
Available online at www.sciencedirect.com
Data & Knowledge Engineering 66 (2008) 53–67

www.elsevier.com/locate/datak
Improving the performance of question answering
with semantically equivalent answer patterns

Leila Kosseim *, Jamileh Yousefi

CLaC Laboratory, Department of Computer Science and Software Engineering, Concordia University,

1400 de Maisonneuve Blvd., West Montreal, Quebec, Canada H3G 1M8

Available online 11 September 2007
Abstract

In this paper, we discuss a novel technique based on semantic constraints to improve the performance and portability of
a reformulation-based question answering system. First, we present a method for acquiring semantic-based reformulations
automatically. The goal is to generate patterns from sentences retrieved from the Web based on lexical, syntactic and
semantic constraints. Once these constraints have been defined, we present a method to evaluate and re-rank candidate
answers that satisfy these constraints using redundancy. The two approaches have been evaluated independently and in
combination. The evaluation on 493 questions from TREC-11 shows that the automatically acquired semantic patterns
increase the MRR by 26%, the re-ranking using semantic redundancy increases the MRR by 67%, and the two approaches
combined increase the MRR by 73%. This new technique allows us to avoid the manual work of formulating semantically
equivalent reformulations; while still increasing performance.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Today, an overwhelming quantity of textual information is available in electronic form. This makes the
development of semi-automatic tools to mine the content of such documents a necessity. To answer this need,
the natural language processing (NLP) community has harnessed together formerly independent technologies
in order to build more sophisticated content-based systems such as information retrieval engines, text summa-
rizers, and question answering systems.

In this paper, we present a technique that uses semantic constraints to improve a reformulation-based ques-
tion answering system. The objective of the research was to automatically acquire answer extraction patterns
with semantic constraints that perform as well as manually created ones. We show how we generate these pat-
terns from sentences retrieved from the Web based on lexical, syntactic and semantic constraints. Once these
0169-023X/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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Table 1
Examples of factoid questions from the TREC–QA track (TREC-8–11)

TREC # Q # Question

TREC-8 Q-1 Who is the author of the book, ‘‘The Iron Lady: A Biography of Margaret Thatcher’’?

TREC-8 Q-2 What was the monetary value of the Nobel Peace Prize in 1989?

TREC-8 Q-3 What does the Peugeot company manufacture?

TREC-9 Q-201 What was the name of the first Russian astronaut to do a spacewalk?

TREC-9 Q-202 Where is Belize located?

TREC-9 Q-203 How much folic acid should an expectant mother get daily?

TREC-10 Q-894 How far is it from Denver to Aspen?

TREC-10 Q-895 What county is Modesto, California in?

TREC-10 Q-896 Who was Galileo?

TREC-11 Q-1394 In what country did the game of croquet originate?

TREC-11 Q-1395 Who is Tom Cruise married to?

TREC-11 Q-1396 What is the name of the volcano that destroyed the ancient city of Pompeii?
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constraints have been defined, we present a method to evaluate and re-rank candidate answers that satisfy
these constraints using redundancy. The two approaches have been evaluated independently and in combina-
tion. The evaluation on 493 questions from TREC-11 shows that the automatically acquired patterns increase
the precision by 16% and the MRR by 26%, the re-ranking using semantic redundancy increases the MRR by
67%, and the two approaches combined increase the precision by 28% and the MRR by 73%. This new tech-
nique allows us to avoid the manual work of formulating semantically equivalent reformulations; while still
increasing performance.

This paper is organized as follows: Section 2 reviews previous work in the area. We present both general
issues in question answering, and specific work on reformulation-based question answering. Section 3 presents
the manual formulations that we used for comparison, then Section 4 presents in detail how we generate the
semantic patterns and how we evaluated them. Section 5 then discusses how the patterns can be used to re-
rank the candidate answers and again, improve the performance of the system. Section 6 finally evaluates
the use of the generated patterns and the semantic re-ranking together. A discussion and a conclusion are then
presented in Section 7.

2. Related work

2.1. Question answering

Information Retrieval (IR) systems are designed to find documents that satisfy user’s information needs in
large document collections (e.g. the Web). Given a bag of keywords, an IR system will retrieve the most rel-
evant documents. However, as [1] puts it, IR is better described as document retrieval, rather than information

retrieval. To approach true information retrieval, in 1998, the National Institute of Standards and Technology
(NIST) have added a new Question Answering (QA) track to their competition-style Text REtrieval Confer-
ence (TREC) [2]. In this task, systems are given a set of factoid questions (see Table 1 for some examples) and
a 3 GB document collection and are required to return anything from a 250-byte text snippet to the exact
answer to the question extracted from the document collection. For example, given the question, Who founded

American Red Cross? a QA system will search the document collection and extract the answer Clara Barton,
instead of returning an entire document. Thus, the user is not responsible anymore of analyzing the content of
returned documents to find an answer; it is the QA system’s responsibility to extract the correct answer from
the retrieved documents.

