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14The demands in the software industry of estimating development effort in the early phases of
15development are met by measuring software size from user requirements. A large number of
16companies have adapted themselves with Agile processes, which, although, promise rapid
17software development, pose a huge burden on the development teams for continual decision
18making and expert judgement, when estimating the size of the software components to be
19developed at each iteration. COSMIC, on the other hand, is an ISO/IEC international standard
20that presents an objective method of measuring the functional size of the software from user
21requirements. However, its measurement process is not compatible with Agile processes, as
22COSMIC requires user requirements to be formalised and decomposed at a level of granularity
23where external interactions with the system are visible to the human measurer. This
24time-consuming task is avoided by agile processes, leaving it with the only option of quick
25subjective judgement by human measurers for size measurement that often tends to be
26erroneous. In this article, we address these issues by presenting an approach to approximate
27COSMIC functional size from informally written textual requirements demonstrating its
28applicability in popular agile processes. We also discuss the results of a preliminary
29experiment studying the feasibility of automating our approach using supervised text mining.
30© 2012 Elsevier B.V. All rights reserved.
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401. Introduction

41The agile development process breaks down the software development lifecycle into a number of consecutive iterations that
42increases communication and collaboration among stakeholders. This type of process focuses on the rapid production of
43functioning software components along with providing the flexibility to adapt to emerging business realities [1]. In practice, agile
44processes have been extended to offer more techniques, e.g. describing the requirements with user stories [2]. Instead of a
45manager estimating developmental time and effort and assigning tasks based on conjecture, teammembers in agile processes use
46effort and degree of difficulty in terms of points to estimate the size of their own work, often with biased judgment [3]. Hence, an
47objective measurement of software size is crucial in the planning and management of agile projects.
48We know that effort is a function of size [4], and a precise estimation of software size right from the start of a project life cycle
49gives the project manager confidence about future courses of action, since many of the decisions made during development
50depend on the initial estimations. Better estimation of size and effort allows managers to determine the comparative cost of a
51project, improve process monitoring, and negotiate contracts from a position of knowledge.
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52The above has led the industry to formulate several methods for functional size measurement (FSM) of software. In 1979,
53Allan Albrecht first proposed FSM in his work on function point analysis (FPA) [5], where he named the unit of functional size as
54“Function Point (FP)”. His idea of effort estimation was then validated by many studies, like [6,7], and, thus, measuring the
55functional size of the software became an integral part of effort estimation. Over the years, many standards have been developed
56by different organisations on FSM methods, following the concepts presented in Albrecht's FPA method. Four of these standards
57have been accepted as ISO standards: they are IFPUG [8], Mark II [9], NESMA [10] and COSMIC [11].
58In recent years, many studies (e.g. [12–14]) have attempted to automate the process of different functional size measurement
59methods, but, to our knowledge, none has addressed this problem by taking the textual requirements as input to start the
60automatic measurement process. In addition, all these work depended on extracting manually the conceptual modeling artifacts
61first from the textual requirements, so that a precise functional size measurement can be performed. On the other hand, the work
62documented in this paper aims to develop a tool that would automatically perform a quicker approximation of COSMIC size
63without requiring the formalisation of the requirements. This is in response to the high industrial demands of performing size
64estimation during agile development processes, where formalisation of requirements are regarded as costly manipulation, and,
65thus, ignored during size estimation. Our methodology extends the idea presented in the Estimation by Analogy approach [15]
66and the Easy and Quick (E&Q) measurement approach, that was originated in the IFPUG standard [16]. The applicability of this
67approach in COSMIC was manually demonstrated by [17].

