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Data Sampling and Supervised Learning
for HIV Literature Screening

Hayda Almeida, Marie-Jean Meurs∗, Leila Kosseim, and Adrian Tsang

Abstract—This paper presents a supervised learning approach
to support the screening of HIV literature. The manual screening
of biomedical literature is an important task in the process
of systematic reviews. Researchers and curators have the very
demanding, time-consuming and error-prone task of manually
identifying documents that should be included in a systematic
review concerning a specific problem. We developed a supervised
learning approach to support screening tasks, by automatically
flagging potentially relevant documents from a list retrieved
by a literature database search. To overcome the main issues
associated with the automatic literature screening task, we
evaluated the use of data sampling, feature combinations, and
feature selection methods, generating a total of 105 classification
models. The models yielding the best results were composed of a
Logistic Model Trees classifier, a fairly balanced training set,
and feature combination of Bag-Of-Words and MeSH terms.
According to our results, the system correctly labels the great
majority of relevant documents, making it usable to support
HIV systematic reviews to allow researchers to assess a greater
number of documents in less time.

Index Terms—Artificial intelligence, health information man-
agement, HIV, machine learning, text classification, triage

I. INTRODUCTION

OPEN literature repositories are usually the main source
of knowledge used by scientific researchers. Life sci-

ence and biomedical databases contain a large number of
documents, and are rapidly growing reflecting the pace of
scientific publications and easy access to online repositories.
The screening of scientific literature is typically performed by
researchers to identify relevant studies for a given topic and
support systematic reviews. PubMed [1], one of the largest
open scientific databases, contained over 25 million citations
of biomedical literature as of January 2016. Research programs
dedicated to study public health generally need to manipulate
and analyze large amounts of data to support processes such
as systematic reviews of biomedical literature [2]. Following
the publication speed of scientific literature, the available
literature related to HIV and AIDS research is vast and rapidly
increasing. In the year 2000, around 10k HIV related articles
were added to PubMed, while over 16k HIV related articles
were included in 2014. Querying the PubMed database with
the string HIV, retrieves over 295k documents, while the query
AIDS brings more than 238k documents.
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Performing systematic reviews of such volumes of data
can be overwhelming for scientific researchers. A detailed
description of the systematic review workflow is given in [3].
The initial step of the process is to define the research
problem, and to search for eligible literature by querying
scientific databases. The next step is to select studies, a task
that requires exhaustive screening of a document list that
was retrieved by strategic searches made by researchers. The
potentially interesting documents retrieved for a given topic
are usually numerous. Only after reviewing their abstracts
is it possible to determine their potential to be considered
relevant for the research topic. This task is a severe bottleneck
in the information discovery process. Such a challenging
manual task could greatly benefit from an automatic approach
to support researchers in the literature triage. Automating
literature screening can affect directly the coverage and quality
of knowledge discovery in scientific research programs, since
the number of documents to be evaluated during the filtering
step is commonly very high.

The evaluation of biomedical data is highly relevant to
assist the information discovery process in biomedical research
(e.g. [4], [5]). In addition, several studies described the use-
fulness of automating the process of literature handling and
screening (e.g. [6]–[8]). Machine learning approaches have
been applied to support systematic reviews by performing
literature screening (e.g. [9], [10]). In particular, supervised
learning approaches can be beneficial for this task, since the
use of classification models allows scientists to quickly evalu-
ate many documents, reducing their manual effort. Automatic
literature classification also reduces the possibility of missing
relevant information, as a system-based screening might be
less error-prone than a manual screening [11].

Substantial efforts have been put into extracting and anno-
tating information on life science related documents [12], [13],
with the use of natural language processing approaches [14].
The BioCreative initiative [15] represents the current extensive
effort in the study of biomedical text classification. Automatic
classification of bioliterature was specially evaluated at some
of the BioCreative challenges [16], [17]. The tools developed
at BioCreative were fairly generic. The systems proposed
so far focused more on providing users with off-the-shelf
solutions, based on a large set of generic supporting tools
for biomedical literature classification tasks, as opposed to
tools tailored to meet the particular issues related to automatic
screening. This project specifically addresses the problem of
bioliterature text classification, and the specific task chal-
lenges, by designing a problem-oriented supervised learning
model.
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The development of an automatic approach to perform liter-
ature screening can pose several challenges. One of the main
issues is the underlying distribution of the data. Given a list
of documents retrieved by a query search, researchers usually
label most of them as excluded, and only a small portion is
selected as relevant, and labeled as included. Since only a few
documents are considered important, and many are filtered out
at this phase, the literature screening task generally handles
datasets presenting a class distribution imbalance. A dataset
is considered imbalanced when the difference between the
number of documents belonging to each class is so severe that
it interferes in the machine learning process [18]. The class
imbalance introduces noise in the dataset, and affects directly
the performance of supervised learning methods. Classification
algorithms tend to maximize the overall accuracy, therefore
favouring the most frequent class while overlooking the least
represented class [19]. Studies on imbalanced learning have
evaluated different techniques to overcome the effect of the
difference between class distributions (see Section II).