Following TREC–QA, standard measure to evaluate QA systems is the mean reciprocal rank (MRR).1 For
each question, a QA system will return a ranked list of candidate answers. The score of the system for a ques-
tion q is computed as the reciprocal rank of the first correct answer ðRRðqÞÞ. If the candidate list contains the
1 Other measures include the confidence weighted score and the accuracy.
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correct answer, the score is equal to the reciprocal of its rank; otherwise, the score is zero. For example, if a
question generates a list of five candidates and the first correct answer is at rank 3, the question receives a
RRðqÞ score of 1

3
. The overall system score is the mean of RRðqÞ for all questions q [3].

Since 1998, the field of QA has received a lot of interest both in the research community and in the industry;
and today QA has become a major application of NLP. Over the years, the TREC–QA task has attracted
more and more teams and the requirements have become more and more challenging. Novel techniques have
been developed to answer these new challenges, ranging from purely statistical techniques using redundancy of
answers from the Web (e.g. [4]), to syntactic-based analysis of the documents (e.g. [5]), to attempts at semantic
representations (e.g. [6]). Harabagiu et al. [1] offers an up-to-date overview of the techniques used in open-
domain QA and Voorhees and Harman [7] presents a complete historical perspective of the TREC
competitions.

2.2. Reformulation-based QA

A standard technique used in QA working on large document collections such as the Web is to use question
reformulations (also referred to as surface patterns, paraphrases, re-write rules, and answer patterns). The tech-
nique is based on identifying various ways of expressing an answer context given a natural language question.
For example given the question Who founded American Red Cross?, a reformulation-based QA system will
search for formulations like the founder of the American Red Cross is hNPi or hNPi, the founder of the Amer-

ican Red Cross in the document collection and will instantiate hNPi with the matching noun phrase. The ideal
reformulation should impose constraints on the answer so as not to retrieve incorrect answers (e.g. the founder

of the American Red Cross is a nut lover) but should also identify many candidate answers to increase the sys-
tem’s confidence in them.

Most work on reformulations has used patterns based on lexical, syntactic or named entity features (e.g.
person-name, organization, etc.). However, only a few studies have worked on semantically equivalent refor-
mulations such as hNPi, also known as the founder of the American Red Cross or the creator of the American

chapter of the Red Cross organization is hNPi. We believe that stronger semantic constraints can be beneficial
in finding a more precise set of candidate answers. However writing semantic reformulations by hand is a
labor-intensive and tedious task. Our goal is to learn semantically equivalent reformulation patterns automat-
ically from natural language questions and use these constraints to re-rank our candidate answers to improve
the performance of a QA system.

2.3. Related work on reformulation acquisition

In 2001, Soubbotin et al. [8] along with Brill et al. [9] were among the first to use reformulation patterns as
the core of their QA system. This approach searches the document collection for predefined surface patterns or
exact sentences that could be the formulation of the potential answer. Soubbotin et al. [8] wrote their patterns
by hand and were among the best scoring team at the TREC-10 QA track [10]. Their work shows that if
enough human resources are available, hand-crafted rules can produce excellent results. On the other hand,
Brill et al. [9] generated patterns automatically by using simple word permutations to produce paraphrases
of the question. By permutating words of the questions like simple tokens, they generated a large set of refor-
mulations. Most were ungrammatical, but since they were mapped onto a large document collection (the
Web), ungrammatical permutations will, in principle, retrieve nothing, and grammatical and fluent contexts
will retrieve candidates that can be ranked by frequency.

Given the success of these first attempts, much progress has then been made to acquire reformulations auto-
matically; and to this day, the use of reformulations is still a important technique used in QA (e.g. [11,12])
whether they are created manually or learned automatically. More recently, Aceves-Prez et al. [13] tried to
use simple word permutations and verb movements to generate paraphrases for their multilingual QA system.
In the work of [14–16], answer formulations are produced for query expansion to improve information retrie-
val. While in [16] reformulation rules to transform a question of the form What is X? into X is or X refers to are
built by hand, Agichtein et al. [15] and Agichtein and Gravano [14] learns to transform natural language ques-
tions into sets of effective search engine queries, optimized specifically for each search engine.
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Ravichandran et al. [17] use a machine learning technique and a few hand-crafted examples of question–
answer pairs to automatically learn patterns along with a confidence score. However, the patterns do not con-
tain semantic information. They include specific strings of words such as was born on, was born in, . . . with no
generalization of the is-born relation. Hermjakob et al. [18] do use semantic paraphrases, called phrasal syn-
onyms, to enhance their TextMap QA system. However, many of these patterns are manual generalizations of
patterns derived automatically by [17].

