece of furniture. On the other

hand, compositional semantics studies how the meaning of larger phrases

and sentences can be composed from the meaning of their individual words

and their relationships with each other.

Discourse goes beyond individual sentences and tries to capture the re-

lations between sentences in order to understand the text as a whole. This

includes the study of referring expressions (e.g. the use of pronouns to re-

fer to entities already mentioned in the text) and discourse relations that

indicate the logical relation between textual elements. For example in Jack

is hungry, because he did not eat, it is important to identify that there is a

causality relation between the two clauses.

Pragmatics tries to go beyond the literal meaning and studies how the

context influences the meaning of a text. The context can be linguistic (e.g.

the other words around), cultural, or situtational (e.g. in which situation

the text is written/said). For example, if on the street, someone asks a

passer-by Do you have some change?, the questioner does not really want

to be informed if the other has or does not have change; but rather is

requesting to be given some change.

World Knowledge takes into account the assumptions or background

information about the world (such as history, facts, . . . ) to truly understand
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the text. For example, in the sentence The trophy would not fit in the brown

suitcase because it was too big,4 a human would easily understand that the

pronoun it refers to the trophy; whereas in The trophy would not fit in the

brown suitcase because it was too small, the pronoun it refers to the suitcase.

This knowledge, referred to as world knowledge or common sense knowl-

edge, is naturally acquired by humans through their living experience.

Building systems that understand or produce natural language as well as a

human requires to take into account world knowledge.

2. Applications

Let us now explore examples of successful applications of NLP. We catego-

rized these applications into two classes: low-level and high-level applica-

tions.

2.1. Low-Level Applications

Low-level applications of NLP are typically not used by end-users, but

rather compute core linguistic representations that are used in order to de-

velop or improve high-level applications that are used by end-users. Stan-

dard low-level applications include:

Part-of-Speech (PoS) Tagging. Part-of-Speech tags are grammatical

labels that are assigned to words in a particular sentence. Such tags can

be general, such as Noun, Verb, Adjective, or more fine-grained, such as

Noun-Singular, Verb-be-3rd-Person-Singular-Present, . . .

Over the years, a multitude of automatic PoS taggers have been devel-

oped following a variety of approaches (see Section 3). Today PoS taggers

achieve around 97% accuracy for English.5 However, PoS tagging is not a

solved problem, as these tools are often domain-dependent: a PoS tagger

trained on a specific domain (e.g. biology) does not perform as well on

another domain (e.g. computer science).

Named Entity Recognition (NER) is concerned with finding and la-

belling a predefined set of semantic expressions, such as persons, places,

organizations, expressions of time, etc. For example, given the sen-

tence The meeting with Jane Young, the CEO of ABC inc., was July 3

2017, an NER system will determine that Jane Young is a person, ABC

inc. is an organization, and July 3 2017 is a date.
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Extracting named entities is seen as a segmentation problem and is fur-

ther complicated by embedded entities. For example, University of Mon-

treal is a named entity, but Montreal on its own is also an entity. Labelling

named entities is also challenging, since the same entity may be labeled

differently depending on the context. For example, Louis Vuitton can be a

person, an organization or a commercial product. State-of-the-art

NER systems achieve a performance of around 90% for English, while for

other languages, the performance is significantly lower.6

Co-reference Resolution and Generation. In a text, several words

or phrases can refer to the same entity. For example, in the sentence I saw

Alex when he was going home, both Alex and he refer to the same entity.

Finding the referent of expressions is essential to understand a text.

Co-reference resolution aims to identify these co-references automati-

cally. State-of-the-art systems have achieved performances of around 65%

to 74% for English,7 which shows that much work still needs to be done

in this field. As opposed to co-reference resolution, co-reference genera-

tion (often referred to as referring expressions generation) aims to find the

most natural words or phrases that an NLG system should use to refer to

an entity.8

Word Sense Disambiguation. As indicated in Section 1.1, natural lan-

guage is ambiguous. In particular, one word or expression may have more

than one meaning; for example, the word bass may refer to a fish or a man

with a low-pitched singing voice. Word Sense Disambiguation (WSD) is

the task of identifying the sense of a word in its context. For example in

the bass was excellent on the grill a WSD system will find that most likely

bass refers to a fish.

Similarly to PoS tagging, WSD can be considered as a classification

problem; however, different linguistic features are used. In WSD, the words

immediately surrounding the ambiguous word give very strong clues about

its meaning. State-of-the-art systems in WSD achieve performances around

95%.9

Syntactic Parsing determines how words in a sentence are grouped into

constituents following a specific grammar. The result is one, or more often,

multiple, parse trees. Finding the proper parse tree of a sentence helps de-

termine what the sentence means, and hence is very useful for applications
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such as question answering. For example, given the sentence The man saw

Jane with the telescope, two parse trees are shown in Figure 1.
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Fig. 1. Two possible parse trees for the sentence The man saw Jane with the telescope.