Another challenge related to automatic literature screening
is the definition of a relevant feature subset. The use of
large datasets in classification tasks results in models with
an extensive number of features. Many of these features will
likely be noisy or barely discriminative, thus only adding
computational cost to the task. Moreover, a highly dimensional
classification model may use an excessive number of features,
which over-fits the training data, and interferes in the perfor-
mance of classification algorithms. Feature selection methods
are strategies applied in classification models to identify a
subset of features that most suits a given task. Feature selection
reduces the size of the feature space by keeping only the most
relevant features for a specific problem.

In this work, we investigated the use of imbalanced learning
strategies and feature selection methods applied to text classi-
fication with the goal of supporting HIV literature screening.

II. RELATED WORK

Designing a supervised learning model to support the man-
ual screening of biomedical literature can be challenging. The
two main issues related to this task are the imbalanced class
distribution in the dataset, and the selection of a relevant
subset of features. We studied imbalanced learning and feature
selection techniques as methods to overcome these conditions.

A. Imbalanced Learning

A dataset with a realistic class distribution of HIV literature
screening presents a strong imbalance between included and
excluded class labels. Datasets with imbalanced class distribu-
tions are commonly found in a variety of fields such as speech
recognition [20], medical diagnosis [21], and fraud and image
detection [22].

The class imbalance in the data greatly affects the classi-
fier performance because excluded documents are massively
represented in the dataset when compared to the number of
documents belonging to the included class. Therefore, the
classification model has many more examples of the majority
class to learn from, and this introduces a bias in the prediction

process. The imbalance dataset issue has been studied, and
pointed out as an important issue in supervised learning
(e.g. [23], [24]). Various approaches have been proposed in the
field to overcome this issue. Cost-sensitive classifiers and data-
sampling are the most common methods used. Cost-sensitive
methods are implemented at the algorithm level, while sam-
pling methods are implemented at the data level. The strategy
used by cost-sensitive classifiers [25] is to lower classification
errors in the minority class by intentionally introducing a bias
during the learning phase so that classification errors made
in the minority class are more costly than errors made in the
majority class. Data sampling methods were first presented
and discussed by [26] which describes the two most popular
sampling strategies: undersampling and oversampling. Over-
sampling consists of adding documents to the minority class by
generating new synthetic documents; whereas, undersampling
consists of discarding documents from the majority class. Both
techniques are used until a certain class distribution balance
is reached.

Maloof [25] and Borrajo et al. [27] pointed out that the
performance of sampling is comparable to other state-of-the-
art imbalanced strategies, and the method is less restrictive
than the cost-sensitive approach [28]. In addition, the fact that
sampling is performed as a pre-processing step makes it more
flexible than the cost-sensitive approach. Weiss et al. [28]
illustrated that by using undersampling methods, time and
computational resources required by the learning phase are
reduced because less data is handled by the classification al-
gorithm. Undersampling methods outperformed oversampling
methods in tasks handling datasets from various domains
(e.g. [29], [30]). In addition, undersampling was shown to
improve performance in classification tasks using datasets with
an imbalanced ratio equal to or more severe than 1:2 [31]. For
these reasons, we implemented a progressive undersampling
technique to tackle the imbalance class distribution problem
that could affect the performance of an automatic approach to
support HIV literature screening.

B. Feature Selection

The selection of features is usually performed according to
an evaluation metric used to assess the relevance of features.
By using feature selection, it is possible to identify a subset of
features which are more relevant to a given task, and reduce
the size of the feature space in an informed manner. With
a smaller and tailored subset of features, the learning phase
requires less computational resources, and the classification
model reduces the number of noisy or irrelevant attributes.
By removing the least discriminative features, the model is
also less likely to over-fit the training data. Several feature
selection metrics have been proposed in the literature, and
evaluated in text classification tasks (e.g. [32], [33]). Among
the most popular ones are: Information Gain, Chi-Square
test, Term Frequency, Document Frequency, Inverse Document
Frequency and Odds Ratio. Comparative studies to evaluate
the use of feature selection metrics are not clear about which
metric is the most appropriate for text classification problems
in general. Therefore, a reasonable choice of feature selection
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metric can be made by taking into account the characteristics
of the specific classification task. In this work, the Odds Ratio
(OR) and Inverse Document Frequency (IDF) were applied
as feature selection metrics. Odds Ratio [34] was selected
because it evaluates how strongly the occurrence of a feature
is associated to a particular document class. The Odds Ratio
OR of a term t given a class C can be computed as follows:

OR(t,C) =

nCt
nC

/
nCt
nC

nCt
nC

/
nCt
nCwhere:

nCt is the number of times term t appears in class C
nC is the number of documents in class C
nCt is the number of documents in class C without term t

nCt is the number of documents with term t, not in class C
nCt is the number of documents without term t, not in class C
nC is the number of documents not in class C

Inverse Document Frequency [35] was selected because it
evaluates the specificity of a given feature. Rarer terms yield
higher IDF values, indicating that they are more discrimina-
tive. The Inverse Document Frequency (idft) of a feature t in
a document collection is computed as:

idft = log
N
dft

where N is the number of documents in the collection and dft

represents the number of documents that contain term t.