682. Background

692.1. COSMIC

70For the purpose of this research, we have chosen to use the COSMIC FSM method developed by the Common Software
71Measurement International Consortium (COSMIC) and now adopted as an international standard [11]. We chose this method in
72particular, because it conforms to all ISO requirements [18] for FSM, focuses on the “user view” of functional requirements, and is
73applicable throughout the agile development life cycle. Its potential for being applied accurately in the requirements specification
74phase compared to the other FSM methods is demonstrated by the study of [19]. Also, COSMIC does not rely on subjective
75decisions by the functional size measurer during the measurement process [11]. Thus, its measurements, taken from well-
76specified requirements, tend to be same among multiple measurers. This is particularly important for validating the performance
77of our automatic size measurements.
78In COSMIC, size is measured in terms of the number of Data-movements, which accounts for the movement of one or more
79data-attributes belonging to a single Data-group. A data-group is an aggregated set of data-attributes. A Functional Process, in
80COSMIC, is an independently executable set of data-movements that is triggered by one or more triggering events. A triggering
81event is initiated by an actor (a functional user or an external component) that occurs outside the boundary of the software to be
82measured. Thus, a functional process holds the similar scope of a use case scenario, starting with the triggering event of a
83user-request and ending with the completion of the scenario. Fig. 1 illustrates the generic flow of data-groups from a functional
84perspective, presented in the COSMIC standard [11].
85As shown in Fig. 1, the data-movements can be of four types: Entry, Exit, Read andWrite. An Entry moves a data-group from a
86user across the boundary into the functional process, while an Exit moves a data group from a functional process across the

Functional Users
(and/or External Components)

Boundary

Persistent Storage

Entry
1 Data Group

Read
1 Data Group

Exit
1 Data Group

Write
1 Data Group

Functional
Process

Fig. 1. Generic flow of data-groups in COSMIC [11].

2 I. Hussain et al. / Data & Knowledge Engineering xxx (2012) xxx–xxx

Please cite this article as: I. Hussain, et al., Approximation of COSMIC functional size to support early effort estimation in Agile,
Data Knowl. Eng. (2012), doi:10.1016/j.datak.2012.06.005

http://dx.doi.org/10.1016/j.datak.2012.06.005
Original text:
Inserted Text
"z"

Original text:
Inserted Text
"’"

Original text:
Inserted Text
"z"

Original text:
Inserted Text
"z"



U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

87boundary to the user requiring it. A Write moves a data group lying inside the functional process to persistent storage, and a Read
88moves a data group from persistent storage to the functional process.
89COSMIC counts each of these data-movements as one CFP (COSMIC Function Point) of functional size, and measures the size of
90each of the functional processes separately. It then adds the sizes of all the functional processes to compute the total size of the
91system to be measured.
92COSMIC offers an objective method of measuring functional size. It is built to be applied in the traditional processes of software
93development, where documentation of requirements using formalisms and templates is required. However, over the years, the IT
94industry has recognised the traditional processes to cause many problems including delays and is now increasingly moving
95towards agile development processes [20], such as Scrum [2], an agile approach that does not impose documentation templates or
96formalisms on requirements.

972.2. Size measurement in agile development processes

98Agile development processes are driven by the motto of delivering releases as quickly as possible [1]. Planning an iteration in
99an agile project involves estimating the size of the required features as the first step. Fig. 2 shows the steps of iteration planning in
100agile.
101The size of every agile iteration is subjectively estimated by means of user requirements that are written less formally than use
102case descriptions. These textual requirements, which are mostly available in the form of smart use cases [21] or user-stories [2],
103although, do not provide detailed description of the scenarios like those found in use cases, they must hold “enough details” to
104perform the size estimation [2]. Size measurement methods in agile development processes include story-points [3] and smart
105estimation [21], and depend on the subjective judgment of human experts, and, therefore, are prone to biases and errors [3].
106In an agile development process, the lack of formalism in requirements restricts FSM methods, like COSMIC, to be applied for
107measuring the functional size of an iteration. For example, from the discussion in Section 1, it can be understood that the number
108of data-groups, which is necessary to be known to carry out COSMIC FSM, cannot be identified by the measurer from a set of
109requirements statements alone unless he/she is supplied with a complete list of available data-groups that requires formalising
110the requirements with conceptual model (e.g. a domain model).
111Our work presents an alternative solution to estimate the COSMIC functional size in agile that does not require the use of
112formalism in requirements; instead, it proposes an objective way of approximating the COSMIC functional size of a functional
113process (i.e. a use case) that is described by an informally written set of textual requirements, in forms likely to be used in agile
114size estimation.

