
See	discussions,	stats,	and	author	profiles	for	this	publication	at:
https://www.researchgate.net/publication/220350134

Using	semantic	templates	for	a	natural
language	interface	to	the	CINDI	virtual
library

Article		in		Data	&	Knowledge	Engineering	·	October	2005

DOI:	10.1016/j.datak.2004.12.002	·	Source:	DBLP

CITATIONS

30

READS

106

3	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Fungal	Web	Concordia	2004-2006	View	project

Leila	Kosseim

Concordia	University	Montreal

114	PUBLICATIONS			636	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Leila	Kosseim	on	13	January	2015.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/220350134_Using_semantic_templates_for_a_natural_language_interface_to_the_CINDI_virtual_library?enrichId=rgreq-3de595d72bf530332a88d81df199696e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1MDEzNDtBUzoxODUxODgzMTExMTc4MjZAMTQyMTE2Mzc0MjQ5NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220350134_Using_semantic_templates_for_a_natural_language_interface_to_the_CINDI_virtual_library?enrichId=rgreq-3de595d72bf530332a88d81df199696e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1MDEzNDtBUzoxODUxODgzMTExMTc4MjZAMTQyMTE2Mzc0MjQ5NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Fungal-Web-Concordia-2004-2006?enrichId=rgreq-3de595d72bf530332a88d81df199696e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1MDEzNDtBUzoxODUxODgzMTExMTc4MjZAMTQyMTE2Mzc0MjQ5NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-3de595d72bf530332a88d81df199696e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1MDEzNDtBUzoxODUxODgzMTExMTc4MjZAMTQyMTE2Mzc0MjQ5NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Leila_Kosseim?enrichId=rgreq-3de595d72bf530332a88d81df199696e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1MDEzNDtBUzoxODUxODgzMTExMTc4MjZAMTQyMTE2Mzc0MjQ5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Leila_Kosseim?enrichId=rgreq-3de595d72bf530332a88d81df199696e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1MDEzNDtBUzoxODUxODgzMTExMTc4MjZAMTQyMTE2Mzc0MjQ5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Concordia_University_Montreal?enrichId=rgreq-3de595d72bf530332a88d81df199696e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1MDEzNDtBUzoxODUxODgzMTExMTc4MjZAMTQyMTE2Mzc0MjQ5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Leila_Kosseim?enrichId=rgreq-3de595d72bf530332a88d81df199696e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1MDEzNDtBUzoxODUxODgzMTExMTc4MjZAMTQyMTE2Mzc0MjQ5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Leila_Kosseim?enrichId=rgreq-3de595d72bf530332a88d81df199696e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM1MDEzNDtBUzoxODUxODgzMTExMTc4MjZAMTQyMTE2Mzc0MjQ5NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

www.elsevier.com/locate/datak

Data & Knowledge Engineering 55 (2005) 4–19
Using semantic templates for a natural language interface
to the CINDI virtual library

Niculae Stratica *, Leila Kosseim, Bipin C. Desai

Department of Computer Science, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal H3G 1M8, Canada

Received 2 December 2004; accepted 2 December 2004

Available online 23 December 2004
Abstract

In this paper, we present our work in building a template-based system for translating English sentences

into SQL queries for a relational database system. The input sentences are syntactically parsed using the

Link Parser, and semantically parsed through the use of domain-specific templates. The system is composed
of a pre-processor and a run-time module. The pre-processor builds a conceptual knowledge base from the

database schema using WordNet. This knowledge base is then used at run time to semantically parse the

input and create the corresponding SQL query. The system is meant to be domain independent and has

been tested with the CINDI database that contains information on a virtual library.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Natural language processing; Syntactic analysis; Semantic analysis; Relational data base; CINDI; Natural

language interface
0169-023X/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2004.12.002

* Corresponding author.

E-mail addresses: nstratica@primus.ca (N. Stratica), kosseim@cs.concordia.ca (L. Kosseim), bcdesai@cs.concor-

dia.ca (B.C. Desai).

mailto:nstratica@primus.ca
mailto:kosseim@cs.concordia.ca
mailto:bcdesai@cs.concordia.ca
mailto:bcdesai@cs.concordia.ca

N. Stratica et al. / Data & Knowledge Engineering 55 (2005) 4–19 5
1. Introduction

1.1. Natural language interfaces to databases (NLIDB)

One of the earliest and most widely studied areas of Natural Language Processing (NLP) is the
development of a natural language interface to database systems (NLIDB) (e.g. [11,23]). Such
front ends relieve the users of the need to know the structure of the database and offer a much
more convenient and flexible interaction as the user is not required to learn a new query language.
These features make NLIDB even more attractive today due to the increased computing through-
put of today�s systems. This is why much work is still performed in this area (e.g. [1,7,10]).