III. METHODOLOGY

A. Corpus and Data Sampling

The experiments were conducted on the SHARE corpus
(http://www.hivevidence.ca). SHARE is an easy-to-search and reg-
ularly updated repository of synthesized research evidence
addressing topics related to HIV/AIDS. SHARE includes HIV-
relevant systematic reviews and products derived from find-
ings of systematic reviews. Systematic reviews provide a
synthesis of individual studies addressing a specific research
question. To identify documents to be included in SHARE,
curators conduct searches in Medline (http://www.nlm.nih.gov/
pubs/factsheets/medline.html), Embase (http://www.elsevier.com/solutions/
embase), and the Cochrane Library (http://www.cochranelibrary.com).
These searches are periodically updated to ensure that the most
recent HIV-relevant syntheses are identified. Two reviewers
independently assess all records identified through the searches
to determine whether they should be included in SHARE.
During the review process, they include any records that
address a topic focused on HIV, and are either a systematic
review, an overview of systematic reviews, a policy brief, a
treatment guideline, or a systematic review protocol. Currently,
the document collection is composed of 18,703 scientific
abstracts retrieved from the PubMed database.

The distribution of documents in SHARE represents the
same ratio of included and excluded abstracts that scientific
researches encounter when performing literature screening for
HIV systematic reviews. As the statistics about SHARE in
Table I show, the class distribution is highly imbalanced with
only ≈7% of documents being included.

TABLE I
STATISTICS ON SHARE

Attribute Number %
Total number of documents 18,703 100%
Excluded documents 17,402 93.05%
Included documents 1,301 6.95%
Unique words in abstracts 31,632 -
Unique words in titles 6,821 -
Unique MeSH terms in documents 17,971 -

TABLE II
TRAINING SETS: UNDERSAMPLING APPROACH

Set Included % Excluded %
1 991 10% 8,915 90%
2 991 20% 3,965 80%
3 991 30% 2,319 70%
4 991 40% 1,487 60%
5 991 50% 991 50%

In order to perform supervised learning, we split the doc-
ument collection into two parts. The first part contains the
documents used as the test set. The test set represents ≈10%
of the entire collection, randomly selected to avoid any bias.
It contains 1,588 documents (110 were labelled as included
and 1,478 labelled as excluded). The class distribution in the
test set is similar to the distribution in the entire document
collection. The original distribution of the task is maintained
in the test set because our goal is to design a model that will
perform best when handling imbalanced data. After isolating
the test set documents, five training sets were generated
through a random undersampling approach, to progressively
discard documents from the majority class. Table II shows
the progressive undersampling approach used to generate
all training sets, while Figure 1 illustrates the balance of
included/excluded documents in each training set. To perform
progressive undersampling in the training sets, we randomly
removed documents from the majority class. Our goal was to
reach a equal class distribution, and compare the performance
of the classification models in order to identify which one is
the most appropriate for this task. Several training sets were
generated to perform experiments. The training set distribution
first starts with the representation of the real imbalanced sce-
nario, i.e. 90% of excluded and 10% of included documents.
Then, gradually, several under-sampling factors are applied to

1 (10%) 2 (20%) 3 (30%) 4 (40%) 5 (50%)
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Excluded
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Fig. 1. Progressive undersampling on training sets
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the dataset, until a balanced distribution is reached, i.e. 50%
of excluded and 50% of included documents.

B. Feature Extraction and Selection

1) Extraction: To build several classification models and
compare their performance, we extracted different types
of features, from the baseline Bag-Of-Words (BOW) to
MeSH terms [36], and a set of domain keywords iden-
tified by researchers working on HIV systematic reviews.
The features were mainly extracted from the PubMed XML
<AbstractText> and <ArticleTitle> text fields. Each docu-
ment was represented as a feature vector that account for the
number of occurrences of each feature in a given document. A
large matrix of documents by features was created and used to
feed the classification algorithms. The following feature types
were extracted from SHARE:
Feature type #1: Bag-Of-Words of the abstract and document
title, considering only words with an occurrence of at least 2,
and a length of at least 3 characters;
Feature type #2: MeSH terms list, considering only terms with
an occurrence of at least 2;
Feature type #3: Domain keywords relevant to HIV systematic
reviews. The keywords list is available along with the source
code (see Section “Reproducibility” at the end of this article).