Kwok et al. [19] use transformational grammar to perform syntactic modifications such as Subject–Aux
and Subject–Verb movements. Radev et al. [20] learns the best query reformulations (or paraphrases) for their
probabilistic QA system. Here again, the paraphrases are syntactic variations of the original question.

Duclaye et al. [21], however, do try to learn semantically equivalent reformulations by using the web as a
linguistic resource. They start with one single prototypical argument tuple of a given semantic relation and
search for potential alternative formulations of the relation, then find new potential argument tuples and iter-
ate this process to progressively validate the candidate formulations.

More recently, Mollà [22] tries to learn how to answer a question based on matching a graph representation
of the question with a graph representation of the answer. His system translates questions and potential
answer sentences into a graph-based logical form representation (inspired by Sowa [23] conceptual graphs)
and applies operations based on graph overlaps to compute their similarity. Because a logical form is used,
the semantics of the questions and the candidate sentences are taken into account, as opposed to only lexical
or syntactic patterns. However, the method does not generalise over relations, because relations express syn-
tactic or semantic relations that they prefer not to over-generalise. In our approach, we do not attempt to form
a proper semantic representation of the questions and the candidate sentences. Because generating such a rep-
resentation (e.g. [22]’s graphs) is a difficult and error-prone task, instead, we generate patterns that include
lexical and syntactic constraints, but impose a semantic constraint on the main verbs of the questions and
the candidate answers. To avoid over-generalization, we weigh each pattern according to its semantic similar-
ity to the semantic relation that it carries as computed by WordNet.

In addition to work in QA, much work in the automatic acquisition of reformulation patterns has been
done in the context of information extractions. However, here again, semantic features are often reduced
to named entities. Stevenson and Greenwood [24], for example, learns patterns and ranks them using the stan-
dard vector space model. Patterns consist of predicate–argument structures. The subject, verb, object (SVO)
structure of a clause is mapped to a predicate–argument structure and the pattern fillers can be either a lexical
item or semantic category (named entity).

2.4. Summary of previous work

As we presented in the previous paragraphs, pattern induction is typically based on lexical or syntactic fea-
tures. When searching a huge document collection such as the Web, having only lexical and syntactic refor-
mulations may be enough because the collection exhibits a lot of redundancy. However, we believe that in a
smaller collection, semantic reformulations are necessary.

Work in pattern acquisition that includes semantic features, usually only takes into account named entities.
Mollà [22] does try to learn semantic reformations, using a more complete semantic representation of the ques-
tions and answer sentences, but does not impose semantic constraints on the relations. Compared to Mollà
[22], our work uses a more flexible and easy to compute question and answer sentence representations, yet
imposes semantic constraints on the main verbs. We do not force a semantic match on the concepts of the
sentences (only lexical, syntactic and named entity tags are used), but we do force a semantic match on the
relations using WordNet’s hyponym/hypernym hierarchy.

3. The manual patterns

Our work builds on our current reformulation-based QA system called QUANTUM [25,26], where reformu-
lations were hand-crafted and only relied on named entities for semantic constraints.

Given a question, QUANTUM needs to identify which answer pattern to look for. It therefore uses two types of
patterns: a question pattern that defines what the question must look like, and a set of answer patterns to be looked
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for in the document collection. An answer pattern specifies the form of sentences that may contain a possible can-
didate answer. For example, the question Who is George Bush? will be matched to the question pattern Who Vsf
PERSON? which will trigger the search for any one of these answer patterns in the document collection:

hQTi hVsfi hANSWERi
hANSWERi hVsfi by hQTi

where hANSWERi is the candidate answer, hQTi is the question term (i.e. George Bush), and hVsfi is the verb in
simple form.