1153. Related work

116One of the leading work done in the area of automating COSMIC FSM is by Diab et al. [13], where the authors developed a
117comprehensive system called, μcROSE, which accepts state charts as inputs to measure the functional size of real-time systems
118only. We find their work to be largely dependent on a set of hard-coded rules for mapping different objects of interest to different
119COSMIC components, and also require C++code segments to be attached with the state transitions and supplied as input too, so
120that data-movements can be identified. In [13], the authors present a brief validation of their work by an expert, testing their
121system against one case study only, where, according to the authors, it resulted in some erroneous measurement outputs.
122Another related work is that of Condori-Fernández et al. [12], who presented step by step guidelines to first derive manually
123the UML modeling artifacts, e.g. the use case models and system sequence diagrams from the requirements, and then, apply their
124set of rules for measuring the COSMIC functional size of the system from the UML models. Their approach was validated on 33
125different observations, showing reproducible results with 95% confidence. A similar approach is presented byMarín et al. [22] that
126uses an automated tool, called OOmCFP. However, it also depends on conceptual requirements models to be manually prepared,
127so that COSMIC functional size can be automatically measured.
128Most of the related work in this field has attempted to perform a precise measurement of COSMIC functional size that rely on
129tedious manual processing to extract conceptual modeling artifacts and require formalisation of the requirements, and, therefore,
130are not applicable to agile development processes. On the other hand, the work of [17] presents a fully manual approach of quick
131approximation of COSMIC size from textual requirements without extracting COSMIC modeling artifacts. It first classifies past
132projects into fuzzy size classes (e.g. Small, Medium, Large, Very Large,…), finds the common traits within the concepts used in
133software belonging to the same size class, and, finally, allows a human measurer to discover similar traits in the new software

Desired
Features

Estimate
Size

Estimate
Duration Schedule

Fig. 2. Steps of iteration planning in agile (as presented in [3]).
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134component, so that the measurer can estimate its COSMIC size by drawing analogy with past projects. We find a good potential of
135this work to be applied in the environment of agile process that demand quicker size estimation.
136The goal of our work described in this article is to develop a fully automated tool that would do quicker estimation of COSMIC
137size using textual requirements written in unrestricted natural language as input, making it favorable for agile processes. We
138extend the idea of [17] by finding common traits, or ‘features’, among software projects of the same size classes, but looking for
139linguistic features within the textual requirements, and use supervised text mining methods to automate the process.

1404. Methodology

141Our methodology requires the historical data of an organisation to be stored for the purpose of generating a dataset for
142training and testing our application. The historical dataset needs to contain sets of textual user requirements written in any
143quality, where each set corresponds to a unique functional process, along with their respective functional size in COSMIC to be
144recorded by human measurers. We present our detailed methodology in the following sections.

1454.1. CFP measurement

146In the cases where a historical database is not available or is not in the form required by our approach, our first step would
147then be to build the historical database by manually measuring the size of the functional processes in units of CFP (COSMIC
148Function Point) and storing these measurements in the database. The available textual description of the user requirements
149corresponding to each functional process is used for this purpose. Here, for each requirements statement belonging to a functional
150process, the human measurer first identifies how many different types of data-movements are expressed by the statement, and
151then, howmany data-groups participate in each of the types of data-movements present in the statement. Following COSMIC, the
152sum of number of data-groups for each type of data-movements indicates the total CFP size of one requirements statement. The
153measurer repeats this step for the rest of the requirements statements within the functional process and summing up their sizes
154results in the CFP count for the whole functional process. The measurer then again adds the CFP sizes for each of the functional
155processes to obtain the respective CFP count of the whole system. Table ftab: CFP Calculation illustrates the CFP counting process
156with a hypothetical example of a system consisting of two functional processes.
157Our approach requires these measurement data to be saved in the historical database for the past completed projects. For this
158work, we will need the CFP count for each of the functional processes that have been measured, along with the set of textual
159requirements associated to each on them. Fig. 3 illustrates the steps of building a historical database, when it is not already
160available.

1614.2. Class annotation of functional processes

162Once we have prepared the historical database, we need to define classes of functional processes, based on their sizes in CFP, to
163be used later in the automatic classification task. To do this, we performed a box-plot analysis on the CFP size values stored in our
164historical database, to produce four different classes of functional processes, based on their sizes in CFP. Table 2 shows the defined
165ranges of these classes.
166Here, the lower quartile would cut off the lowest 25% of all the recorded CFP size data from the historical database. The median
167would divide the dataset by 50%, and the upper quartile cuts off the highest 25% of the dataset.
168These four sets of ranges allow us to annotate the textual requirements belonging to each of the functional processes
169automatically into four fuzzy size classes. In our class ranges, we keep the minimum and the maximum values as 0 and ∝,
170respectively, instead of the sample minimum or the sample maximum, like in an actual box-plot analysis. Thus, if the new unseen
171sample is an outlier compared to samples stored in the database, it would still get classified, either as Small or as Complex.
172After annotating the textual requirements automatically into the four classes, we then calculate the median, the minimum and
173the maximum for each of these classes, to designate the range of the approximate size for each class. Fig. 4 illustrates the process
174of automatic class annotation described in this section.