2) Selection: Since the dataset contains over 18,000 docu-
ments, the feature extraction may generate a large and sparse
features by documents matrix. In addition to requiring extra
computational resources, such a matrix can also interfere with
the classifier performance by introducing a bias and overfit
the training data. To overcome this, we investigated the use of
feature selection before feeding the data to the classification
algorithms. We aimed to identify the most suitable feature
subset for supporting HIV literature screening by comparing
the results obtained when using Odds Ratio and IDF, as
described in Section II-B, to filter out the less discriminative
features in the classification models.

To perform feature selection using Odds Ratio as a metric,
the odds ratio value was computed for each feature extracted
from a training set, then a confidence interval for each odds
ratio value was computed, using a confidence level of 95%.
Two conditions were considered to perform filtering: features
with 1) a confidence interval that includes the null hypothesis;
or 2) an odds ratio value that is less than or equal to the
null hypothesis were discarded, and the remaining features
were used to build the models. To perform feature selection
using IDF as a metric, we first computed the inverse document
frequency of each feature in a given training set considering
the occurrence in both included and excluded classes. Then,
similarly to the odds ratio filtering, all features with an
IDF value smaller than 1.0 were discarded (this value was
experimentally set).

C. Classification Algorithms

In our experiments, we made use of three different classi-
fication algorithms: Naı̈ve Bayes (NB), Logistic Model Trees
(LMT) and Support Vector Machine (SVM). NB was used as
a baseline evaluation of our sampling and feature selection

strategies. NB assumes a strong conditional independence of
the features. This means that in a feature vector F , the features
f1, ..., fn are assumed to be conditionally independent given a
class C. By this assumption, Naı̈ve Bayes implies that the
presence of one word (one feature) is not correlated with
the presence or absence of another word, within a class.
LMT [37] was previously described by [38] as being able to
efficiently handle tasks with imbalanced datasets. It consists
of a combination of Decision Tree and LogitBoost algorithms,
being a classification tree, with logistic regression models on
its nodes. At each node of the decision tree, the LogitBoost
algorithm is used to train a data subset for a certain number
of iterations, and to define a logistic regression model for the
current node. A Decision Tree criterion is then applied to split
the current data subset. SVM [39] was also recommended by
previous work (e.g. [40], [41]) when dealing with imbalanced
data. SVM computes the margin maximum classifier [42],
which is the largest radius around a classification boundary,
and tries to separate data points on a dimensional space, to
identify the different classes to which they belong.

D. Evaluation Metrics

The experimental results were evaluated in terms of pre-
cision (P), recall (R), F1, and F2. Precision accounts for the
number of correct predictions between all correct and incorrect
predictions made by the classifier for a specific class. Recall is
calculated by the ratio of relevant predictions actually made by
the classifier as compared to all existing relevant documents
that should have been identified. The Fβ score is the weighted
harmonic mean between precision and recall, and is defined
as:

Fβ = (1 + β2)× Precision×Recall

β2 × Precision+Recall

where β is the relative weight of recall over precision.
In our experiments, we used β = 1, leading to the F1 score.

In addition, since we focus on evaluating the model capability
of identifying the entire universe of relevant documents, we
emphasized recall by also using β = 2, leading to the F2 score.

IV. EXPERIMENTS AND RESULTS

A. Experiments

In total, we generated 105 classification models. These were
utilized to analyze the influence of undersampling (different
class distributions); the discriminative capability of feature
types; and the impact of the feature selection methods. These
three aspects were analyzed with the three classification algo-
rithms. The models were then created using various combina-
tions of the settings described hereafter.
Training set balances:
10% included (IN) + 90% excluded (EX) (task distribution);
20% IN + 80% EX;
30% IN + 70% EX;
40% IN + 60% EX;
50% IN + 50% EX.
Feature configurations:
#1 BOW; #2 BOW + MeSH terms; #3 Keywords.
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TABLE III
SUMMARY OF EXPERIMENTAL RESULTS USING UNDERSAMPLING

