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Preface

This volume contains the papers presented at NLDB 2020, the 25th International
Conference on Applications of Natural Language to Information Systems held June
24–26, 2020, as a video conference at the German Research Center for Artificial
Intelligence in Saarbrücken, Germany. We received 68 submissions for the conference.
Each paper was assigned to three reviewers, taking into account preferences expressed
by the Program Committee members as much as possible. After the review deadline,
Program Committee members were asked to complete missing reviews. In addition,
Organization Committee members and the Program Committee chair acted as
meta-reviewers – they wrote additional reviews for borderline cases and for the
papers which received reviews with considerably conflicting assessments. At the end,
each paper received at least three reviews. On the basis of these reviews, the
Organization Committee members and the Program Committee chair decided to accept
papers with an average score around weak acceptance as full papers, papers with a
slightly lower score as short papers. In borderline cases, credit was given to
experimentally-oriented papers with novel and ambitious concepts.

The final acceptance rate counting the number of full papers according to NLDB
tradition was 22% (15 out of 68), similarly competitive in comparison to the previous
years. In addition, 10 submissions were accepted as short papers, and no posters, since
NLDB 2020 had to be a video conference. Full papers were allowed a maximum of 12
and short papers a maximum of 8 pages. Originally, two more short papers were
accepted, but the authors preferred to retract their submissions for personal reasons.

Following the trends of previous years, there is more diversification in the topics and
specific issues addressed in comparison to a decade ago. Several papers address some
languages for which not too rich resources are available – Arabic and Russian. Some
currently hot topics are dealt with intensively, including sentiment analysis and chat-
bots, and successful tools are reused and adapted such as the transformer BERT.
Finally, going beyond language proper is examined by several contributions, including
visual data, affect, emotions, and personality.

In addition to the reviewed papers, there were three invited talks at NLDB 2020:

– Claire Gardent, LORIA Nancy, France
– Ehud Reiter, University of Aberdeen and Arria, UK
– Josef van Genabith, DFKI Saarbrücken, Germany

The accepted contributions (long and short papers) covered a wide range of topics,
which we classified in six topic areas, each covering a section in this volume:

– Semantic Analysis
– Question Answering and Answer Generation
– Classification
– Sentiment Analysis



– Personality, Affect, and Emotion
– Retrieval, Conversational Agents, and Multimodal Analysis

Semantic Analysis
Two long and two short papers were categorized in this section. The first one

incorporates psycholinguistic evidence into subword properties for training vector
representations. The next two papers address named-entity recognition, both in
non-standard domains. The first one works in the cybersecurity domain in Russian,
showing superiority of the BERT model. The second one addresses biomedical data
using a deep neural network (NN) architecture. The final paper in this section features
explanations about semantic parsing, in the context of a natural language programming
task.

Question Answering and Answer Generation
Three long and two short papers were categorized in this section. The first paper

obtains performance increase through query expansion and coreference resolution
measures. The next two papers extend question answering by dialog patterns, the first
one automates building chatbots including clarification dialogs, the second one orga-
nizes answering procedural questions by incrementally following hierarchically orga-
nized knowledge. The last two papers address limitations of knowledge; the first one
deals with large data in open domains, the second one obtains control over limitations
caused by missing knowledge.

Classification
One long and three short papers were categorized in this section. There are two

technology-based and two application-oriented contributions. One of the
technology-based contributions applies an iterative procedure, exemplified for classi-
fying short texts, the other one introduces systematic selection techniques to increase
stability in Latent Dirichlet Allocation. The application-oriented contributions aim at
identifying reports about defects and associated requests for improvements within
dedicated reviews and court decisions in the area of housing law, respectively.

Sentiment Analysis
Two long and one short paper were categorized in this section. Each approach

features a specific, non-standard perspective. The first approach features the role of
positional information attributed to a word contributing to an aspect of interest. The
second one studies the role of attention and demonstrates its relevance for assessing
analytical texts. The last one emphasizes the exploitation of sentiment to drive
strategies for curriculum learning.