Extract Textual
Requirements &
Cluster by Functional
Process

Measure Size 
in CFP

Textual
Requirements

Clustered by
Functional
Processes

Historical
Database

Archived
Projects

Fig. 3. Building a historical database.
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1754.3. Text mining

176Our next step consists of randomly selecting a subset of the annotated textual requirements as our training dataset and
177extracting linguistic features from the dataset, to train a text classification algorithm that can automatically classify a new set of
178textual requirements belonging to a functional process into one of the classes defined earlier (i.e. Small, Medium, Large or
179Complex). The classifier will then simply provide the approximate size of each functional process by outputting the median CFP
180value of the class it belongs to, along with the minimum and the maximum CFP value seen for that class to indicate possible
181variation in the approximation. This will provide the quickest possible approximation of the COSMIC functional size from textual
182requirements that are not formalised and can be written in any quality. Fig. 5 shows the steps of this process.

1835. Preliminary study

184As a proof of concept, we performed a preliminary experiment with four different case studies: two industrial projects from
185SAP Labs, Canada, and two university projects. They are all completed projects and are from different domains. Their
186requirements documents vary in size (from about 2000 words to 11,000 words) and contain from 3 to 32 distinct functional
187processes, along with detailed descriptions of the problem domains. Table 3 shows some characteristics of these case studies.
188We manually pre-processed these requirements to extract sets of requirements sentences, each belonging to a distinct
189functional process. This mimics the sets of user requirements available before an iteration starts in an agile development process.
190Thus, from all four requirements documents, we were able to extract 61 sets of textual requirements, each belonging to a distinct
191functional process.
192We used five human measurers, all graduate students in Software Engineering, thoroughly trained for applying the COSMIC
193standard, to measure the CFP of these 61 functional processes, in the same way to what is shown in Table 1. The textual
194requirements of the 61 functional processes, each tagged with its corresponding CFP value, built our historical dataset. The
195frequency distribution of these CFP values in our historical database is shown in Fig. 6. The figure shows that most functional

Table 1t1:1

A hypothetical example of precise CFP calculation.
t1:2

t1:3 Functional processes User requirements Type of data-movement expressed
by the statement

Number of data-groups
involved in the data-movement

Size in CFP

t1:4 FPr#1 1.1 User requests to view the detailed
information of one item.

Entry 2 2
t1:5 Read 1 1
t1:6 Size of statement 1.1= 3
t1:7 1.2 System displays detailed item information. Exit 1 1
t1:8 Size of statement 1.2= 1
t1:9 Total size of FPr#1= 3+1=4
t1:10 FPr#2 2.1 When user requests to add the item to the

shopping cart, system adds it and displays the cart.
Entry 2 2

t1:11 Write 1 1
t1:12 Exit 1 1
t1:13 Size of statement 2.1= 4
t1:14 Total size of FPr#2= 4
t1:15 Total size of the whole system= 4+4=8

Table 2t2:1

Ranges of CFP values to define the classes.
t2:2

t2:3 Classes Ranges

t2:4 Small [0, Lower Quartile)
t2:5 Medium [Lower Quartile, Median)
t2:6 Large [Median, Upper Quartile)
t2:7 Complex [Upper Quartile, κ ∝)

Small Medium

Large Complex

Annotated
Functional Processes

Calculate
Class Median &
Class Range

Median & Min/Max
Size (in CFP) 

For Each Class
Historical
Database

Box-plot Analysis 
with predefined 
class boundaries

Fig. 4. Class annotation by box-plot analysis.
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196processes (17 of them) were of size 6 CFP. The box-plot on top of the histogram points out the lower quartile, the upper quartile,
197the sample minimum and the sample maximum, and also indicates that the median size is 6 CFP in our historical database.