Feature Configuration Balance Classifier P R F1 F2

#1: Bag-Of-Words 90% - 10% LMT 0.562 0.664 0.608 0.641
#1: Bag-Of-Words 90% - 10% NB 0.218 0.855 0.347 0.540
#1: Bag-Of-Words 90% - 10% SVM 0.733 0.500 0.595 0.534
#1: Bag-Of-Words 80% - 20% LMT 0.543 0.691 0.608 0.660
#1: Bag-Of-Words 80% - 20% NB 0.213 0.891 0.344 0.540
#1: Bag-Of-Words 80% - 20% SVM 0.617 0.673 0.643 0.660
#1: Bag-Of-Words 70% - 30% LMT 0.481 0.800 0.601 0.706
#1: Bag-Of-Words 70% - 30% NB 0.213 0.909 0.345 0.550
#1: Bag-Of-Words 70% - 30% SVM 0.540 0.800 0.645 0.730
#1: Bag-Of-Words 60% - 40% LMT 0.395 0.891 0.547 0.712
#1: Bag-Of-Words 60% - 40% NB 0.200 0.864 0.324 0.519
#1: Bag-Of-Words 60% - 40% SVM 0.473 0.864 0.611 0.741
#1: Bag-Of-Words 50% - 50% LMT 0.385 0.900 0.540 0.710
#1: Bag-Of-Words 50% - 50% NB 0.210 0.927 0.342 0.551
#1: Bag-Of-Words 50% - 50% SVM 0.399 0.900 0.553 0.719
#2: Bag-Of-Words + MeSH 90% - 10% LMT 0.584 0.664 0.621 0.646
#2: Bag-Of-Words + MeSH 90% - 10% NB 0.233 0.818 0.363 0.545
#2: Bag-Of-Words + MeSH 90% - 10% SVM 0.000 0.000 0.000 0.000
#2: Bag-Of-Words + MeSH 80% - 20% LMT 0.542 0.764 0.634 0.710
#2: Bag-Of-Words + MeSH 80% - 20% NB 0.233 0.818 0.363 0.540
#2: Bag-Of-Words + MeSH 80% - 20% SVM 0.000 0.000 0.000 0.000
#2: Bag-Of-Words + MeSH 70% - 30% LMT 0.481 0.800 0.601 0.706
#2: Bag-Of-Words + MeSH 70% - 30% NB 0.144 0.918 0.250 0.442
#2: Bag-Of-Words + MeSH 70% - 30% SVM 1.000 0.009 0.018 0.011
#2: Bag-Of-Words + MeSH 60% - 40% LMT 0.467 0.900 0.615 0.759
#2: Bag-Of-Words + MeSH 60% - 40% NB 0.162 0.900 0.275 0.471
#2: Bag-Of-Words + MeSH 60% - 40% SVM 0.070 0.882 0.129 0.266
#2: Bag-Of-Words + MeSH 50% - 50% LMT 0.385 0.900 0.540 0.710
#2: Bag-Of-Words + MeSH 50% - 50% NB 0.126 0.936 0.222 0.410
#2: Bag-Of-Words + MeSH 50% - 50% SVM 0.069 1.000 0.130 0.270
#3: Keywords 90% - 10% LMT 0.635 0.491 0.554 0.514
#3: Keywords 90% - 10% NB 0.304 0.618 0.407 0.512
#3: Keywords 90% - 10% SVM 0.711 0.291 0.413 0.330
#3: Keywords 80% - 20% LMT 0.509 0.491 0.500 0.490
#3: Keywords 80% - 20% NB 0.312 0.664 0.424 0.540
#3: Keywords 80% - 20% SVM 0.613 0.418 0.497 0.450
#3: Keywords 70% - 30% LMT 0.462 0.655 0.541 0.604
#3: Keywords 70% - 30% NB 0.283 0.691 0.401 0.536
#3: Keywords 70% - 30% SVM 0.516 0.591 0.551 0.574
#3: Keywords 60% - 40% LMT 0.427 0.691 0.528 0.615
#3: Keywords 60% - 40% NB 0.288 0.673 0.403 0.531
#3: Keywords 60% - 40% SVM 0.436 0.655 0.524 0.595
#3: Keywords 50% - 50% LMT 0.321 0.818 0.462 0.625
#3: Keywords 50% - 50% NB 0.288 0.700 0.408 0.544
#3: Keywords 50% - 50% SVM 0.305 0.755 0.435 0.583

Feature selection:
Odds Ratio; Inverse Document Frequency.
Classification algorithms:
Naı̈ve Bayes; Logistic Model Tree; Support Vector Machine.

First, a set of experiments was executed to evaluate the un-
dersampling technique, and therefore the use of various class
balances in the training set across the different feature types
for the three classifiers. Next, we ran new experiments using
the same undersampled training sets and classifiers, but this
time applying feature selection to the feature configurations
that demonstrated the best performance.