To develop the patterns, we used the 893 questions of TREC-8 & 9 as training set. In total, 77 formulation
templates were created manually, covering 90% of the questions of the training set. By coverage, we mean that
at least one formulation template is applicable for a question. In the current implementation, both question
and answer patterns are based on named entity tags (e.g. PERSON), part-of-speech tags (e.g. Vsf), tags on
strings (e.g. QT, ANY-SEQUENCE-WORDS) and specific keywords (e.g. Who, by). The templates generate
1638 actual answer formulations for the TREC-8 & 9 questions that are covered. So, on average, two answer
formulations are produced per question.

These hand-made patterns will be used later for comparison in order to evaluate the patterns that we
learned automatically.

4. Generating semantically equivalent patterns

4.1. Overall methodology

To generate semantically equivalent answer contexts, we try to find sentences from the Web that contain the
correct answer and try to generalize them into syntactico–semantic patterns. To do so, we first use a training
corpus of question–answer pairs from which we learn how to generalize each type of question. Each question–
answer pair is analyzed to extract its expected answer type, its arguments and its semantic relation. We then
search the Web for sentences containing the arguments and the semantic relation and finally, we pass the sen-
tences through a part-of-speech tagger and a noun phrase chunker to generalize them.

More specifically, each question–answer pair of the training corpus is processed to:

(1) Extract the main arguments from the question.
(2) Extract the main arguments from the answer.
(3) Extract the relation between the question arguments and the answer arguments. The semantic constraint

will be defined on this relation.
(4) Generate syntactico–semantic patterns for the answer sentences.
(a) Construct a search query using the question and answer arguments.
(b) Submit the query to a Web search engine.
(c) Filter sentences from the retrieved documents containing the question and answer arguments.
(d) Filter the remaining sentences using the semantic constraints.
(e) Eliminate redundant sentences.
(f) Identify the main syntactic constituents of the sentences.
(g) Construct a corresponding syntactico–semantic pattern.
(h) Weigh these patterns based on their frequency, their semantic similarity to the question and other

features.

Let us now explain each step in details.

4.2. The training corpus

The training corpus consists of 1343 question–answer pairs taken from the TREC-8, TREC-9, and TREC-
10 collection data [2,27,10]. Each question–answer pair is composed of one question and its corresponding
answer. For example:
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Q: Where is the actress, Marion Davies, buried?
What
56%

W
15

How
8%

Which
2%

Why
1%

Other
2%

Fig. 1. Distribution of question types in the trai
A: Hollywood Memorial Park
Q: When did Nixon die?
 A: April 22, 1994

Q: Who is the prime minister of Australia?
 A: Paul Keating
We divided the training corpus according to the question type. We used the classification used in [28] to
categorize questions into seven main classes (what, who, how, where, when, which, why) and 20 subclasses
(e.g. what-who, who-person, how-many, how-long, etc.). Fig. 1 shows the proportion of each type of questions
in the training set.

4.3. Sentence retrieval

To generate semantic contexts, for each question–answer pair, we define an argument set as the set of terms
which a relevant document should contain. For example, consider the question–answer pair:

Q: Who provides telephone service in Orange County, California?

A: Pacific Bell

Any relevant document to this question–answer pair must contain the terms ‘‘telephone service’’, ‘‘Orange

County, California’’, and ‘‘Pacific Bell’’. Therefore, to search documents on the Web, we formulate a query
made up of all the arguments found in the question–answer pair. The argument set is made up of all the base
noun phrases in the question (found using the BaseNP chunker [29]).

In the TREC-8–11 collections, the answers are typically constituted of a noun phrase. However, some sup-
porting documents may only contain part of this noun phrase. To increase the recall of document retrieval, we
search for a combination of question arguments and each sub-phrase of the answer. We restrict each sub-
phrase to contain less than four words and to contain no stop word. Finally, we assign a score to each
sub-phrase according to its length (measured in words) relative the length of the candidate answer. For exam-
ple, the sub-phrases and the score assigned for the previous question–answer pair are: {Pacific Bell 1,
Pacific 1

2
, Bell 1

2
}. The sub-phrase score will be used later to rank the extracted candidate answers from

the retrieved sentences.
Once the argument set is built, we construct a query using all the arguments extracted from the question,

and the original candidate answer or one of its sub-phrases. We send the query to Google and then we scan the
first 500 retrieved documents to identify sentences that contain all of the question arguments and at least one
answer argument.

4.4. Semantic filtering of sentences

The set of sentences retrieved by Google are then filtered, according to the validity of the semantic relation
that they contain. To do this, we need to find sentences that contain equivalent semantic relations holding
When
7%

Where
9%

ho
%

ning corpus (TREC-8, 9, 10).
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between question arguments and the answer. We assume that the semantic relation generally appears as the
main verb of the question. For example, the verb ‘provide’ is considered as the semantic relation in the follow-
ing question–answer pair:

Q: Who provides telephone service in Orange County, California?