Compared to NLIDB, open-domain question–answering (QA) is a fairly recent field in NLP,
but the approaches typically used in this domain can be very useful in NLIDB. Recent develop-
ments in QA (e.g. [21]) have made it possible for users to ask a fact-based question in natural lan-
guage (e.g. Who was the Prime Minister of Canada in 1873?) and receive a specific answer
(Alexander Mackenzie) rather than an entire document where the users must further search for
the specific answer themselves. In this respect, QA can be seen as the next generation of handy
tools to search huge text collections such as the Internet [13].

1.2. NLIDB versus question–answering

Natural language interfaces to database systems and question answering systems differ funda-
mentally in their scientific goals and their technical constraints. QA systems try to answer a nat-
ural language question by analyzing a collection of unrestricted and unstructured texts; while NL
interfaces to DB have the advantage of dealing with structured texts; that is, texts that have al-
ready been decomposed semantically and entities and relationships have already been identified.
However, both NLIDB and QA systems share an interesting similarity: they both take as input a
question formulated in natural language and must interpret it in order to answer it properly. The
advantage of the QA domain is that standard metrics do exist to evaluate and compare different
approaches. Since 1999, the TREC conference, organized annually by the National Institute of
Standard and Technology, evaluate competing QA systems on a standard question set and docu-
ment collection [17–20]. In 2002, the best scoring system [14] at the TREC conference had a con-
fidence-weighted score of 0.856 (out of a maximum of 1). With a corpus of 500 questions, the
system was able to find 415 correct answers and exact answers in a collection of 1 million docu-
ments (�3 Gigabytes of text) [20].

Analyzing an input question in QA and in NLIDB systems is often based on a part-of-speech
(POS) tagging, followed by a syntactic analysis (partial or full) and finally, a more or less precise
semantic interpretation. Although there exist standard techniques for POS tagging (e.g. [2,8,9]) and
syntactic analysis (e.g. [16,8]), techniques for semantic parsing are still very varied and ad hoc. In an
open-domain situation, where the user can ask questions on any topic, this task is often very ten-
tative and relies mainly on lexical semantics only. However, when the discourse domain is limited
(as is the case of NLIDB), the interpretation of a question becomes easier as the space of possible
meanings is smaller, and specific templates can be used [22]. We believe that meta-knowledge of the
database, namely the schema of the database, can be used as an additional resource to better inter-
pret the question in a limited domain. The two strategies described above are presented in Fig. 1.

SQL Query

User

Parse and tag user input

User input

Semantic parsing

Query

Retrieve answers from the
document collection

Select best
choice

A typical QA system

User

Parse and tag user input
(Link Parser for the

syntactic parsing)

User input

Semantic parsing

Retrieve result set from
the data base

Our NLIDB system

Pre-processor

Rules

WordNet,
DB Schema

Return answer
to the user

Return answer
to the user

Fig. 1. Left: The process flow of a typical QA system. Right: The process flow of the NL interface to a database. The

semantic parsing makes use of the schema.

6 N. Stratica et al. / Data & Knowledge Engineering 55 (2005) 4–19
The left side of Fig. 1 illustrates the general architecture of a QA system. The processing is lin-
ear, going through the stages detailed above (POS tagging, syntactic parsing and semantic inter-
pretation). The right side of Fig. 1 shows how semantic interpretation can be improved by making
use of the meta-information. Once the question has been analyzed, the system tries to match the
template representation to the knowledge base created by the pre-processor and to generate the
SQL query.
2. Our proposed model for CINDI

CINDI, the digital library system being developed at Concordia University [3], is a virtual
library built to facilitate the registration of digital resources and their subsequent bibliographic
search [5,6]. CINDI is based on the use of Semantic Headers [4] that store relevant information
for search and discovery: these are the usual search terms such as author�s name, title of the con-
tents of the digital resources, its subject classification, abstract etc. stored in CINDI�s Semantic
Header database. CINDI�s interface sub-system uses an expert system to guide the user in the
search tasks at hand. Once the user input is processed, the CINDI system uses the Semantic
Headers database to retrieve the information from the resource catalog. CINDI thus provides
a mechanism to register, manage and search a bibliography and provide access to the actual
resources once the search is successful. The focus of the current paper is to report on the design
and implementation of a Natural Language interface for the CINDI system.