1985.1. The annotated corpus

199As mentioned in Section 2, in order to define the ranges of our four size classes, we performed a box-plot analysis on the CFP
200values of our historical database. The resulting boundary points are:

201Median 6 CFP
202Lower Quartile 5 CFP
203Upper Quartile 8 CFP
204Sample Minimum 2 CFP
205Sample Maximum 19 CFP

206

207Therefore, according to the ranges defined in Table 2 in Section 3.2, the actual CFP ranges for the four size classes for our
208historical database are:

209Small: [0,5)
210Medium: [5,6)
211Large: [6,8)
212Complex: [8,∝)
213

214We then followed these ranges to automatically annotate the sets of textual requirements belonging to the 61 functional
215processes into the four size classes — where 9 (15%) functional processes were annotated as Small, 15 (25%)were Medium, 21
216(34%) were Large, and 16 (26%) were annotated as Complex.

Small Medium

Large Complex

Annotated
Functional Processes

Extract Features
with POS Tagger &
Syntactic Parser

Training
Data File

Training

S

M L

C

COSMIC Size
Classifier

Unmeasured
Functional
Processes

Fig. 5. Text mining for fast approximation of COSMIC functional size.

Table 3t3:1

Summary of the case studies.
t3:2

t3:3 ID Source Title Type of application Size of requirements
document

Functional processes
extracted

t3:4 C1 Industry (SAP) (undisclosed) Web (Internal) 11,371 words 12
t3:5 C2 Industry (SAP) (undisclosed) Business 1955 words 3
t3:6 C3 University Course Registration System Business 3072 words 14
t3:7 C4 University IEEE Montreal Website Web (Public) 5611 words 32
t3:8 Total number of functional processes extracted= 61
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217We then collected from our historical database the class data, i.e. the mean, the minimum and the maximum sizes for each of
218these classes, so that the size of a newly classified functional process belonging to any of these four classes can be approximated
219by its class data. The resultant class data are shown in Table 4.
220It should be noted that due to the small number of functional processes that we currently have collected in our historical
221database, Table 4 does not showmuch variation of size among the classes, especially between the classes tMedium and Large. This
222drastically reduces the error margin of our approximation and, therefore, the approximate size, when correctly calculated by the
223median size of these classes, would will be more precise and introduce much less error. For example, when a functional process
224will be correctly classified as Medium by our text miner, our system will indicate, according to the class data, shown in Table 4,
225that its approximate (i.e. the median) size is 5 CFP, which will in fact be the precise size value of the functional process instead of
226an approximation. This is because only the functional processes of size 5 CFP are set to the Medium class by our box-plot analysis.
227As CFP values are always integer numbers, it allows zero margin of error in our approximation of the size of a functional process
228that belongs to the Medium class. Similarly, the error margin of the Small and the Large classes are also very small. This will also
229make the task of discriminating between close classes harder than discriminating between widely-varying classes.

2305.2. Syntactic features

231To perform the classification task, we considered a large pool of linguistic features that can be extracted by a syntactic parser.
232In this regards, we used the Stanford Parser [23] (equipped with Brill's POS tagger [24] and a morphological stemmer) to
233morphologically stem the words and extract many linguistic features, e.g. the frequency of words appearing in different
234parts-of-speech categories. As we have the actual CFP values in our historical dataset, we sorted the linguistic features based on
235their correlation with the CFP values. The ten highest correlated features are listed in Table 5.
236The correlation shows the ten syntactic features that influence COSMIC functional size the most. The intuitive reasons for them
237are explained below.

2385.2.1. Frequency of noun phrases (#1)
239No matter how poorly a requirement is described, the involvement of a data-group in a particular data-movement is typically
240indicated by the presence of a noun phase. Therefore, if a functional process contains more noun phrases, chances are that its
241data-movements involve more data-groups and its size is larger.

2425.2.2. Frequency of parentheses (#2) and number of tokens inside parentheses (#4)
243When complex functional processes are described as textual requirements, parentheses are often used to provide brief
244explanations in a limited scope, or to include references to additional information that are, otherwise, not included in the
245description. Thus, a higher number of parentheses or number of tokens inside parentheses can sometimes indicate a complex
246functional process.
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Fig. 6. Distribution (with a box plot) of CFP values in our historical database.

Table 4t4:1

Data to be associated with a functional process to approximate its size.
t4:2

t4:3 Class Median size Minimum size Maximum size Approximation error

t4:4 Small 3 CFP 2 CFP 4 CFP [−1,1] CFP
t4:5 Medium 5 CFP 5 CFP 5 CFP 0 CFP
t4:6 Large 6 CFP 6 CFP 7 CFP [0,1] CFP
t4:7 Complex 11 CFP 8 CFP 19 CFP [-3,8] CFP
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2475.2.3. Frequency of active verbs (#3) and verb phrases (#7)
248Verbs in active form are frequently used to describe actions and, hence, are often used in larger numbers in textual
249requirements to explain data-movements, as data-movements result from actions carried out by the user or the system or an
250external system.