A: Pacific Bell

To check semantic equivalence, we examine all verbs in the selected sentences for a possible semantic equiv-
alence using WordNet. We check if the main verb of the sentence is a synonym, hypernym, or hyponym of the
original verb in the question.

Initially, we only attempt to validate verbs but if the semantic relation is not found through the verbs, then
we also validate nouns and adjectives because the semantic relation may occur as a nominalization or another
syntactic construction. For this, we use the Porter stemmer [30] to find the stem of the adjectives and nouns
and then we check if it is equivalent to the stem of the original verb or one of its synonyms, hypernyms, or
hyponyms.2

For example, with our running example, both these sentences will be retained:
Sentence 1 Pacific Bell, major provider of telephone service in Orange County, California. . .

Sentence 2 Pacific Bell Telephone Services today offers the best long distance rate in Orange County, California.

4.5. Generating the answer contexts

Once we have identified a set of semantically equivalent sentences, we try to generalize them into a pattern
using both syntactic and semantic features. Each sentence is tagged and syntactically chunked (with [29]) to iden-
tify POS tags and base noun phrases. To construct a general form for answer patterns, we replace the noun phrase
corresponding to the argument in the answer by the corresponding named entity tag (e.g hORGANIZATIONi) and
the noun phrases corresponding to the question arguments by the tag hQARGxiwherex is the argument identifier.
We replace the other noun phrases that are neither question arguments nor answer arguments with the syntactic
tag hNPxi, where x is the noun phrase identifier. To achieve a more general form of the answer pattern, all other
words except prepositions are removed. For example, the following sentence chunked with NPs:

[California’s/NNP Baby/NNP Bell,/NNP SBC/NNP Pacific/NNP Bell,/NNP]/NP

still/RB

provides/VBZ

nearly/RB

all/DT

of/IN

[the/DT local/JJ phone/NN service/NN]/NP]/NP

in/IN

[Orange/NNP County,/NNP California./NNP]/NP

will generate the following pattern:

hORGANIZATIONi hVERBi hQARG1i in hQARG2i | senseOf (provide)

The constraint senseOf (provide) indicates the semantic relation to be found in the candidate sen-
tences through a verb, a noun or an adjective.
2 A more proper method to deal with nominalizations would be to use a lexical resource such as NOMLEX [31] (as in the work of [32]).
We used the Porter stemmer, however, because it is faster and more robust to words that are absent in the lexical resource.
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4.6. Weighting the patterns

As one pattern may be more reliable than another, the last challenge is to assign a weight to each candidate
pattern. This helps us to better rank the pattern list, and ultimately the answer extracted from them, by their
quality and precision. From our experiments, we found that the frequency of a pattern, its length, the answer
sub-phrase score, and the level of semantic similarity are the most indicative factors in the quality of each pat-
tern. We set up a function to produce a weight for each pattern over the above major factors; these weights are
defined to have values between 0 and 1.

More formally, let P i be the ith pattern of the pattern set P extracted for a question–answeranswer pair; we
compute each of the following factors:

CountðP iÞ is the number of times pattern P i was extracted for a given question pattern. The most fre-
quent the pattern, the more confidence we have in it and the better we rank it.

Distance measures the distance (in number of words) between the answer and the closest term from
the question arguments in the pattern. The smallest the distance, the more confidence we
have in the pattern.

LengthðP iÞ is the length of the pattern P i measured in words. A shorter pattern will be given a better
rank.

Sub phrase score is the score of the candidate answer sub-phrase. The score of each answer sub-phrase
depends on its similarity to the full candidate answer. Here we have used the simple heu-
ristic method to score a sub-phrase by its length as number of words present in both pi and candidate answer

total number of words in the candidate answer .

Sem simðV Q; SP iÞ measures the similarity between the sense expressed in the candidate pattern ðSP iÞ (through
a verb, a noun or an adjective) and the original verb in the question ðV QÞ. We want to esti-
mate the likelihood that the two words actually refer to the same fact or event. This weight
is based on the type of semantic relation between the terms and V Q as specified in WordNet:
1 pt for the original verb in the question;
1
2

pt for strict synonyms of the question verb, and
1
8

pt for hyponyms and hypernyms of the question verb.