Personality, Affect, and Emotion
Four long and one short paper were categorized in this section. The first two papers

in this category address the role of personality for quite diverse purposes, one for the
discrimination of honest versus deceptive authors, the other one to model language
behavior of literary figures. The next two papers analyze emotions, one in the context
of movies, the other one by analyzing low-level linguistic properties in social media
blogs. The last one attempts to infer doubts about a specific disease from analyzing
social media dialogs.

vi Preface



Retrieval, Conversational Agents, and Multimodal Analysis
Three long and one short paper were categorized in this section. The first two

address extended mechanisms for answer choice taking into account the dialog context
and semantic similarity between a new question and already processed ones, respec-
tively. The next paper features anchoring entities based on textual and visual data, and
the final paper describes a compound practical system with occasional human
intervention.

The conference organizers are indebted to the reviewers for their engagement in a
vigorous submission evaluation process. We would also like to thank, for the orga-
nization help, some members of the DFKI GmbH.

June 2020 Philipp Cimiano
Helmut Horacek
Elisabeth Métais
Farid Meziane
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Enhancing Subword Embeddings
with Open N -grams

Csaba Veres(B) and Paul Kapustin

University of Bergen, Bergen, Norway
{csaba.veres,pavlo.kapustin}@uib.no

Abstract. Using subword n-grams for training word embeddings makes
it possible to subsequently compute vectors for rare and misspelled
words. However, we argue that the subword vector qualities can be
degraded for words which have a high orthographic neighbourhood; a
property of words that has been extensively studied in the Psycholin-
guistic literature. Empirical findings about lexical neighbourhood effects
constrain models of human word encoding, which must also be consis-
tent with what we know about neurophysiological mechanisms in the
visual word recognition system. We suggest that the constraints learned
from humans provide novel insights to subword encoding schemes. This
paper shows that vectors trained with subword properties informed by
psycholinguistic evidence are superior to those trained with ad hoc n-
grams. It is argued that physiological mechanisms for reading are key
factors in the observed distribution of written word forms, and should
therefore inform our choice of word encoding.

1 Introduction

There is currently a great deal of research activity around solutions using con-
tinuous representations of words. The most popular methods for learning word
vectors, or embeddings, produce a single vector for each word form in the train-
ing set, for example GloVe [18], word2vec [15], and SVD [12]. These methods do
not attempt to exploit syntactic or morphological regularities behind the word
forms, as the unit of analysis is the single word.

These methods could be regarded as modern day experiments inspired by
Zellig Harris’ hypotheses about the distributional structure of language. Harris
proposed that word meanings give rise to observable distributional patterns in
language, such that two semantically unrelated words A and C would be less
likely to be found in common linguistic contexts as two semantically related
words A and B [10]. Modern machine learning techniques have made it compu-
tationally possible to embed very high dimensional distributional patterns in a
much lower dimensional vector space, in which the distances between any given
vectors are related to the similarities of context in which the corresponding words
are found in the training set. Semantic relatedness is therefore correlated with
the calculated distance (e.g. cosine distance) between vectors.

c© Springer Nature Switzerland AG 2020
E. Métais et al. (Eds.): NLDB 2020, LNCS 12089, pp. 3–15, 2020.
https://doi.org/10.1007/978-3-030-51310-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51310-8_1&domain=pdf
http://orcid.org/0000-0003-3907-8473
https://doi.org/10.1007/978-3-030-51310-8_1


4 C. Veres and P. Kapustin

Since the unit of analysis in such machine learning models is the word, it is
generally the case that rare words, and words formed by novel morphological
combinations, are not represented in the training set with sufficient frequency
to obtain a vector embedding. In response, Bojanowski et al. [2] trained vectors
by decomposing words into subword components. Their embeddings had the
advantage that low frequency and out-of-vocabulary words could be assigned a
vector representation from the sum of their subword units. The training model
is a modification of the skipgram model [15], in introducing a scoring function
over the sum of the component n-grams (including the word itself). A word is
therefore represented as the sum of the vector representation of the word and its
constituent n-grams. Conversely, the vector representation of individual n-grams
is shared between all words containing the particular n-gram, and therefore rare
words can acquire reliable representations by taking advantage of the shared
representations.