B. Results

Figures 2 and 3 respectively show a summary of the F1 and
F2 scores obtained in these experiments. Since the focus of
our work is to analyze the capability of a model to identify
included documents, we evaluated the model performance in
terms of the results obtained only for the included class (the
overall performance obtained in the excluded class remains
generally over 90%). Table III shows the results of the models
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Fig. 2. F1 results using undersampling
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Fig. 3. F2 results using undersampling
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Fig. 4. F1 when applying feature selection with Bag-Of-Words
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Fig. 5. F2 when applying feature selection with Bag-Of-Words
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Fig. 6. F1 when applying feature selection with Bag-Of-Words and MeSH
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Fig. 7. F2 when applying feature selection with Bag-Of-Words and MeSH

generated using undersampling, the three feature configura-
tions and three classifiers. The best F1 (first bold line in
Table III) was obtained by a classification model composed of
feature configuration #1 (Bag-Of-Words), the SVM classifier,
and a training dataset containing 30% of included documents.
However, we are more interested in the F2 score because it em-
phasizes recall over precision, and indicates the capability of a
model to identify the greatest number of included documents.
The F2 results demonstrate that the best model (second bold
line in Table III) is composed of the feature configuration #2
(Bag-Of-Words + MeSH), the LMT classifier and a training set
containing 40% of included documents. This model achieved
0.467 in precision, 0.9 in recall, 0.615 in F1 and 0.759 in F2

score. We call this model HM1. Models based on features #2,
SVM and 90%-10% or 70%-30% balance show results equal
(or very close) to zero because these models classified almost
all documents as excluded.

As the models with the best F1 and F2 were associated
to configurations #1 and #2, we applied feature selection to
all models that used these configurations. Tables IV and V
show the results of these models using IDF and Odds Ratio,
respectively. Table VI shows the reduction in the feature space
obtained, across the five different training sets. To summarize
the effect of the feature selection methods, we show the feature
space size for the largest training set (with 10% of included
documents), the best models (40% of included documents),
and the smallest training set (with 50% of included docu-
ments). In general, Odds Ratio reduced the feature space size
of configuration #1 by ≈80%, while IDF reduced it by less
than 1%. For configuration #2, the reduction by Odds Ratio
was over 80%, while IDF reduced it by ≈18%.

As we can observe from the F2 scores obtained with fea-
ture selection, Odds Ratio somewhat outperforms the results
obtained with IDF filtering. In general, the performance of
configuration #2 still outperforms those of configuration #1.
The best model is composed of the feature configuration #2
(Bag-Of-Words + MeSH terms), the LMT classifier, a training
set with 40% of included documents, and filtering by Odds
Ratio. This model (in bold in Table V) achieved 0.445 in
precision, 0.882 in recall, 0.591 in F1 and 0.737 in F2 score.
We call this model HM2. Although HM2 did not outperform
HM1 (in which no filtering was applied), HM2 has very similar
results to HM1. The major difference between the two is that
HM1 has a feature space size of 14,459; while the feature

TABLE IV
SUMMARY OF EXPERIMENT RESULTS USING IDF FOR FEATURE

SELECTION

Feature Configuration Balance Classifier P R F1 F2

#1: Bag-Of-Words 90% - 10% LMT 0.600 0.545 0.571 0.555
#1: Bag-Of-Words 90% - 10% NB 0.214 0.845 0.342 0.532
#1: Bag-Of-Words 90% - 10% SVM 0.688 0.400 0.506 0.437
#1: Bag-Of-Words 80% - 20% LMT 0.529 0.673 0.592 0.64
#1: Bag-Of-Words 80% - 20% NB 0.209 0.891 0.339 0.54
#1: Bag-Of-Words 80% - 20% SVM 0.646 0.564 0.602 0.58
#1: Bag-Of-Words 70% - 30% LMT 0.462 0.827 0.593 0.714
#1: Bag-Of-Words 70% - 30% NB 0.209 0.909 0.340 0.544
#1: Bag-Of-Words 70% - 30% SVM 0.518 0.655 0.578 0.622
#1: Bag-Of-Words 60% - 40% LMT 0.438 0.836 0.575 0.707
#1: Bag-Of-Words 60% - 40% NB 0.195 0.864 0.318 0.512
#1: Bag-Of-Words 60% - 40% SVM 0.479 0.727 0.578 0.659
#1: Bag-Of-Words 50% - 50% LMT 0.394 0.864 0.541 0.698
#1: Bag-Of-Words 50% - 50% NB 0.199 0.927 0.328 0.535
#1: Bag-Of-Words 50% - 50% SVM 0.386 0.800 0.521 0.659
#2: Bag-Of-Words + MeSH 90% - 10% LMT 0.567 0.655 0.608 0.635
#2: Bag-Of-Words + MeSH 90% - 10% NB 0.217 0.845 0.345 0.535
#2: Bag-Of-Words + MeSH 90% - 10% SVM 0.688 0.400 0.506 0.437
#2: Bag-Of-Words + MeSH 80% - 20% LMT 0.492 0.800 0.609 0.71
#2: Bag-Of-Words + MeSH 80% - 20% NB 0.21 0.891 0.34 0.54
#2: Bag-Of-Words + MeSH 80% - 20% SVM 0.656 0.555 0.601 0.57
#2: Bag-Of-Words + MeSH 70% - 30% LMT 0.462 0.827 0.593 0.714
#2: Bag-Of-Words + MeSH 70% - 30% NB 0.159 0.909 0.271 0.468
#2: Bag-Of-Words + MeSH 70% - 30% SVM 0.526 0.645 0.58 0.612
#2: Bag-Of-Words + MeSH 60% - 40% LMT 0.438 0.836 0.575 0.707
#2: Bag-Of-Words + MeSH 60% - 40% NB 0.159 0.882 0.269 0.462
#2: Bag-Of-Words + MeSH 60% - 40% SVM 0.462 0.727 0.565 0.652
#2: Bag-Of-Words + MeSH 50% - 50% LMT 0.394 0.864 0.541 0.698
#2: Bag-Of-Words + MeSH 50% - 50% NB 0.173 0.927 0.291 0.495
#2: Bag-Of-Words + MeSH 50% - 50% SVM 0.350 0.845 0.495 0.659