2515.2.4. Frequency of pronouns (#6)
252A longer description in textual requirements for a functional process often indicates its complexity, and requires the use of
253more pronouns and other referring expressions within the functional process to maintain cohesion.

2545.2.5. Number of words (#8), conjunctions (#5), sentences (#9) and uniques (#10)
255In general, lengthy descriptions of the requirements (hence, a higher frequency of words, sentences and unique words) often
256indicate a more complex functional process.
257In addition to the above syntactic features, we also looked at possible keywords that can be used in our classification task.

2585.3. Keyword features

259Studies (e.g. [25,26]) have shown that using keywords grouped into particular part-of-speech categories can help to obtain
260good results in various text mining problems, especially for learning the domain-specific terminology. In our case, textual
261requirements tend to use certain keywords frequently to describe functionality within particular problem domains. We have,
262therefore, considered lists of keywords as additional features for our work.
263Here, each keyword list belongs to a given part-of-speech category to isolate some senses to the keywords. For example, this
264process would differentiate between the word “open” as a verb (that designates the action to open) from the word “open” as an
265adjective (that indicates the state of something that is open). For this work, we chose three open-class part-of-speech groups for
266these keywords to be selected. They are: Noun-keywords (coded as: NN_keyword), Verb-keywords (coded as: VB_keyword), and
267Adjective-keywords (coded as: JJ_keyword).
268We generate finite lists of these keywords based on two different probabilistic measures, as described in ref. [25], that take
269into account how many more times the keywords occur in one class of the training set than the other class. A cutoff threshold is
270then used to reduce the list to keep only the top most discriminating words. For example, the three lists that were automatically
271generated by this process from our training set during a single fold of 10-fold-cross-validation are shown in Table 6.
272These three lists constituted three additional features for our classification task. Thus, when we extract the features, we
273counted one of the keyword feature, for example, as how many times words from its keyword-list appears in the set of
274requirements of a functional process, and appearing in the same part-of-speech class.

Table 5t5:1

Ten linguistic features most highly correlated with CFP.
t5:2

t5:3 ID Features (Frequency of…) Correlation with CFP

t5:4 1 Noun phrases 0.4640
t5:5 2 Parentheses 0.4408
t5:6 3 Active Verbs 0.4036
t5:7 4 Tokens in parentheses 0.4001
t5:8 5 Conjunctions 0.3990
t5:9 6 Pronouns 0.3697
t5:10 7 Verb phrases 0.3605
t5:11 8 Words 0.3595
t5:12 9 Sentences 0.3586
t5:13 10 Uniques (hapax legomena) 0.3317

Table 6t6:1

Some of the keywords of POS group: noun, verb and adjective.
t6:2

t6:3 NN_keyword VB_keyword JJ_keyword

t6:4 user ensure supplied
t6:5 category get current
t6:6 quota choose previous
t6:7 content start available
t6:8 default restart
t6:9 chart fill
t6:10 … …
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2755.4. Feature extraction and classification

276To classify the sets of textual requirements belonging to different functional processes, we developed a Java-based text
277classifier program that uses the Stanford Parser [23] that extracts the values of all the syntactic and keyword features mentioned
278above. It takes 4.68 seconds on average (running on a dual-core CPU with 64-bit JVM) to extract all the selected features from a
279functional process that contains about 5 sentences on average. The classifier then uses the publicly availableWeka package [27] to
280train and test the C4.5 decision tree learning algorithm [28]. We used the implementation of the C4.5 (revision 8) that comes with
281Weka (as J48), setting its parameter for the minimum number of instances allowed in a leaf to 6 to counter possible chances of
282over-fitting. The results are discussed in the next section. We also trained/tested with a Naïve Bayes classifier [29], and a logistic
283classifier [30]. The C4.5 decision tree-based classifier performed the best in comparison to the other classifiers with more
284consistent results during 10-fold-cross-validation.