While the reported evaluations of the embedding vectors look promising, our
experience in using them in an application has been mixed. Using the standard
implementation1 fastText and our own vectors trained with the latest Wikipedia
dumps2, we observed some examples where the related words would not be
particularly useful for some tasks, for example query expansion. Consider the
fairly common word dictionary, which has the following nearest vectors: dic-
tionaries, dictionarys, dictionarian, dictionarie, dictions, dictionarial, diction-
eer, dictioner, dictionaric, dictionay. These are highly overlapping morphological
variations and not particularly useful in applications where more heterogeneous
semantically related concepts are required for information retrieval. In contrast,
word2vec3 provided the following results for this example: dictionaries, lexicon,
oed, merriam, encyclopedia, bibliographical, lexicography, britannica, websters,
encyclopaedia, glossary. In general we had the intuition that fastText was more
likely to include overlapping orthographic clusters in the results set, which moti-
vated the experiments reported in this paper. We wanted to understand why, and
under what circumstances the fastText results might suffer, and developed the
hypothesis that psycholinguistic factors were involved. The approach is similar
in spirit to emerging efforts which explore modern machine learning results from
a psycholinguistic perspective. For example, Mandera et al. [14] use semantic
priming results from psycholinguisic experiments instead of semantic similarity
judgements to evaluate word vectors, and report new insights in the quality of
embeddings.

The subword embedding approach presupposes that orthography to seman-
tics mappings can be established for words as well as for the summation of
the subword fragments. Thus, the vector obtained for out-of-vocabulary items
acquires its position in semantic ‘co-occurance’ space as a function of the

1 https://github.com/facebookresearch/fastText.
2 We also used publicly available pretrained vectors, e.g. wiki-en.bin https://s3-us-

west-1.amazonaws.com/fasttext-vectors/wiki.en.zip but found these even less satis-
factory.

3 https://github.com/dav/word2vec.

https://github.com/facebookresearch/fastText
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.zip
https://github.com/dav/word2vec
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semantic space vectors in the constituent n-grams. Consider the following exam-
ple adapted from [2], where the word where contains the following set of tri -
grams. Note that the word is actually represented by n-grams where n is greater
than or equal to 3 and less than or equal to 6, but for the sake of brevity we
only list the trigrams:

<wh, whe, her, ere, re>

where the symbols ‘ < ’ and ‘ > ’ denote word boundaries.

Each of these trigrams are shared by many other words with very different
meanings, for example:

< wh appears in which,whence, whale, white, whack,whack − a − mole,
wharf, whatever, ..
whe appears in anywhere, arrowhead,wheel, wheat, ...
her appears in whether, cherish, butcher, sheriff, thermometer, ...

It seems clear that vectors generated from short n-grams will be at a point in
semantic space that is not necessarily close to the semantics of any of the words
which contain them, because they are contained in many words. The longer the
n-gram, the fewer the containing words. It might seem odd that the inclusion
of short n-grams in training would do any good at all, because they appear to
introduce semantic noise. In fact, a systematic evaluation of n-gram length shows
that embeddings that include bi- and tri- grams always show a slight degradation
in performance when compared to those with only longer n-grams [2].

An additional consideration about the number of words sharing subword ele-
ments originates in psycholinguistic evidence about the mental representation of
words. An important variable in human word recognition studies is the ortho-
graphic neighbourhood, commonly measured with Coltheart’s N [3], where the
orthographic neighbourhood of a word is determined by counting the number
of other words of the same length, sharing all but one letter, and maintaining
letter position. The measure of orthographic neighbourhood is correlated with
the number of words related to the target word, which overlap significantly with
the set of subword components. Every n-gram in a word is shared by a vari-
ety of semantically unrelated words, but the set of the constituent n-grams is
unique to a particular word. Or, to put it in the opposite way, each word con-
tributes its context to the training of its unique set of n-grams. When this set
is re-assembled, the summed vector will be consistent with the vector just for
the word itself. But this will be maximally effective when the combined set of
constituent n-grams does not overlap significantly with another set of n-grams
corresponding to a different word with a different meaning.