The detailed design of the natural language processor is presented in Fig. 2.
The questions are tagged and syntactically parsed using the Link Parser [16] and semantically

parsed through the use of semantic templates that we developed (see Section 2.2). The template

Database
Schema

User input

Token parsing
and tagging

Syntactic
analysis

Semantic
analysis

Build set of
queries

Extract
answers

Link Parser

Pre-processor

Domain-specific
interpretationrules

User-defined
Vocabulary

rules

Semantic
templates

WordNet

DataBase
records

Fig. 2. The design of the natural language processor.

N. Stratica et al. / Data & Knowledge Engineering 55 (2005) 4–19 7
representation of the question is similar to the work of [15] in question answering. Once the ques-
tion is parsed, its template representation is mapped to the meta-representation of the database
constructed by the pre-processor and subsequently translated into an SQL query.

2.1. The pre-processor

As mentioned previously, the role of the pre-processor is to limit the scope of the interpretation
of the input by building a knowledge base that is specific to the schema of the database. As shown
in Fig. 2, the pre-processor uses the schema of the database and user-defined vocabulary rules
coupled with WordNet [12] to create domain-specific interpretation rules (the knowledge base).
The Link Parser and the WordNet ‘‘C’’ code has been integrated with a combination of ‘‘C’’
and ‘‘C++’’ code in the NLIDB system.

2.1.1. Reference to CINDI relations
In order for the interface to take into account lexical variations in the input questions, the pre-

processor builds a semantic knowledge base composed of interpretation rules and semantic sets
for all possible relation and attribute names in the database. This allows us to build the same
semantic representation, and hence, the same SQL query for questions such as:

Who is (are) the author(s) of the book(s) ‘‘Algorithms’’?
Who is (are) the writer(s) of the book(s) ‘‘Algorithms’’?
Who is (are) the author(s) of the resource(s) ‘‘Algorithms’’?
Who is (are) the writer(s) of the resource(s) ‘‘Algorithms’’?

To build the semantic knowledge base, the pre-processor first reads the schema of the database,
identifies all relation names and attribute names and finally, uses WordNet [12] to create a list of
hyponyms, hypernyms and synonyms for each relation and attribute name. This initial semantic
set is then proposed to the system administrator, who can modify it to reflect the specific senses of

resource author

resource_author

1

MN

1

Fig. 3. Example of a relationship and the corresponding relations involving author and resource in the CINDI system.

8 N. Stratica et al. / Data & Knowledge Engineering 55 (2005) 4–19
the database names in the context of the database discourse domain. The adjusted semantic set is
then used at run time to find which relation names are most likely to be referred to by the terms in
the input sentence.

For example, in the CINDI database, a relation name such as author will trigger the pre-pro-
cessor to generate the initial semantic set containing, but not being limited to, the following terms
{writer, author, generator, source, communicator, person, individual, maker, shaper, coauthor, nov-
elist, . . .}, which the NLIDB system administrator at the time of installation could reduce to:
{author, creator, generator, writer}. Using semantic sets, the four questions above will produce
the same SQL query at run time, because they involve words from the same semantic set.

Let us consider another example. Still in the library domain, let us consider three relations
named: resource, author and resource_author. The three relations are shown in Fig. 3.

Assume that the relation resource has the attributes resource id, title and publish date, the rela-
tion author has two attributes: author id and name, and the relation resource author has two for-
eign keys: resource id and author id. With this small schema, the pre-processor will compute the
semantic sets of the relation resource, with help fromWordNet. The user will instruct the pre-pro-
cessor to accept the terms {book, document, article, paper, report, resource, thesis, tutorial} as pos-
sible references to resource. If a database relation name cannot be found in WordNet, the system
administrator is asked to propose a synonym in the domain, and the pre-processor will be able to
find an initial semantic set. For example, with a relation name such as resource_author which
could not be found in the word list of WordNet, the administrator can identify requirements

as a likely synonym and the pre-processor can create the appropriate semantic set. Similarly, when
two relations are in a many-to-many relationship, then the corresponding relation for this rela-
tionship might not have a meaning of its own and it is not always associated with a dictionary
word.

2.1.2. References to relations

While the entities in the database are referred to by noun phrases that are semantically mapped
to database relations, the relationship between these entities are often referred to by verb phrases.
At the pre-processing time, the system administrator identifies the possible verbs that can relate
the entities in a specific database schema and uses WordNet again to extract and edit the semantic
set of each verb. That is, WordNet is used to search for synonyms, hypernyms and hyponyms of
the verb.

2.1.3. Default attributes
Default attributes are used to indicate which attribute is being referred to, when the user input

question does not contain an explicit reference to an attribute name. For example, as we saw pre-
viously, in CINDI, the verb wrote in Who wrote The Old Man and The Sea? relates the relations

N. Stratica et al. / Data & Knowledge Engineering 55 (2005) 4–19 9
author and resource. However, the attributes of interest are not explicitly stated in the ques-
tion as in What is the name of the author who wrote the book with the title: The Old Man and The
Sea? In order to determine which attributes are referenced when none are explicated, the database
administrator designates a default attribute for each relation in the database. In CINDI, the de-
fault attribute of the relation author is name, and the default attribute for resource is title.