2856. Results and analysis

286In this article, we evaluated performance mostly in terms of the degree of agreement, measured by the Kappa statistic [31],
287between the actual classes and the classes predicted by our classifier for all the test instances. The Kappa index, denoted by κ,
288refers to the following ratio:

κ ¼ P Að Þ−P Eð Þ
1−P Eð Þ ð1Þ

289290
291Here, P (A) is the proportion of total times that the predicted classes are observed to agree with the actual classes, and P (E) is
292the proportion of the total times that the predicted classes are expected to agree with the actual classes. The interpretation of
293different values of the κ index varies with applications in different fields of study [32]. One most commonly used interpretation
294put forth by Landis and Koch [33] is shown in Table 7.
295The results attained by our classifier were moderate when using the whole dataset for training and testing. Since the dataset
296was not very large, we could not use a separate dataset for testing, and we could only use cross-validation, which can be very
297harsh on the performance, when the number of instances is very low. Yet, the classifier results did not drop significantly. Table 8
298shows a summary of the results.
299The resultant decision tree after training on the complete dataset is shown in Fig. 7. As the figure shows, the tree came out
300well-formed and of desirable characteristics — not sparse, and also not flat. Also, none of its branches are wrongly directed.
301Although the kappa results of Table 8 shows stable and moderate results in terms of performance with the 10-fold-cross-
302validation, the confusion matrix of Table 9 shows that the classifier struggled to classify functional processes of size Medium into
303the correct class; classifying only 47% of them (7 out of 15) correctly. We can also see that the mistakes the classifier made with
304the Medium sized functional processes are mostly because it confused them as Large (shown in darker shade, in Table 8, it
305classified another 7 out of the 15 Medium functional processes incorrectly into the size class Large). The reason for this can be
306understood by the fact discussed in Section 1, where, in Table 4, we see that our box-plot analysis automatically chose zero
307approximation error for the classMedium. It, therefore, became the hardest class to classify among the other classes, carrying very
308minute differences from its adjacent class Large, which also has a smaller margin of approximation error. Thus, when our classifier
309correctly classifies a functional process as xtitMedium, it does not really approximate its size; rather it accurately identifies its
310precise size value, which is 5 CFP. Again, when the classifier mistakenly classified a Medium functional process as Large, the error

Table 7t7:1

Interpretation of the values of Kappa (κ) [33].
t7:2

t7:3 Kappa (κ) value Strength of agreement
beyond chance

t7:4 b0.00 Poor
t7:5 0.01–0.20 Slight
t7:6 0.21–0.40 Fair
t7:7 0.41–0.60 Moderate
t7:8 0.61–0.80 Substantial
t7:9 0.81–1.00 Almost perfect

Table 8t8:1

Summary of the results.
t8:2

t8:3 Scheme Correctly classified instances Incorrectly classified instances Kappa

t8:4 Corpus size=61 (sets of textual requirements,
each set representing a functional process)

Training+Testing on same set 45 (73.77%) 16 (26.23%) 0.6414
t8:5 Cross-validation (10 Folds) 41 (67.21%) 20 (32.79%) 0.5485
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311in size approximation that it made is of only 1 CFP. If we had a larger number of instances, there would most likely have been a
312wider variation of size values in our historical database. We believe that this would make the classification task easier for our
313classifier allowing the learning algorithm to find the threshold values for the other unused linguistic features and, thus, utilise
314them in making fine-grained distinction and render better results.
315By analysing Table 9, we also find that the classifier had difficulty in identifying the functional processes of size Small. Although
316it classified 7 out of 9 Small functional processes correctly as Small, it misclassified some Medium, Large, and even Complex
317functional processes as Small (see the 1st column of Table 9). Here, again, we believe that the small size of our dataset (e.g. we had
318only 9 instances of size Small) may be the cause. It should be noted that these results were extracted during cross-validation of 10
319random folds, which can significantly reduce the number of training instances for a particular class during a single fold in a
320skewed corpus. In our case, for example, during one fold, the number of training instances for the Small class went minimum of
321only 2 instances, which were inadequate for the learning algorithm to discover the thresholds of most of the discriminating
322linguistic features that we selected for this work.
323The phenomena discussed above are also reflected in the precision and recall results shown in Table 10. Moreover, Table 10
324also shows that a good performance on average attained by the classifier with such a small dataset. It should be mentioned that, in
325our previous work [25], we showed the applicability of using similar a approach for requirements classification, where we had a
326significantly large dataset (765 instances) to classify into only two classes (Functional and Non-functional requirements) and the
327classifier attained a much higher level of accuracy (0.98 for precision, and 1.0 for recall, during 10-fold-cross-validation).
328Thus, although we believe that the results presented in this article would improve with the introduction of more instances in
329our dataset, the absence of a large dataset does not allow us to scientifically prove this claim. However, we can demonstrate what
330happens if we increase the number of instances per class in our current dataset by reducing the total number of our target classes.
331In this article, we explained our methodology for building a four-class classifier (classifying functional processes into four distinct
332size classes: Small, Medium, Large and Complex). This drastically reduces the number of our training instances by dividing them
333into four different sets. So, if we had less number of classes, i.e. two or three size classes, instead of four, the available number of
334instances per class in our current dataset would have been higher to perform a more realistic classification task.