For example, the word safety has the tri -grams

<sa, saf, afe, fet, ety, ty>

and there are no other six-letter words which have a significant overlap with this
set. On the other hand the word singer has the tri -grams

<si, sin, ing, nge, ger, er>
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which overlap significantly with many semantically unrelated words such as sin-
ner, finger, linger

<si, sin, inn, nne, ner, er>,<fi, fin, ing, nge, ger, er>,<li, lin, ing, nge, ger, er>

The result of this overlap is that if we present a rare word which overlaps sig-
nificantly with these n-grams, its vector representation will be degraded to the
extent that the set of overlapping n-grams is shared by semantically unrelated
words. For example the semantically unrelated word zinger (a striking or amus-
ing remark) will have similar sets of n-grams:

<zi, zin, ing, nge, ger, er>

which has a 67% overlap with finger and linger. The assembled vector for
“zinger” would therefore be somewhere between “finger” and “linger”.

The set of overlapping words in these examples is just what we have called
the orthographic neighbourhood. In the previous example, this means that the
trigrams for the high-N six-letter words have a 50%–67% overlap with N other
words in its lexical neighbourhood, whereas for the low-N it is none, except for
morphological variants of the word itself4. The higher the N, the more likely it
is that a significant subset of n-grams will be shared by semantically unrelated
words.

This paper explores the hypothesis that orthographic neighbourhood struc-
ture of English has some influence on the way subword n-grams are incorporated
into word embeddings. We first describe some relevant findings involving ortho-
graphic neighbourhoods that have come to light as a result of psycholinguistic
theories. We then show empirically how these properties can influence the qual-
ity of word embeddings, and propose alternative encoding schemes inspired by
psycholinguistics and neuroscience, which solve some of the problems. Our main
contribution is to show that a consideration of words as more than letter strings
in some disembodied vocabulary, is beneficial. Words are the result of psycholin-
guistic processes. Based on this argument we develop a putatively better encod-
ing scheme which takes into consideration the interdependency between word
structure and human psychological and neural processing systems.

2 Orthographic Neighbourhood Density

Coltheart’s N is the simplest measure of orthographic neighbourhood density,
where two words are neighbours if they have the same length and differ in just
one letter position. There have been many refinements, including the counting
of words formed by letter transposition or repetition, and the use of Levenshtein
distance. Nevertheless, many of the fundamental results hold for neighbourhoods
with the Colthert’s N measure, which we use in this paper [1,3,7,22].

The neighbourhood density of words is correlated with their length. [1]
counted the number of neighbours for four, five, and six letter words in the

4 In this example, safe has overlapping n-grams with safety.
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CELEX linguistic database. In total these amounted to 8956 words, and she
found a systematic difference; four-letter words had on average 7.2 neighbours,
five-letter words had 2.4, and six-letter words, 1.1 neighbour. Not surprisingly,
longer words tend to have fewer neighbours. Experiments which specifically
manipulate neighbourhood density tend to use shorter words, typically four-
letter words.

Orthographic neighbourhood N has an effect on how quickly people can
respond to stimuli in a lexical decision task (LDT). In LDT, subjects are pre-
sented with a random sequence of words and nonwords, and asked to classify
them as quickly as possible. Coltheart et al. [3] found that high-N nonwords
(nonwords with many word neighbours) were classified more slowly than non-
words with few word neighbours. That is, people would be slower to respond
that dinger was not a word than that rafety was not. This result is consistent
with our view that nonword letter sequences that are similar to many words will
be subject to more interference from existing word representations.