In Figure 1(a), the constituent with the telescope is part of the noun

phrase (NP) – in this case, the sentence means that Jane was carrying the

telescope; whereas in Figure 1(b), with the telescope is part of the verb

phrase (VP) – in this case, the sentence means that the telescope was the

instrument used to see Jane.

Today, syntactic parsers can reach performances that are comparable to

human experts on English texts (with performances near 92%);10,11 however

much work still needs to be done to improve their performance on informal

texts, such as tweets, or languages other than English.12

Paraphrase Detection & Generation. A paraphrase is a text that

states the same meaning as another, but using different words or grammat-

ical structures. For example, the two sentences Scientists studied this case

and This case was studied by scientists are paraphrases.

The automatic detection of paraphrases is crucial for several applica-

tions, such as text summarization, plagiarism detection, and question an-

swering. Today, state-of-the-art paraphrase detection systems perform very

well on well-written English texts;13 however, much work still needs to be

done to improve their performance on informal texts, such as tweets.14

On the other hand, paraphrase generation tries to generate paraphrases

automatically. This task is particularly useful for conversational agents in
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order to vary the output of the system. Recent advancements in deep learn-

ing for NLP, in particular sequence-to-sequence models (see Section 3.3)

have led to the development of systems that generate paraphrases of very

high quality.14

2.2. High-Level Applications.

As opposed to low-level applications, high-level applications aim to solve

problems for the end-user. Typical examples include:

Information Extraction (IE) tries to extract specific structured or

semi-structured information from texts.15 For example, from the sentence

Jane’s son, Jim, works at Microsoft, an IE system would exact the relations

child-of(Jane, Jim) and employee-of(Microsoft, Jim).

IE systems typically first use NER and co-reference resolution (see Sec-

tion 2.1) to identify named entities (Jane, Jim and Microsoft). Then the

semantic relations between these entities are found. These relations can

be very general, such as child-of, employee-of, . . . or specific to a

particular domain such as mutation-extraction, mutation-to-gene-

association, . . . in biomedical applications.16 Finally, many IE systems

organize the extracted information by automatically filling slots in pre-

defined templates.

Sentiment Analysis automatically detects affective states in a text. The

most basic task in sentiment analysis is to identify the polarity of a text

– such as positive, negative, or neutral. In a more complex setting, senti-

ment analysis can extract the emotional state (e.g. happy, sad, angry, . . . )

regarding a specific aspect or feature of an entity.

Sentiment analysis has a wide range of applications in marketing and

customer service, as it allows to mine customer reviews. Other useful appli-

cations include recommender systems, where sentiment analysis is used to

understand the preferences of online customers or social media users in or-

der to provide them with appropriate advertisements or recommendations.

Summarization is the task of automatically creating a summary from a

natural language text that includes the most important points of the text.

Two main approaches are typically followed: extraction-based summariza-

tion and abstraction-based approach. Extractive summarisation creates a

summary by identifying and extracting key parts of the original text. On
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the other hand, abstractive summarization first tries to represent the con-

tent of the original text, and then produces a summary using NLG tech-

niques.

Question Answering (QA) tries to automatically provide a specific

answer to questions that are asked in natural language. For example, given

the question Where is the Eiffel Tower, a QA system will search through a

document collection and extract the answer Paris. QA can either be closed-

domain or open-domain. Closed-domain QA systems focus on answering

questions in specific domains (e.g. law, medicine, . . . ), while open-domain

QA systems are capable of answering more general questions on any domain.

Conversational Agents (also known as dialogue systems) are applica-

tions that are able to hold coherent conversations with humans. Conversa-

tional agents should be capable of understanding the user’s intentions and

responding appropriately and fluently.

Two types of conversational agents have been developed: task-oriented

bots and chatbots. Task-oriented bots are aimed at performing a specific

task, such as placing an order, booking a hotel/flight, or scheduling an

event, via a conversation. On the other hand, chatbots are mostly designed

for entertainment purposes. Today, thanks to advances in deep learning

for NLP (see Section 3.3), the performance of conversational agents has

reached a level that allows them to be used in our daily life for simple

tasks.

3. NLP Techniques

NLP is a sub-field of Artificial Intelligence (AI). As such, it followed the

same technical trends of the field of AI. In this section, we will describe

the three main approaches used in NLP over the years: symbolic NLP,

statistical NLP, and deep learning for NLP.