2.1.4. Relations rules

Relations rules are meant to take into account dependencies between relations; and indicate the
general pattern for mapping a user input to an SQL query. For example, given the 3-relation rela-
tionship shown in Fig. 3, if the relations resource and author are involved in a SQL query, then
the relation resource author must appear as well. The relation rules determine the list of relation
and the list of conditions in the final SQL query. The rule associated with the relation configura-
tion of Fig. 3 is:
If (relation_list contains (author, resource))

then relation_list = relation_list + resource_author
Each relation rule is associated with a SQL template that is created by the pre-processor and
used at run time to build the final SQL query with the specific values found in the user input.
For example, with the relation of Fig. 3, the associated SQL template will be:
SELECT (hattribute_list i)
FROM author, resource, resource_author
WHERE author.author_id = resource_author.author_id
AND resource.resource_id = resource_author.resource_id
AND hconditions_listi
2.2. Run-time interpretation

Once the pre-processor has built the interpretation rules, these are used at run time to interpret
the input questions. The analysis of the input questions is performed by matching the syntactic
parse of the question to a set of fixed templates. This approach is similar to the one used in
QA (e.g. [15]).

2.2.1. Syntactic analysis
We use the Link Parser [16] to parse the input question. This particular parser was chosen for

three main reasons. First, its grammar coverage and parsing accuracy are high and it is very fast;
making it ideal for our application that must analyze questions dynamically. Second, the Link
Parser returns a set of all possible parse trees and ranks them in order of likelihood, thus allow-
ing us to build several possible queries or take into account the confidence level of the parser to

10 N. Stratica et al. / Data & Knowledge Engineering 55 (2005) 4–19
evaluate our result. And finally, both the executable and the source code are free,1 making it easy
to incorporate into the CINDI interface.

The input question is first sent to the Link Parser which returns a ranked list of parse trees
(from the most likely to the least likely). Fig. 4 shows an example of the Link Parser output
for the sentence List the address of the writer Mark Twain. Only one parse tree was found.

The same sentence has been passed through the NLIDB system which embeds the �C� code of
the LinkParser engine. The screen output is shown in Fig. 5.

2.2.2. Semantic analysis
Once the input question has been syntactically parsed, we use fixed templates to interpret its

meaning. Three semantic templates are used:
hattributei of hobjecti
hattributei of hobjecti of hobjecti
haction verbi hobjecti hattribute valuei
The system tries all parse trees generated by the Link Parser until one matches a semantic tem-
plate. As objects are mostly mapped linguistically as noun phrases, to match an hobjecti in a tem-
plate, we specifically look for tag sequences of the Link Parser that correspond to noun phrases.
To match an hattributei, any string will be considered, as long as it forms a full constituent. And
to match haction verbi, we look for verb phrases in the parse tree. Let us now show each template
in detail.

2.2.2.1. The attribute of object template. The hattributei of hobjecti template deals with a
simple form of input question involving only one attribute in only one relation associated with
the semantic set of the object.

In order to translate a question based on this template to its corresponding SQL query, we have
associated the following fixed SQL template:
SELECT attribute

FROM relation1

WHERE default attribute = hvalue of relation1.default_attributei
Table 1 shows two examples of the hattributei of hobjecti template. In the first example,
the question List the address of the writer Mark Twain is parsed by the Link Parser. Only one
parse tree is found (see Figs. 4 and 5). The Link Parser identified List as a verb phrase, the address
as a noun phrase and so on. In order to build the corresponding SQL query, the system tries to
apply the hattributei of hobjecti template and identifies the noun phrase the writer as the
1 see http://bobo.link.cs.cmu.edu/link/

http://bobo.link.cs.cmu.edu/link/

Fig. 5. Actual screen output from the NLIDB system running the same input sentence as the one shown in Fig. 4.

Fig. 4. The output from the on-line Link Parser for the sentence List the address of the writer Mark Twain.