The final weight of a pattern is based on the combined score of the previous four factors computed as:
WeightðP iÞ ¼
countðP iÞ
countðP Þ �

1

lengthðP iÞ
� 1

distance
� sub phrase score� sem simðV Q; SP iÞ
For the TREC-8, 9, 10 question sets, a list of 98 ranked patterns were created automatically by the system.
This can be compared to the bag of 77 hand-made patterns in the original system created using the TREC-8, 9
question set.
4.7. Evaluation

The system was implemented as a cascade of Perl scripts using the Google search engine. It was developed
for experimental purposes only and very little effort was made to make the code efficient, easy to use or mod-
ular. Our main goal was to evaluate the quality of the results.

We evaluated the automatically created patterns using the 493 questions-answers of the TREC-11 collec-
tion data [33]. The use of only the TREC question set for training and evaluating does create a bias in the
system. The TREC–QA question set contains factoid questions that are mostly answered by short noun
phrases. Our patterns (both manual and induced) were developed using the TREC questions and are thus
biased towards these types of questions that can be answered by stereotypical answer contexts. The evaluation
with a different corpus would probably lead to a lower MRR, especially if the questions are not factoid in
nature. For example, more explanation-based or why/how questions as in closed-domain QA would have been
harder to deal with.



Table 2
Results of the generated patterns compared with the original hand-crafted patterns (TREC-11 data)

System #Q with a correct answer in top five candidates D (%) Precision of candidate list D (%) MRR D (%)

Hand-crafted patterns 86 0.50 0.32
Generated patterns 101 17 0.58 16 0.40 26

L. Kosseim, J. Yousefi / Data & Knowledge Engineering 66 (2008) 53–67 61
The system was evaluated with the original 77 hand-crafted patterns and with the 98 learned ones; then the
answers from both runs were compared. Table 2 shows the result of this comparison based on precision of the
candidate list, number of questions with at least one correct answer in the top five candidates and mean reci-
procal rank (MRR). The evaluation shows an increase in precision of about 16% with the generated patterns
(from 0.50 to 0.58). This shows that the semantic constraints have filtered out some bad candidates that the
original patterns accepted. The MRR, which takes the order of the candidates into account, increased by 26%
from 0.32 to 0.40. In addition, since the patterns are generated automatically, no manual work is now
necessary.

5. Semantic candidate re-ranking

A further analysis of the results, however, showed that although the semantic constraints imposed by the
new patterns filtered out noisy candidates, quite a few bad answers still remained. This is because at least
one document contained the semantic relation and the question arguments in the same sentence. Our next
goal was then to improve these results by filtering out noisy candidates and re-rank the remaining candi-
dates better.

To re-rank the candidates, we used a redundancy technique, but this time, based on the satisfaction of the
semantic constraints. That is, we evaluate how many times the candidate answer satisfies the semantic con-
straint then re-rank the list of candidates according to this proportion. If the semantic relation appears in
the same sentence as the question arguments by chance, it should thus be given a lower rank or be removed
completely. Let us describe this process in detail.

5.1. Sentence retrieval

We first run the QA system on the Web and retrieve its top 200 answer candidates. This first run can be
done with the newly acquired semantic patterns or the original hand-crafted ones. In fact, Section 5.4 presents
the results for both methods. For example, with our question Who provides telephone service in Orange County,

California, the system retrieves the following candidates:

Southwestern Bell

Pacific Bell

Similarly to our approach for learning reformulations, we build a set of argument tuples composed of the
candidate answers and the argument expressed in the question. In order to achieve this task, we decompose the
original question into two parts: the main semantic relation expressed (e.g. provides) and the argument(s) of
the relation (e.g. telephone service and Orange County, California). A set of argument tuples is then created
from the noun phrases of the question and the candidate found by the QA system. In our example, the fol-
lowing tuples are created:

(‘telephone service’, ‘Orange County, California’, ‘Southwestern Bell’)
(‘telephone service’, ‘Orange County, California’, ‘Pacific Bell’)

Once we have built the set of argument tuples, we search for them in the document collection to
identify the possible semantic relations relating them, and make sure that the relation that relates them
in the documents is equivalent to what we were originally looking for in the question (senseOf
(provide)).