The effect of N on the word stimuli in LDT is less clear, but the prepon-
derance of evidence suggests that words with high neighbourhoods are classified
faster than words with low neighbourhoods. Thus, while having lots of neigh-
bours hinders nonword classification, it helps word classification. Large lexical
neighbourhood also helps in the naming task, where subjects are required to pro-
nounce words presented to them. Andrews [1] reviewed eight studies and found
that they all showed facilitatory effects. On the face of it, these findings appear
to contradict the hypothesis that high neighbourhood words should have lower
quality representations. However, one problem with interpreting the psycholin-
guistics evidence is that the results might not bear directly on the quality of the
representations but, rather, on the decision process employed by the subjects in
the experiment. That is, if a stimulus can generate lots of potential word vectors
then a decision process might be more ready to accept it as a word - which is
helpful if in fact it is a word, but unhelpful if it is not. The reaction time would
then be influenced by the number of vectors rather than their quality.

However, a more intriguing possibility is that the human word recognition
system constructs representations in such a way that high-N words are not
disadvantaged by their overlapping lexical neighbours. If it is true that machine
learning techniques can suffer in high-N environments but humans do not, then
it would be advantageous to learn from the human system. We therefore decided
to find more concrete evidence about the effects of neighbourhood density on
the quality of trained embeddings.

2.1 Experiment 1: Effects of Orthographic Neighbourhood on Word
Embeddings

Perhaps it goes without saying that there are currently no tests of word embed-
dings which take orthographic neighbourhood density into consideration. As a
first step we decided to do a post-hoc analysis on popular data sets which are
used for evaluating embeddings: SimLex-99 [11], WS353 [5], and the Stanford
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Rare Word (RW) Similarity Dataset [13]. We counted the neighbourhood den-
sity of every unique word in each data set, as reported in Table 1. The average
densities were surprisingly high; for example Forster and Shen [6] limit their
high neighbourhood condition to N ≥ 4, and other experimenters typically con-
sider 4–5 as being high-N. Table 1 also shows the distribution of words of various
lengths in the dataset, as well as the weighted mean length. WS353 has a slightly
higher distribution of longer words and a correspondingly lower neighbourhood
than SimLex, but most interestingly the RW set showed quite a different distri-
bution with many more long words and a corresponding decrease in the N. We
take this to be a completely uncontrolled and accidental feature of the datasets.

The differences in neighbourhoods suggest an alternative explanation for
results obtained by [2], who found that English word embeddings from word2vec
performed slightly better than fastText in the WS353 test set, but fastText
performed better with RW. Their explanation was that the words in WS353
are common words for which good word2vec vectors can be obtained without
exploiting subword information. The words in the RW dataset, on the other
hand, are helped by subword information because their whole-word vectors are
poor. Our analysis of neighbourhoods suggests a quite different explanation. By
our hypothesis, fastText embeddings perform best in low-N words environments,
which is only the case for the RW data set.

Encouraged by this evidence, we devised a more direct plausibility test for our
hypothesis, further inspired by the observation that many of the high-N words
we entered into the fastText nearest neighbour5 query tool returned results where
many of the words were morphologically related. They seemed to retain a core
morphological stem. For example the high-N query word tone has the following
semantic neighbours: tones, overtone, staccato, toned, overtones, dissonantly,
accentuation, accentuations, intonation, intonations. One possible explanation
for the morphological overlap is that a critical n-gram such as ton becomes cen-
tral to the representation because it has to be intact to capture the semantic
meaning. That is, tone has 20 orthographic neighbours, *one: bone done gone
lone none cone hone pone sone zone t*ne: tine tune tyne to*e: toke tole tome
tope tore tote ton*: tons and disrupting the morpheme ton gives a completely
different word. Interestingly, this phenomenon seems to extend to morphemes
that are not part of the original query word. For example bone has fastText
semantic neighbours: bones, tooth, cartilage, marrow, teeth, osteo, arthroplastie,
osteoarthritic, osteochondral, osteolysis and word2vec neighbours: bones, carti-
lage, tooth, skull, marrow, tissue, femur, fractures, teeth, spine. Again, fastText
appears to have latched on to an orthographic cluster which has stable semantic
context, whereas word2vec has a much more varied answer set. We wanted to
quantify this observation, and the test we proposed was to count the number
of unique word stems returned for a nearest neighbour query. That is, by using
a common stemming algorithm, we were able to eliminate results which shared