Table 1

Two examples of the hattributei of hobjecti template

Natural language question SQL query

SELECT address

List the address of the writer Mark Twain FROM author

Attribute Relation WHERE name = Mark Twain

SELECT size

What is the size of the book ‘‘Algorithms’’? FROM resources

Attribute Relation WHERE title = �Algorithms�

N. Stratica et al. / Data & Knowledge Engineering 55 (2005) 4–19 11

Table 2

Examples of questions matching the hattributei of hobjecti of hobjecti template

Natural language question SQL query

List the address of the author of the book �Astronomy�. SELECT author.address

Attribute Relation1 Relation2 Value of Default Attribute FROM author, resource, resource_author

WHERE resource.title = �Astronomy� AND

resource.resource_id = resource_author.resourcen_id
AND author.author_id = resource_author.authorn_id

What is the name of the author of the book �Physics�? SELECT author.name

Attribute Relation1 Relation2 Value of Default Attribute FROM author, resource, resource_author

WHERE resource.title = �Physics� AND

resource.resource_id = resource_author.resource_id

AND author.author_id = resource_author.author_id

12 N. Stratica et al. / Data & Knowledge Engineering 55 (2005) 4–19
reference to the relation of interest. Using the semantic set built by the pre-processor, the word
writer is mapped to the relation author. The noun phrase the address is processed similarly and
the attribute address of the relation author is identified. The next step is to match Mark Twain

to the default attribute of the target relation, which is name. The final SQL query is indicated
in the right-hand column of Table 1.

2.2.2.2. Attribute of object of object template. The hattributei of hobjecti of hobjecti tem-
plate is meant to take into account questions that involve one explicit attribute from a relation
and the default attribute from a second relation. Examples of questions involving this template
are given in Table 2.

If the system identifies two consecutive target relations, it tries to match the input question with
the hattributei of hobjecti of hobjecti template. The associated SQL template is shown in
the following box:
SELECT relation1.attribute

FROM relation1, relation2

WHERE relation2.def_att = hvalue of relation2.def_atti
Table 2 shows two examples of the hattributei of hobjecti of hobjecti template. For
example, with the question What is the name of the author of the book �Physics�? Following the
syntactic parses generated by the Link Parser, the system identifies author and resource as the
two target relations. The relation author has an attribute which is found in the semantic set of
the noun name. For the relation resource the system uses the default attribute, which is title.
The generated SQL query is shown in the right-hand column of Table 2.

2.2.2.3. Action verb template. In the previous examples, the verb in the question carried no infor-
mation as to what database relation to look for. However, some verbs do carry important clues

N. Stratica et al. / Data & Knowledge Engineering 55 (2005) 4–19 13
for the interpretation of the question (e.g. write, borrow, call, . . .). The action verb template is used
when the verb in the question gives clues as to what relation to look for.

The simplest example of the action verb template involves one action verb and the value of one
default attribute, as in Who wrote the Old Man and the Sea? In this example, although the system
finds no relation name in the query, it does find the action verb wrote, which is semantically re-
lated to the relations author and resource (see Section 2.1.4). From the default attributes for these
CINDI database relations, namely name and title, NLIDB derives the following criteria:
Attribute1 = Relation1.default attribute = author.name = result—to be

determined

Attribute2 = Relation2.default attribute = resource.title = �the Old

Man and the Sea�
From the schema rules, NLIDB also determines that for the pair of CINDI database relations
(author, resource) must also involve the database relation (resource author). Using
these along with the criteria, NLIDB generates the following SQL query:
SELECT author.name

FROM author, resource, resource author

WHERE resource.title = �the Old Man and the Sea�
AND resource author.resource id = resource.resource id

AND resource author.authorid = author.author id
3. Implementation

The NLIDB system is being evaluated for use on the CINDI system. The database for CINDI
currently contains 15 relations. The system has been developed in C and C++ and uses a com-
mand-line interface; but we intend to make the interface available over the Internet through a
more convenient interface. Figs. 6 and 7 show two sample outputs of the system. With the input
List books, the system created the SQL query SELECT resource.title FROM resource.
However, with the input List the phone of Mark Twain, no corresponding SQL was generated be-
cause the system could not find the relation name.

So far, we have evaluated the system informally, with questions ranging from to 20 words in
length. At the present time, we estimate a success rate of about 70% for correct questions having
one action verb, one direct object and two modifiers. With three modifiers, the success rate de-
creases significantly because the input question becomes syntactically more complex and the num-
ber of possible parses found by the Link Parser increases exponentially. In this case, the system
needs to be improved so as to make a better selection of the parse tree offered by the Link Parser.
The results seem promising, but a formal evaluation needs to be performed.

Fig. 6. Example of a correct analysis with the template hattributei of hobjecti. The NLIDB system constructs the SQL

query: SELECT resource.title FROM resource.

Fig. 7. Example of a failed analysis with the template hattributei of hobjecti. The relation name was not found and no

SQP query has been generated.