Fig. 2. Example of a context window.
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In our experiment, we submitted all the tuples to the Web to find paragraphs that contained
these tuples. Then we extracted only the paragraphs where both tuple elements are at a distance of N

words or less (in our experiment, N ¼ 5). We used a context window size of N words between the
tuple elements and N words on each side of them in the extracted paragraphs and then
examined the words in these context windows for a possible similar semantic relation. This is shown
in Fig. 2.
5.2. Evaluating the semantic relation

Finally, we evaluate the relations expressed in the context windows to identify if at least one is seman-
tically equivalent to the original semantic relation expressed in the question. To verify the semantic rela-
tion, we use the same procedure as for learning patterns (see Section 4.4). We first check if any verb found
in any context window is a synonym, a hypernym or a hyponym of the original verb in the question. If no
verb has an equivalent semantic relation, we then back-off to validating nouns and adjectives. Any tuple
that does not have a similar semantic relation in the question and in the documents is discarded. Thus if a
candidate had been selected in the first QA run, but no further evidence is found in the re-ranking phase,
it is filtered out.
5.3. Re-ranking candidates

The remaining candidates are re-ranked according to the proportion of passages in the collection contain-
ing the same relation. For example, when we submitted the tuple (‘telephone service’, ‘Orange

County, California’, ‘Pacific Bell’), we found 110 passages containing the elements of the tuple.
Among these, only 24 contained the tuples and the relation senseOf (provide) within five words of each
other. We therefore gave a rank of (24/110) to the candidate Pacific Bell. By applying this procedure to
all the argument tuples, all candidates can be easily re-ranked.
5.4. Evaluation

We evaluated the semantic re-ranking alone again with the TREC-11 data. Table 3 shows the results.
Here again, the MRR improved (by 67%). This means that the candidates found are better ordered in the
list so as to move the correct answers up in the list. In fact, with the TREC-11 data, 42% of correct
answers were moved up in the candidate list by 3.8 positions on average while 4% were actually ranked
worse by 5.7 positions.
Table 3
Results of the semantic re-ranking (TREC-11 data)

System #Q MRR D (%)

Hand-crafted patterns 493 0.321
Semantic re-ranking 493 0.537 67
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6. Evaluation of the combined approach

6.1. Results

Finally, we evaluated the combined approach: automatically acquired semantic patterns (Section 4) and
semantic re-ranking (Section 5). Again, we used the TREC-11 collection for testing. The results are reported
in Tables 4 and 5.

As Table 4 shows, with the combined approach (A + B), the MRR increased by 73% compared to the ori-
ginal system. The precision is also higher than the original system (0.64 versus 0.50) yet does not rely on man-
ual expertise to hand-craft patterns. It is therefore more interesting when portability is an issue, for example,
when doing QA on a different domain or a new language.

Table 5 shows the details of the evaluation for each type of question. The proportion of each type of ques-
tion is similar in the testing corpus (see Fig. 3) than in the training corpus (see Fig. 1), hence the training cor-
pus is representative in this respect and each question type benefits from this approach. The results of what and
how questions are particularly higher (the MRR more than doubled). We speculate that these types of ques-
tions are answered by sentences that are more stereotypical; thus a small number of reformulation patterns are
sufficient to cover a larger number of answers.
Table 4
Results of each type of approach (TREC-11 data)

#Q with a correct answer in top five Precision D (%) MRR D (%)

Hand-crafted patterns 86 0.50 0.32
Generated patterns (A) 101 0.58 16 0.40 26
Semantic re-ranking (B) 86 0.54 67
Combined (A + B) 99 0.64 28 0.55 73

Other
0%

Why
0%

Which
2%

How
11% Who

11%
Where

8%

When
14%

What
54%

Fig. 3. Distribution of question types in the testing corpus (TREC-11).

Table 5
Results of the combined approach based on question categories (TREC-11 data)

Question type Hand-crafted patterns Combined (A + B)

Precision MRR Precision D (%) MRR D (%)

Who 0.57 0.30 0.71 24 0.45 49
What 0.50 0.23 0.61 12 0.55 138
Where 0.53 0.50 0.79 47 0.79 57
When 0.69 0.55 0.72 5 0.62 89
How 0.28 0.19 0.55 97 0.48 130
Which 0 0 0 0 0 0

Total 0.50 0.32 0.638 28 0.55 73
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6.2. Discussion

The evaluation of the QA system presented in the previous section shows that the acquired patterns
improve the performance of the system. However, other more qualitative evaluations can be done. In the fol-
lowing paragraphs, we will discuss a few interesting issues.

Expressivity and ease of maintenance:

The generated patterns use the same formalism and vocabulary as the manual ones. In fact, this allows us to
turn the automatic patterns on and off, and use each type interchangeably in the system. The automatic pat-
terns are therefore as easy (or as hard) to read and modify as the manual ones.