3.1. Symbolic NLP

The field of NLP dates back to the early years of Artificial Intelligence

(AI) in the 1950’s, when Alan Turing published the seminal paper Com-

puting Machinery and Intelligence17 in which he directly relates machine

intelligence to the ability to communicate with humans through natural

language.



June 2, 2022 19:33 ws-rv9x6 Book Title output page 10

10 Hessam Amini*, Farhood Farahnak* and Leila Kosseim (* equal contribution)

From the 1950’s to the 1990’s, NLP was performed by experts versed

in both linguistics and computer science. Following the trend in AI in

those days, NLP used a rule-based, prescriptive approach, where experts

developed rules by hand to describe how language ought to be. These

techniques were also known as knowledge intensive approaches, because

experts would manually encode their knowledge into symbolic logical rules

in order to perform NLP tasks. Developing hand-crafted rule-based systems

was time consuming and expensive. Prototype systems were developed, but

very little high-level applications made their way to the end-users. On the

other hand, many theoretical and fundamental issues were addressed.18 For

example, the work of Noam Chomsky on the structure of language19 set

the groundwork for much advancement in NLP in these days.

3.2. Statistical NLP

In the mid-1990s, the field went through its first major paradigm shift.

Large annotated corpora became available, and statistical methods and

machine learning became more and more attractive to describe how lan-

guage was actually used in practice. The era of statistical NLP was born.20

Machine learning techniques were applied to large document collections to

automatically identify discriminating linguistic features that were useful for

the specific NLP applications to develop. The need for linguistic expertise

shifted from writing rules by hand to describing useful linguistic features,

and the machine learning algorithms would develop the rules automatically.

The use of machine learning was much less time-consuming and expensive,

and the heavy use of large corpora allowed the development of more ro-

bust low-level as well as high-level NLP applications such as part-of-speech

taggers,21,22 syntactic parsers,23,24 and named entity taggers.25,26

3.3. Deep Learning for NLP

Around 2010, the field of NLP, and AI in general, went through another

major parading shift: the era of deep learning. The resurgence of neural

networks led researchers to push the boundaries even further and elimi-

nate the need to develop hand-crafted features for the machine learning

algorithms. The emergence of deep models and end-to-end learning algo-

rithms led to NLP techniques that automatically learn a representation of

useful linguistic features. The field went from writing rules by hand, to

learning rules automatically (but still hand-crafting linguistic features), to

automating the entire process: automating the rules and finding the lin-
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guistic features (also known as representations) automatically. In only a

few years, deep learning methods have led to impressive improvements to

most NLP tasks and have led to the development of many end-user appli-

cations such as conversational systems, question answering, more accurate

machine translation systems, . . . 27–29

Due to the success of this new paradigm, we will describe these tech-

niques in more detail in the next sections.

3.3.1. Language Models

The first successful and wide use of deep learning for NLP was is the area

of Language Modelling. A Language Model (LM) is used to compute the

probability of a sentence being used in a specific language. For example,

an LM could determine that the probability of the sequence of words (or

sentence) I will find out in English is 0.003, but the probability of I will

fine out is much lower (e.g. 0.0001).

LMs are used in many NLP applications such as machine translation,30

speech recognition,31 . . . Hence, being able to better estimate the proba-

bility of a sentence through a more accurate LM, often directly leads to

improved results in many end-user applications.

From the 1990’s to 2010, most LM methods were based on a method

called ngram modelling20,32 where a large collection of texts was used to

count how many times a word follows a specific sequence of previous words.

Early efforts to use neural networks to create LMs date back to the

early 1990’s (for example33–35); but it was only in 2010 that significant

improvements over the standard n-gram method was achieved through the

use of Recurrent Neural Networks (RNNs).36 An RNN is a special type of

neural network particularly appropriate to deal with sequences, such as se-

quences of words or sentences. With the concurrent success of deep learning

in other domains (such as speech recognition31 and image classification37)

researchers started to investigate the use of these models for a variety of

NLP tasks such as machine translation,38,39 text analysis,6 conversational

agents40,41 and image captioning.42

3.3.2. Language Representation

Before major breakthroughs could be achieved by deep learning in NLP,

another important issue had to be addressed: neural networks require as

input a vector of numbers that does not lend itself well to sequences of
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words. In order to make better use of neural networks for NLP, an effective

way to represent natural language through numbers was needed.