14 N. Stratica et al. / Data & Knowledge Engineering 55 (2005) 4–19
3.1. Experimental results

The Natural Language system (NLIDB) was tested on input queries up to 10 words, involving
the use of one or two tables from the CINDI database. Fig. 8 shows the actual screen output for
the following query: List books written by Mark Twain. The Link Parser finds 4 linkages which are
processed in order till the resulting SQL returns a non-empty result set, if any.

NLIDB maps the noun books to table resources but it cannot map any of the attributes of
the table resources to the input query. Instead it uses the default attribute which is specified in
the rules database i.e. the resources.title attribute.

The action verb written is mapped to the authors table in the database through the action
verbs list. The default attribute for table authors is author.name which is given the value

Fig. 8. Actual screen output for the input sentence List books written by Mark Twain. The resulting SQL query is:

SELECT resource.title FROM. . .

N. Stratica et al. / Data & Knowledge Engineering 55 (2005) 4–19 15
obtained from the remained of the input query, that is author.name = �Mark Twain�. The tables
resources and author are related to each other through the resource_author relation.
This dependency is captured in the rules database. The final SQL query is:
SELECT resource.title FROM resource, author, resource_author
WHERE author.name = �Mark Twain�
In the example shown in Fig. 8, all 4 links returned by the Link Parser are valid and generate
the same SQL query. This detail is counted for when computing the degree of confidence level for
the result.

Table 3 shows actual results returned by the system on several input queries for the CINDI
library system.
4. Conclusion and future work

In the early stages of input parsing, the NLIDB system described above decomposes the user
question and tries to match it to a semantic template. For the semantic parsing phase the system
improves the quality of the parsing by using pre-computed information. The pre-computed infor-
mation is based on the actual structure of the target database.

If the data is highly organized, as is the case in most relational database implementations, the
search domain can be reduced, and thus the precision of the question analysis can be improved.
The reduction of the search domain is made possible because the system knows in advance,
through the interpretation rules, what it can answer.

Table 3

Experimental results

No. Input sentence Result Note

1 Show the address of

Mark Twain

Fail Table was not identified.No word in the sentence

matches any of the table names, nor their

corresponding semantic sets.

2 Show the address of

author Mark Twain

Pass Table = author, template hattribute-of-tablei
SELECT address FROM author WHERE name = �Mark Twain�

7 Show the name of the

author of book

�General Astronomy�

Pass table1.attribute = name, table1 = author,

table2 = book, default attribute for table2 = title,

template hattribute-of-table-of-tablei
SELECT author.name FROM
author, resource, resource_author WHERE
resource.title = �General Astronomy� AND
resource.resource_id = resource_author.resource_id AND
author.author_id = resource_author.author_id

8 Who wrote �General
Astronomy�?

Fail Table was not identified.No word in the

sentence matches any of the table names, nor

their corresponding semantic sets

11 What is the name of

the author who wrote

the book �General
Astronomy�?

Pass table1.attribute = name, table1 = author,

table2 = book, default attribute for table2 = title,

template hattribute-of-table-of-tablei
SELECT author.name FROM
author,resource, resource_author WHERE
resource.title = �General Astronomy� AND
resource.resource_id = resource_author.resource_id AND
author.author_id = resource_author.author_id

13 Show all books

written by

author Mark Twain

Pass Table1 = book, table2 = author,

template htable-action-tablei
SELECT book.name FROM
author,resource,resource_author WHERE
author.name = �Mark Twain� AND
resource.resource_id = resource_author.resource_id AND
author.author_id = resource_author.author_id

13 Which are the books

written by author

Mark Twain?

Pass Table1 = book, table2 = author, template

htable-action-tablei SELECT book.name FROM
author, resource,resource_author WHERE
author.name = �Mark Twain� AND
resource.resource_id = resource_author.resource_id AND
author.author_id = resource_author.author_id

16 N. Stratica et al. / Data & Knowledge Engineering 55 (2005) 4–19
To evaluate the accuracy of the system, we need to ask real users to test the system and evaluate
four measures:

• The number of correct SQL queries generated (e.g. Fig. 6).
• The number of incorrect SQL queries generated.
• The number of correct silences (e.g. Fig. 7).
• The number of incorrect silences.

N. Stratica et al. / Data & Knowledge Engineering 55 (2005) 4–19 17
In addition, for each type of error, we need to determine how many were brought about by:

• The results of WordNet (as the number of semantically related terms returned by WordNet
increases, the accuracy of the overall system will decrease).

• The accuracy and number of parse trees generated by the Link Parser, and
• The precision of the interpretation rules used in our model.

In addition, we expect that the quality of the results will depend on:

• The size of the database: the larger the schema of the database, the lower the accuracy is
expected to be.

• The specificity of the rules: The less specific the rules are, the lower the accuracy is expected to
be (but the higher the portability of the system).