Complementarity of the manual and the induced patterns:

An interesting question is to determine if the manual patterns and the induced ones cover the same ques-
tions or if they complement each other. Table 6 shows the evaluation of the two types of patterns compared to
using no reformulation at all. As the table shows all types of questions (except which), benefit from reformu-
lations (whether they are hand-made or generated).

It is interesting to note however, that the manual patterns are most beneficial for who, how and where ques-
tions; whereas the induced patterns improve how, what and who questions the most. As mentioned earlier, we
suspect that who and how (e.g. how many, how much, etc.) questions are answered by sentences that are more
stereotypical; thus the reformulation patterns are sufficient to cover a larger number of answers. The induced
patterns do not answer where questions as one would have expected from the results of the hand-crafted pat-
terns; a more detailed failure analysis is needed to understand why this is so.

As Table 6 shows, the two types of patterns do improve a few common question types, but they seem to
complement each other for other types of questions. For those questions, one would expect that using the
two types of patterns together should produce an even higher MRR. However, we have not tested this hypoth-
esis experimentally, and a more detailed analysis would be needed.

Scalability of the approach:

The approach presented here has been developed and tested with the TREC open-domain factoid ques-
tions. As noted earlier, this has biased the patterns induced to these types of questions that can be answered
with short phrases. It is not clear how the approach can be scaled up to handle a wider range of questions. For
example with more explanation-based questions, the answer will not necessarily be formed of a short noun-
phrase and within a strongly stereotypical answer pattern. Also, the approach needs a large document collec-
tion to learn the patterns (e.g. the Web). In the case of restricted domain QA, where the document collection is
much smaller [34], it is not clear if the approach will be able to learn useful patterns.

On the other hand, the fact that semantic-based answer patterns can be learned automatically without
degrading the system’s performance compared to hand-crafted patterns makes the approach portable to other
application domains and other languages.

Limitations of the approach:
As opposed to several other approaches that use the Web for answer redundancy; our approach is less strict

as it looks for reinforcement of the semantic relation between the arguments, rather than looking only for lex-
ically or syntactic similarity. In this respect, our approach is much more tolerant and allows us to find more
evidence to support answers. However, as we saw in Section 4, the formalism used to represent patterns is very
Table 6
MRR with no patterns, the original hand-crafted patterns and the new patterns and the semantic re-ranking (combined) and improvement
in MRR compared to using no pattern at all

Question type MRR (% improvement) with

No pattern Hand-crafted patterns Combined approach (A + B)

When 0.48 0.55 (15%) 0.62 (29%)
Where 0.37 0.50 (35%) 0.79 (114%)
How 0.13 0.19 (46%) 0.48 (269%)
What 0.18 0.23 (28%) 0.55 (205%)
Which 0 0 0
Who 0.16 0.30 (88%) 0.45 (181%)
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crude; we only look for lexical, syntactic and semantic evidence within a window of words. We do not attempt
to unify a proper semantic representation of the questions with that of candidate sentences. We chose not to
do this, because in our view, creating such semantic representations is a difficult and error-prone task. How-
ever, as we look for evidence anywhere in a window of words, we are more sensitive to mistakes. We are only
interested in finding a word that carries a similar sense without doing a full semantic parse of the sentence.
Negations and other modal words may completely change the sense of the sentence. When looking in a very
large corpus such as the Web, this may lead to more noise.

7. Conclusion and future work

We presented a novel method for acquiring reformulation patterns automatically based on lexical, syntactic
and semantic features then used these semantic constraints to re-rank the list of candidate answers using
redundancy.

The experimental evaluation shows that using new semantic patterns increases the performance or our QA
system. Together, the automatically acquired semantic patterns and the candidate re-ranking improve the per-
formance significantly (28% for precision and 73% for MRR) and remove the need for human intervention. It
is therefore very interesting when porting the system to a new language or a new domain.

The current implementation only looks at semantic relations holding between two or three arguments. It
can easily be extended to consider variable–size relations; however, as more constraints are taken into account,
the precision of the candidate list is expected to increase, but recall is expected to decrease. A careful evalu-
ation would be necessary to ensure that the approach does not introduce too many constraints and conse-
quently filters out too many candidates.

Another interesting question is to what degree the results are bound to the thresholds we have used. For
example, we have arbitrarily taken the first 500 hits from Google to generalize answer patterns. It is not clear
if or how changing this value will affect the results.

This work tried to learn answer patterns automatically without degrading the quality of the QA results. We
have not, however, looked at performance issues of the system. In a real-time QA system, quality is important
but if a question takes too long to be analyzed, the system is practically unusable. Further work is thus nec-
essary to measure such things as response time and scalability to a real application.
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