5 It is unfortunate that words with similar embeddings are sometimes called ‘neigh-
bour’, e.g. on http://fasttext.cc. To avoid confusion we will refer to these as ’semantic
neighbours’ from now on.

http://fasttext.cc


Enhancing Subword Embeddings with Open N -grams 9

Table 1. Percentage of words of length l in three common data sets, the mean length
of words in the data set and their observed Coltheart’s N

Word Length SimLex-99 WS353 RW

1 0 0.2 0

2 2 0.2 0.1

3 8 5.5 1.45

4 18 13 4.8

5 20 14.7 6.2

6 19 20 6.7

7 13.7 11.9 11.7

8 7 10 14.1

9 6.2 9 14.8

10 3.4 6 12.7

11 1.7 4.6 11

12 0.5 2 7.5

13 0.01 0.9 4.4

14 0.01 0.4 2.7

15 0.88

16 0.5

17 0.27

18 0.03

19 0.03

Mean length 5.8 6.63 8.78

N 4.83 3.45 1.47

a common stem. There are several commonly used stemming algorithms [17],
and none of them necessarily eliminate all the orthographically derived forms
we would like, but after some experimentation we used the popular Snowball
stemmer from NLTK.

We trained a word2vec and a fastText model on the latest WikiPedia data
dump as of March 20186 (enwiki 20180320). All word2vec and fastText models
were trained on the same dump to ensure consistency. The build of word2vec
was obtained from https://github.com/dav/word2vec and fastText from https://
github.com/facebookresearch/fastText.git.

A set of 9 low-N and 9 high-N, 4-letter words were assembled, keeping
word length constant. These were submitted to word2vec and fastText to com-
pute the top 10 nearest semantic neighbours. Each word was stemmed with
the Snowball stemmer in the NLTK toolbox7. Finally the number of unique
stems was subtracted from the total number of semantic neighbours for the two

6 https://dumps.wikimedia.org/.
7 http://www.nltk.org/howto/stem.html.

https://github.com/dav/word2vec
https://github.com/facebookresearch/fastText.git
https://github.com/facebookresearch/fastText.git
https://dumps.wikimedia.org/
http://www.nltk.org/howto/stem.html
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conditions. Table 2 shows the number of words that share some unique stem.
fastText performed about as well as word2vec on low-N words, but seemed to
suffer on the high-N words, corroborating our intuition that fastText vectors
were sub optimal with high-N words.

Table 2. Number of words sharing a common stem

Low-N High-N

word2vec 14 15

fastText 12 20

3 Models of Word Encoding

Experiment 1 gave some reason to believe that the simple n-gram model of sub-
word representation might be limiting the quality of the vectors obtained with
fastText, because of the presence of high-N words. Since orthographic neigh-
bourhoods effects are predominantly psycholinguistic, we reasoned that drawing
on existing knowledge about human word encoding schemes, might help us to
improve orthographic word representations. Our hypothesis is that the surface
form of writing systems evolved in light of the properties of the human ortho-
graphic encoding mechanism, and an understanding of the properties of the
human encoding system could help us implement coding schemes which are bet-
ter suited to process those surface forms. The Latin alphabet provides discrete
components which are combined to form words of various lengths. Interestingly,
even though short words tend to have higher neighbourhood densities, there is
an inverse relation between word length and frequency of use in English func-
tion words [16]. That is, the most frequently used words tend to be short with
potentially high orthographic neighbourhoods, which could lead to errors if the
perceptual system was not adapted to avoid the errors. Psycholinguistic results
about neighbourhood density effects form a key source of evidence for models of
visual word recognition.

There is general consensus in the literature that abstract letter identities,
independent of type font and case, are involved in the initial stages of printed
word recognition [7]. Beyond that, there are differing proposals for how the letter
detectors combine to enable printed word recognition. It is clear, for example,
that letter position must somehow be computed because readers have no trouble
distinguishing between, say, bale and able. On the other hand humans seem
to be unperturbed by letter transposition, deletion, or insertion, such that the
intended meanings of tmie, grdn, and garxden are generally recognised [9].