• The role of the pre-processor: The more specific rules and code is in the pre-processor, the
higher the accuracy is expected to be (but the less portable the system will be).

Our system is not open-domain; it is designed to be tuned to a given database. Once so tuned,
there is a dependency between the system and the database. However, this dependency is localized
in the pre-processor.

Future work includes the formal evaluation of the system with real system users and the
possibility to process queries with more than two sub-sentences. Also, to improve the results,
we plan to associate a probability measure to the constructed SQL queries. This can be done
by using a confidence measure in the lexical and semantic relations used to create the semantic
sets (e.g. the number and type of links traversed in WordNet), and by using the cost vector
(confidence level) of the Link Parser. Another goal is to test the system on different flavors of
the Unix system (HP-UX, Sun Solaris, Linux) and on the Window system. We plan to port the
system to other platforms as well.

NLIDB has been developed for the English language only and it integrates two other exist-
ing tools i.e. WordNet [12] and the context-free Link Parser [16]. The system uses the Link
Parser in order to have a syntactic parse of the input sentence. Another parser or another type
of grammar could also be used, as long as the resulting syntactic tree can be mapped to the seman-
tic rules. For example the system could be further developed around a HPSG parser (Head-Dri-
ven Phrase Structure Grammar). In addition, because our approach uses WordNet and a syntactic
parser, NLIDB is adaptable to other languages provided that such tools are also available in the
new language. Its intended use is for the students in need of information from the library system.
The system can be further developed to include dialog capabilities for narrowing down the result
set.

Currently NLIDB does not support sub-queries and SQL extensions such as ORDERING,
HAVING and COUNTING.

Although NLIDB is not open-domain, it is not restricted to one database. It can work with
more than one database. When changing from one database to another, the only change occurs
at the pre-processing time when the database schema is interpreted and the rules are created.
NLIDB can work with any RDBMS (Relational Database Management System) given the table
and attribute names have or can be related to linguistic meanings.

18 N. Stratica et al. / Data & Knowledge Engineering 55 (2005) 4–19
Acknowledgment

This research was supported in part by a grant from NSERC Canada and IDEAS.
References

[1] Lars Ahrenberg, Nils Dahlbäck, Annika Flycht-Eriksson, Arne Jönsson, Pernilla Qvarfordt, Lena Santamarta,

Lena Strömbäck, Towards multimodal natural language interfaces for information systems the LINLIN approach,

in: Proceedings of the 4th International Conference on Applications of Natural Language to Information Systems

(NLDB 99), Austria, 17–19 June 1999.

[2] E. Brill, Transformation based error driven learning and natural language processing: A case study in part of

speech tagging, Computational Linguistics 21 (4) (1995) 543–565.

[3] B.C. Desai, Supporting discovery in virtual libraries, Journal of the American Society of Information Science 48 (3)

(1997) 190–204.

[4] B.C. Desai, S.S. Haddad, A. Ali, Automatic semantic header generator, in: Proceedings of ISMIS�2000, Charlotte,
NC, Springer-Verlag, 2000, pp. 444–452.

[5] B.C. Desai, R. Shinghal, N. Shyan, Y. Zhou, Cindi: A system for cataloguing, searching, and annotating electronic

documents in digital libraries, in: Proceedings of ISMIS�99, Warsaw, Poland, Springer-Verlag, June 1999, pp. 154–

162.

[6] B.C. Desai, R. Shinghal, N. Shyan, Y. Zhou, Cindi: A system for cataloguing, searching, and annotating

electronic documents in digital libraries, Library Trends 48 (1) (1999) 209–233.

[7] F. Dinenberg, D. Levin, Natural language interfaces for environmental data bases, in: Applications of Natural

Language to Information Systems: Proceedings of the Second International Workshop, Amsterdam, The

Netherlands, 26–28 June 1996, pp. 175–184.

[8] D. Jurafsky, J. Martin, Speech and Language Processing: An Introduction to Natural Language Processing,

Speech Recognition and Computational Linguistics, Prentice Hall, New Jersey, 2000.

[9] C. Manning, H. Schutze, Foundations of Statistical Natural Language Processing, MIT Press, Cambridge, MA,

1999.

[10] Johannes Matiasek, Alexandra Klein, Harald Trost, Tamic-P: A system for NL access to social insurance

databases, in: Proceedings of the 4th International Conference on Applications of Natural Language to

Information Systems (NLDB 99), Austria, 17–19 June 1999.

[11] M. McTear, The Articulate Computer, Basil Blackwell Oxford, Oxford, England, 1987.

[12] G. Miller, WordNet: a lexical database for english, Communications of the ACM 38 (1) (1995) 39–41.