space size of HM2 is 2,411. By having a more concise feature
space, HM2 requires less computational resources and time
for the learning phase. Thus, HM2 can be a suitable choice
when resources are limited.

The F1 and F2 results of feature selection methods applied
to feature configuration #1 are presented in Figures 4 and 5,
while the results obtained by feature selection applied to
feature configuration #2 are presented in Figures 6 and 7.
In both configurations we present a comparison between the
models using no feature selection, the models in which IDF
was applied, and the models in which Odds Ratio was applied.

V. DISCUSSION

The best models identified during our experiments, HM1
and HM2, both made use of the LMT classifier and the feature
configuration composed of the Bag-Of-Words and MeSH
terms, using a training set with 40% of included documents.
We discuss here our observations on these three parameters.

A. Imbalanced data

As demonstrated by [6] on biomedical literature classifica-
tion, results obtained with a more balanced training corpus
outperform the models based on training corpora that have
similar distributions to the original task of literature screening.
Among all different class distributions, the balance that yielded
better results contained 40% of included and 60% of excluded
documents. This distribution allows the more balanced model
to still maintain the underlying characteristic of the data, while
removing extra noise that would be introduced by additional
excluded documents. We observed that models with such
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TABLE V
SUMMARY OF EXPERIMENT RESULTS USING ODDS RATIO FOR FEATURE

SELECTION

Feature Configuration Balance Classifier P R F1 F2

#1: Bag-Of-Words 90% - 10% LMT 0.588 0.609 0.598 0.605
#1: Bag-Of-Words 90% - 10% NB 0.228 0.864 0.361 0.555
#1: Bag-Of-Words 90% - 10% SVM 0.697 0.564 0.623 0.586
#1: Bag-Of-Words 80% - 20% LMT 0.532 0.682 0.598 0.650
#1: Bag-Of-Words 80% - 20% NB 0.222 0.873 0.354 0.550
#1: Bag-Of-Words 80% - 20% SVM 0.583 0.736 0.651 0.700
#1: Bag-Of-Words 70% - 30% LMT 0.481 0.800 0.601 0.706
#1: Bag-Of-Words 70% - 30% NB 0.220 0.900 0.353 0.556
#1: Bag-Of-Words 70% - 30% SVM 0.497 0.827 0.621 0.730
#1: Bag-Of-Words 60% - 40% LMT 0.445 0.882 0.591 0.737
#1: Bag-Of-Words 60% - 40% NB 0.213 0.873 0.343 0.539
#1: Bag-Of-Words 60% - 40% SVM 0.430 0.873 0.577 0.724
#1: Bag-Of-Words 50% - 50% LMT 0.392 0.909 0.548 0.719
#1: Bag-Of-Words 50% - 50% NB 0.212 0.882 0.342 0.540
#1: Bag-Of-Words 50% - 50% SVM 0.388 0.918 0.546 0.721
#2: Bag-Of-Words + MeSH 90% - 10% LMT 0.593 0.609 0.601 0.606
#2: Bag-Of-Words + MeSH 90% - 10% LMT 0.228 0.864 0.361 0.555
#2: Bag-Of-Words + MeSH 90% - 10% LMT 0.755 0.336 0.465 0.378
#2: Bag-Of-Words + MeSH 80% - 20% LMT 0.532 0.682 0.598 0.650
#2: Bag-Of-Words + MeSH 80% - 20% LMT 0.221 0.873 0.352 0.550
#2: Bag-Of-Words + MeSH 80% - 20% LMT 0.085 0.800 0.153 0.300
#2: Bag-Of-Words + MeSH 70% - 30% LMT 0.481 0.800 0.601 0.706
#2: Bag-Of-Words + MeSH 70% - 30% LMT 0.220 0.900 0.353 0.556
#2: Bag-Of-Words + MeSH 70% - 30% LMT 0.497 0.827 0.621 0.730
#2: Bag-Of-Words + MeSH 60% - 40% LMT 0.445 0.882 0.591 0.737
#2: Bag-Of-Words + MeSH 60% - 40% LMT 0.213 0.873 0.342 0.539
#2: Bag-Of-Words + MeSH 60% - 40% LMT 0.157 0.927 0.269 0.468
#2: Bag-Of-Words + MeSH 50% - 50% LMT 0.392 0.909 0.548 0.719
#2: Bag-Of-Words + MeSH 50% - 50% LMT 0.212 0.882 0.342 0.540
#2: Bag-Of-Words + MeSH 50% - 50% LMT 0.384 0.900 0.538 0.709