Word Embeddings

Traditionally, to be fed to a neural network, a word was represented as

a one-hot vector. In such representation, a word is represented as a binary

vector of the size of the vocabulary. Only one position in this vector has

the value of 1, all others are 0. For example, the one-hot representation of

the word python may be [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, . . . ] where the length

of the vector is in the order of a few thousand elements. The problem with

this representation is that similar words such as python and boa do not have

similar vector representations. The distance between all one-hot vectors is

identical. Hence a neural network will learn independent regularities of the

language if the words python and boa are used as input without generalizing

what it has learned to snakes or reptiles.

What was needed is a vector representation where similar words such

as python and boa have similar representations and dissimilar words such as

python and orange have dissimilar representations. In addition, by reducing

the size of the vectors and allowing decimal values instead of binary values,

we create a dense vector and reduce sparsity. Embeddings are an alternative

to one-hot vectors where each word is represented by such a dense vector.

For example using a word embedding, python could be represented by [0.34,

0.67, 0.04, 0.06, . . . ] and the size of the vector is reduced from a few

thousand to a few hundred elements. Several methods have been developed

to find the values of these embeddings.43,44 Typically, these methods follow

the distributional hypothesis, which states that words with similar meanings

tend to occur in similar contexts. For example, Word2vec43 learns the

embedding of a word by learning to predict the current word in a text

given its surrounding words or vice-versa. Using such embeddings, words

with similar characteristics tend to have similar vector representations. In

addition, a variety of relations between words seemed to be learned as well.

The now famous example of subtracting the vector for man from the vector

for king and adding the vector for woman results in a vector that is very

close to the vector for the word queen: vec(“king”) - vec(“man”) +

vec(“woman”) ≈ vec(“queen”).43 This captures the gender relation.

Another example is vec(“paris”) - vec(“france”) + vec(“poland”)

≈ vec(“warsaw”) which describes the concept of capital city.

Character Embeddings
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Instead of using embeddings for words, another level of granularity of-

ten used is the character level. In that case, the size of the dictionary is

drastically reduced to the size of the alphabet plus a few special characters,

such as punctuation marks. This significantly reduces the computation and

memory requirements of word-based models that have to deal with large

dictionaries.

Although working at the character level may not seen intuitive on a

linguistic point of view, it does alleviate the problem of out-of-vocabulary

words.45,46 In addition a suitable character-level language model can to

capture the meaning of some unseen words. For example the fact that the

character s is often used to indicate the plural form.

Sentence Embeddings

Another possibility is to represent an entire sentence as a vector through

sentence embeddings. The difficulty in creating such embeddings is that

large amounts of data are required to generalize over all possible sen-

tences.47,48

Through embeddings (word, character or sentence based) natural lan-

guage sentences could be more efficiently processed by neural networks,

which made these more and more used for NLP applications and several

novel neural architectures then followed.

3.3.3. Model Architectures

Once the problem of language representation was solved, and the use

of neural networks was wide-spread in NLP, another important problem

had to be addressed: natural language exhibits was is called long distance

dependencies that standard neural network models (including RNNs) do not

handle well. For example, in the sentence: My brother, the math teacher

who loves fast cars and travelling, biked to work this morning, a model

should be able to “remember” the information teacher to understand where

work refers to, even if the two words are far away from each other in the

text. To alleviate this problem, several new types of neural networks had

to be developed.

LSTMs and GRUs

Deep networks, including RNNs suffer from the so-called vanishing and
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exploding gradient problems which stops the network from learning when

processing long sentences.49 One effective way to handle this, is to use

LSTMs (Long Short-Term Memory50) or their variant, GRUs (Gated Re-

current Unit39). These cells try to control the flow of information using

gates so that important information from the text can be remembered and

others can be forgotten. Today, LSTMs and GRUs are the most common

choices in most works in NLP.27

Sequence-to-Sequence Models

With the growing computational power and availability of larger

datasets, more complex neural network models can be used and even com-

bined as an ensemble. Sequence-to-sequence models follow such an ap-

proach. A sequence-to-sequence model consists of two RNNs: the first one,

called the encoder, reads an input sentence word by word and maps it to a

single vector representation. The second RNN, called the decoder, consists

of a language model which generates an output word by word, conditioned

on the encoded vector. Hence the encoder plays the role of an NLU system

and the decoder performs NLG.

Attention Mechanisms

Although LSTMs and GRUs can deal better with long sentences than

standard RNNs, they cannot deal with sentences of arbitrary length. For ex-

ample, in neural machine translation, the performance of a simple encoder-

decoder architecture starts to drop for sentences longer than 20 words.51,52

To address this problem, attention mechanisms were developed, where the

decoder generates an output word, not only based on the last encoder out-

put and the previously generated words, but also based on all incremental

encoder outputs. This way, the decoder has access to all embedded infor-

mation for each incremental result of the encoder.