[13] D. Molla, J. Berri, M. Hess, A real world implementation of answer extraction, in: Proceedings of the 9th

International Workshop on Database and Expert Systems, Workshop: Natural Language and Information

Systems (NLIS-98), Vienna, 1998.

[14] Dan Moldovan, Sanda Harabagiu, Roxana Girju, Paul Morarescu, Finley Lacatusu, Adrian Novishi, Adriana

Badulescu, Orest Bolohan, LCC tools for question answering, in: E.M. Voorhees, Lori P. Buckland (Eds.),

Proceedings of the Eleventh Text Retrieval Conference (TREC-2002)—NIST Special Publication: SP 500–251,

Gaithersburg, Department of Commerce, National Institute of Standards and Technology, November 2002.

[15] L. Plamondon, L. Kosseim, QUANTUM: A function-based question answering system, in: Proceedings of the 15th

Conference of the Canadian Society for Computational Studies of Intelligence (AI 2002), Calgary, Canada, 2002,

pp. 281–292.

[16] D.D. Sleator, D. Temperley, Parsing English with a link grammar, in: Proceedings of the Third International

Workshop on Parsing Technologies, 1993.

[17] E.M. Voorhees, The TREC-8 question answering track report, in: E.M. Voorhees, D.K. Harman (Eds.),

Proceedings of the Eight Text Retrieval Conference (TREC-8)—NIST Special Publication: SP 500-246,

Gaithersburg, Department of Commerce, National Institute of Standards and Technology, November 1999.

N. Stratica et al. / Data & Knowledge Engineering 55 (2005) 4–19 19
[18] E.M. Voorhees, Overview of the TREC-9 question answering track, in: E.M. Voorhees, D.K. Harman (Eds.),

Proceedings of the Ninth Text Retrieval Conference (TREC-9)—NIST Special Publication: SP 500-249,

Gaithersburg, Department of Commerce, National Institute of Standards and Technology, November 2000.

[19] E.M. Voorhees, Overview of the TREC 2001 question answering track, in: E.M. Voorhees, D.K. Harman (Eds.),

Proceedings of the Tenth Text Retrieval Conference (TREC-2002)—NIST Special Publication: SP 500-250,

Gaithersburg, Department of Commerce, National Institute of Standards and Technology, November 2001.

[20] E.M. Voorhees, Overview of the TREC 2002 question answering track, in: E.M. Voorhees, Lori P. Buckland

(Eds.), Proceedings of the Eleventh Text Retrieval Conference (TREC-2002)—NIST Special Publication: SP 500-

251, Gaithersburg, Department of Commerce, National Institute of Standards and Technology, November 2002.

[21] E.M. Voorhees, D.K. Harman (Eds.), Proceedings of the Tenth Text Retrieval Conference (TREC-2002)—NIST

Special Publication: SP 500-250, Gaithersburg, Department of Commerce, National Institute of Standards and

Technology, November 2001.

[22] M. Watson, NLBean(tm) version 4: a natural language interface to databases, Available from: <www.markwat-

son.com>, Site visited in May 2002.

[23] W. Woods, R. Kaplan, Lunar rocks in natural English: Explorations in natural language question answering:

linguistic structures processing, Fundamental Studies in Computer Science 5 (1977) 521–569.

Niculae Stratica holds an engineering degree from the University of Bucharest and a MS in

Computer Science from the Concordia University in Montreal. He is currently enrolled in the

Ph.D. program at the same university. His research work covers topics in computerized cancer

treatment, natural language processing and distributed computing.
Dr. Leila Kosseim is an Assistant Professor at the Department of Computer Science and Software

Engineering at Concordia University, where she does research in Natural Language Processing.

Prior to that, she was a researcher at the Université de Montréal and an NSERC post-doctoral

fellow in the industry. She received her Ph.D. in 1995 from the Université de Montréal working on

Natural Language Generation.
Dr. Bipin C. Desai is a professor in the Department of Computer Science and Software Engi-

neering of Concordia University. His current interests include database systems, digital library,

medical information systems and NLDB.
View publication statsView publication stats

http://www.markwatson.com
http://www.markwatson.com
https://www.researchgate.net/publication/220350134

	Using semantic templates for a natural language interface to the CINDI virtual library
	Introduction
	Natural language interfaces to databases (NLIDB)
	NLIDB versus question ndash answering

	Our proposed model for CINDI
	The pre-processor
	Reference to CINDI relations
	References to relations
	Default attributes
	Relations rules

	Run-time interpretation
	Syntactic analysis
	Semantic analysis
	The attribute of object template
	Attribute of object of object template
	Action verb template

	Implementation
	Experimental results

	Conclusion and future work
	Acknowledgment
	References