TABLE VI
FEATURE SPACE SIZE REDUCTION AFTER FILTERING BY ODDS RATIO AND

IDF

Configuration Included # of IDF (%) OR (%)
(%) features

#1: Bag-Of-Words 50% 9,913 9,826 0.88% 2,042 79.40%
#1: Bag-Of-Words 40% 11,183 11,092 0.81% 2,392 78.61%
#1: Bag-Of-Words 30% 12,935 12,844 0.70% 2,828 78.14%
#1: Bag-Of-Words 20% 15,709 15,616 0.59% 3,229 79.44%
#1: Bag-Of-Words 10% 22,060 21,944 0.53% 4,040 81.69%
#2: Bag-Of-Words + MeSH 50% 12,688 10,511 17.16% 2,047 83.87%
#2: Bag-Of-Words + MeSH 40% 14,459 11,869 17.91% 2,411 83.33%
#2: Bag-Of-Words + MeSH 30% 16,794 13,766 18.03% 2,828 83.16%
#2: Bag-Of-Words + MeSH 20% 20,350 16,650 18.18% 3,514 82.73%
#2: Bag-Of-Words + MeSH 10% 28,506 23,223 18.53% 4,061 85.75%

balance can better classify documents on the test set composed
of the same class distribution as the original task (10%-90%).

B. Feature configurations

As we can observe in Figures 2 and 3, the configuration
containing only keywords is less discriminative compared to
Bag-Of-Words and MeSH terms. We attribute this result to
the size of the feature set. Feature configuration #1 has 9,913
to 22,060 features (both considering the most balanced, and
the largest and most imbalanced training set, respectively) and
feature configuration #2 has 12,688 to 28,506 features. On
the other hand, configuration #3 (the keywords) contains a
fixed set of 573 features, therefore ≈95% smaller than the
smallest feature sets extracted by the other configurations.
Configuration #2 generally demonstrated the best performance,
and can be recommended as the most suitable feature set for
this task. It is a combination of Bag-Of-Words and MeSH
terms, resulting in a higher number of features, and therefore
providing more information to build the decision boundary.

C. Feature selection

The models using IDF and Odds Ratio as feature selection
achieved comparable results. However, the reduction in the
feature space size provided by Odds Ratio is significant, while
maintaining similar performance to the models with no feature
selection. By using this selection method, the features that
are kept are the most discriminating of included documents.
This approach contributes to generate a feature subset that
is better tailored to recognize the most relevant documents,
while removing attributes that are not discriminative for these
documents.

VI. CONCLUSION

We developed a supervised learning method to support
the HIV literature screening. Similarly to other classification
tasks using biomedical data, the SHARE dataset used in our
work presented an imbalanced class distribution. Only a small
proportion of the document collection represented the task
target. Since this negatively affects the performance of classi-
fication algorithms, data undersampling and feature selection
were analyzed. After experimenting with 105 classification
models, we identified the two best models that seem to best
support HIV literature screening. The first model, which we
call HM1, is composed of a training set containing 40% of
included and 60% of excluded documents, and uses a Bag-
Of-Words and MeSH terms as features. HM1 reached a recall
of 0.9 for the included class, which indicates that 90% of the
included documents were correctly classified. After applying
feature selection, the best performing model, which we call
HM2 yielded a recall of 0.88 for the included class. HM2
has a similar composition as HM1, but the set of features was
filtered using Odds Ratio. While HM2 achieved similar results
to HM1, the set of features in HM2 is ≈83% smaller than
in HM1, which makes it a better model when computational
resources is a concern.

The use of an automatic approach to support literature
screening can greatly benefit experts working in HIV system-
atic reviews. Our results indicate that, by utilizing classifica-
tion models, the great majority of documents to be potentially
included in reviews by researchers can be precisely labelled.
With the support of our system, experts can expect a decrease
in the amount of time and effort needed to collect HIV
systematic reviews.
Reproducibility. Our prototype can be re-used to support
different literature screening tasks beyond the one described
here. The prototype was implemented in Java and is composed
of several modules that allow the use of other datasets,
other undersampling methods, other features and other feature
selection methods. The software prototype is available under
the MIT License at https://github.com/TsangLab.
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