Memory Networks

Although applying attention improves the performance of many NLP

tasks53–55 and allows to deal with long sentences, the model needs more

computation and memory as the length of the sentence grows. In a task

where a long document should be used as input to the network, the use of

an attention mechanism requires to keep track and perform computations

for a large number of intermediary vectors, which is highly inefficient. One

way to deal efficiently with long documents is to augment the model with

an external memory56 and instead of keeping track of all the words in the
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document, the model only keeps track of the information that might be

useful later. Choosing what kind of information needs to be written in

the memory can itself be learned using another neural network. Memory-

augmented models have achieved impressive results in different tasks such

as question answering,57 sentiment analysis58 and machine translation.59

3.3.4. Successful Applications

Deep learning techniques have had a great impact on the field of NLP.

Not only have they significantly improved the state of the art in many

standard NLP tasks, such as machine translation,60 question answering57

and conversational agents41 (see Section 2), but also they have been applied

to new NLP applications such as visual question answering61 and image

captioning.42 Three notable applications are described below.

Machine Translation is one of the most successful applications of deep

learning for NLP. Work in this area has led to a new generation of sys-

tems called Neural Machine Translation (NMT).38,39 NMT is based on a

sequence-to-sequence model (see Section 3.3.3) where the encoder reads a

sentence in the source language and maps it to a context vector (a repre-

sentation of the source sentence), and the decoder maps the context vector

to its translation in the target language. Attention mechanisms (see Sec-

tion 3.3.3) are typically used to deal with long sentences.51,62 The amazing

successes of NMT allowed the development of end-user applications such as

Google’s online machine translation.60

Image Captioning is a novel application based on the idea of transla-

tion via an encoder-decoder; however, instead of translating from a natural

language to another, image captioning translates an image to an English

sentence that describes it. An encoder receives an image as input and cre-

ates a vector representation for it, and then a decoder takes the vector

as input and generates a sentence. This idea has led to impressive novel

systems.42

Conversational Agents described in Section 2.2, constitute one of the

earliest applications of AI.17 Whereas early chatbots were based on hand-

written rules (e.g. Eliza63), modern conversational agents such as Google

Now or Alexa are based on deep learning techniques. Typically, one or

two encoders encode the input sentences and their context into a vector
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representation, and then a decoder uses this representation to generate

a response word by word.40,41 Although the performance of these new

conversational agents is significantly better than their ancestors, they still

suffer from several important issues. In particular, these systems tend to

generate short and generic responses such as yes or I don’t know.64 In

addition, as these systems do not ground their “understanding” to the real

world, they may produce answers that make no sense or are inconsistent.

Hence we need to find a appropriate way to take into account pragmatics,

discourse information and world-knowledge (see Section 1.3) to generate

more natural answers.

4. Conclusion

This chapter has provided a non-technical overview of the field of Natu-

ral Language Processing (NLP): one of the earliest sub-fields of Artificial

Intelligence (AI) that brings together experts in both computer science

and linguistics. We have characterized the complexity of natural language

that make its automatic processing much more complex than when dealing

with artificial languages. Ambiguity at the lexical, syntactic and semantic

levels, as well as the inherent necessity to deal with pragmatic and world-

knowledge makes this field of study both challenging and fascinating at the

same time.

As much of the work in AI, NLP has gone through three main eras. In

the early days (from the 1950’s to the 1990’s), symbolic computation was

the driving paradigm. Hand-written rules developed by linguists and com-

puter scientists drove NLP algorithms. Most systems were developed only

at the prototype level as they did not scale well to real-life applications. In

the 1990’s, as more and more electronic documents became available, more

robust statistical and machine learning methods became the norm to mine

these large quantities of text collections automatically. Human expertise

shifted from writing rules, to hand-crafting linguistic features that were

then used by the machine learning methods to discover the rules automat-

ically. Many low-level applications were developed during these days, but

only a few made their way to every-day applications. Around 2010, with

the advancements of deep learning models, a new era in NLP development

was born. A variety of neural-network based approaches were developed

to deal specifically with natural language and significantly improved the

state of the art in many NLP tasks. Expertise in NLP shifted again from

hand-crafting linguistic features, to providing no hand-crafted information
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at all. The networks discover automatically both the linguistic features and

the rules. With the ever increasing availability of data, and new neural-

based architectures, such as RNN’s, sequence-to-sequence models, . . . new

applications such as efficient machine translation and conversational agents

finally made their way to end-users.

It is an exciting time to work on natural language processing, and future

applications are limitless. The holy grail of building automatic systems

that can produce or analyze texts as a human would seem more and more

reachable today.
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