sentences

Small

≤ 9

Complex

NN_keywords

> 9

VB_phrases

LargeMedium

≤ 4 > 4

≤ 23 > 23

Fig. 7. The resultant C4.5 decision tree after training with the complete dataset.

Table 9t9:1

Confusion matrix when using 10-fold-cross‐validation.
t9:2
t9:3 Classified as

t9:4 Small Medium Large Complex

t9:5 Small 7 0 1 1
t9:6 Medium 1 7 7 0
t9:7 Large 2 1 16 2
t9:8 Complex 2 0 3 11

Table 10t10:1

Precision, Recall and F-Measure, when using 10-fold-cross‐validation.
t10:2

t10:3 Size class Precision Recall F-Measure

t10:4 Small 0.583 0.778 0.667
t10:5 Medium 0.875 0.467 0.609
t10:6 Large 0.593 0.762 0.667
t10:7 Complex 0.786 0.688 0.733
t10:8 Mean 0.709 0.673 0.669
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335To show what would happen if we had increased the number of training instances per class, we developed a two-class size
336classifier (classifying functional processes into Small and Large classes), and a three-class size classifier (classifying functional
337processes into Small, Medium and Large classes). Thus, the number of instances per class in our dataset increased, compared to
338how we originally had it for our four-class classifier. We used the same dataset, the same methodology and the same sets of
339features described in this article while building these classifiers. The results were significantly better, attaining mean f-measures
340of 0.802 and 0.746 for the 2-class and the 3-class classifiers respectively during 10-fold-cross-validation. The summary of the
341results of performing 10-fold-cross-validation using both the classifiers is shown in Table 11.
342The results in Table 11 shows that a similar classification technique when applied on the same dataset, which now contains
343more training instances per class than what we had for our four-class classifier, improves the results significantly. This allows us
344to conclude that the results of our original four-class classifier would also improve, in case we had more training instances per
345class.

3467. Conclusions and Future Work

347In this article, we have shown that classification of textual requirements in terms of their functional size is plausible using
348linguistic features. Since our work uses a supervised text mining approach, where we need experts to build our historical database
349by manually measuring the COSMIC functional size from textual requirements, we could not train and test our systemwith a large
350number of samples (only 61 in total). Yet, the results that we were able to gather by cross-validating on such small number of
351samples show a promising behavior of the classifier in terms of its performance. Using our methodology, we have also been able
352to identify automatically a set of highly discriminating features that can effectively help together with a classifier in
353approximating the size of functional processes.
354It should be mentioned that we have not yet tested this approach as to be used with requirements written in variable level of
355quality. Therefore, we believe that this approach would be organisation-specific, where textual requirements saved in the
356historical dataset should all be written in the same format or writing style having similar quality. This would allow our classifier to
357pick the best set of features and set the best thresholds that would classify new requirements written in similar style and quality.
358We are currently in the process of building larger datasets for training and testing our system. Our future work includes
359implementing a full-fledged prototype to demonstrate its use and a complete integration to the READ-COSMIC project [34], which
360is our umbrella project on software development effort estimation from textual requirements. We are also working on predicting
361the impact of non-functional requirements on the functional size for better precision in software effort estimation.

362Acknowledgements

363The authors would like to thank SAP Labs, Canada for providing the requirements documents used in the experiments
364presented in this article, and the anonymous reviewers for their valuable comments on its earlier version.

Table 11t11:1

10-fold cross validation results of using 2-class and 3-class classifiers.
t11:2

t11:3 Classifier Kappa Size Classes Precision Recall Tree

t11:4 2-class Classifier 0.606 Small 0.895 0.829
t11:5 Large 0.696 0.8

t11:6 3-class Classifier 0.575 Small 0.677 0.875
t11:7 Medium 0.794 0.721
t11:8 Large 0.9 0.73
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