One of the most well supported proposals for an orthographic encoding
schema is the open bigram (or more generally open n-gram) model of spatial
encoding. In the open bigram model, letter encoding includes distant bigram
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pairs in words, not just spatially contiguous ones. For example, the word clam
could be coded by the set {cl, ca, cm, la, lm, am}. Here the character gap
between the letters is not constrained.

Whitney [21] proposed an interesting version of the open bigram approach in
the SERIOL model, which incorporates facts about the role of neural activation
in information representation. The model postulates a letter level encoding stage
in which the relative position of each letter in the word string is encoded by the
temporal neural firing patterns. That is, the subsequent bigram level recognises
ordered pairs of letters, converting the temporal sequence into a spatial one.
Bigram nodes recognize ordered pairs of letters and fire only if, for example,
input A is followed by input B but not if only A were received, or if B were
received prior to A. The neuronal firing occurs if letter nodes transmit their
information within an oscillatory cycle, so non contiguous letter pairs can also
activate letter bigrams, but the strength of firing is diminished with the distance
between characters.

The bigram encoding model has similarities with the model of subword encod-
ing in fastText. There are also important differences, in that Whitney’s model
uses only bigrams as well as non-contiguous bigrams. We decided to try if the
introduction of non-contiguous/open n-grams, in analogy with the human per-
ceptual system, could improve the performance of fastText embeddings.

3.1 Experiment 2: Non-contiguous n-grams

In this experiment we tested the addition of open n-grams to subword features,
to see if they improved fastText vector representations. We experimented many
different encoding schemes, and found that including both open, and regular
contiguous n-grams gave inferior results to just using open n-grams8. In other
words, contiguous n-grams always degraded performance. The best results were
obtained by 300 dimensional vectors trained with n-grams where 3 ≤ n ≤ 6. We
call the trained models with only open n-grams fasterText, because every word
has fewer n-gram components, and the model is slightly faster to train9.

To illustrate the reduction in the number of components compared to contigu-
ous n-grams, consider just the tri -grams for the word safety from our previous
example, showing a 66% reduction in just the number of tri -grams:

contiguous trigrams: <sa saf afe fet ety ty>
open trigrams: <a e s f t a e y f t>

The performance of the fasterText vectors is shown in Table 3 for the pre-
viously described tests in Table 1, as well as the SemEval2012 task 2, and the
Google analogy task. The former of these adds some fine grained semantic rela-
tions, and the latter some syntactic as well as semantic analogies. The results
8 This is an interesting result since it departs from theories of human representation.

We return to this point in the discussion.
9 For example time to train the two best performing models on an Intel(R) Xeon(R)

CPU E5-2650 v3 @ 2.30 GHz, 40 cores, 62GB RAM, fastText real time =
376m36.311 s, fasterText real time = 361m35.879 s.
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Table 3. Correlation between human judgement and word vector similarity scores
on SimLex999 (semantic similarity, not relatedness), WS353 (semantic similarity and
relatedness combined), SemEval2012 task 2 (various complex semantic relations),
Google (semnatic and syntactic analogy task), and RareWord dataset (semantic sim-
ilarity). Non-contiguous n-grams in fasterText shown against word2vec and fastText.
Five different hyperparamters in fasterText are shown, where the number in parenthe-
ses is the degree of n. o+c also includes closed bigrams.

SimLex WS353 SemEval Google RW

word2vec .33 .64 .18 .71 .41

fastText .33 .69 .17 .69 .44

fasterText(2o+c) .33 .66 .17 .68 .38

fasterText(2) .33 .67 .17 .69 .39

fasterText(2–3) .33 .68 .18 .7 .4

fasterText(2–6) .33 .69 .18 .69 .42

fasterText(3–6) .34 .70 .18 .71 .45

show Spearman’s rank correlation coefficient between vector cosine distance and
human judgement. fasterText embeddings achieve the best result (or equal best)
on all of the five tests. This in spite of the fewer total n-gram components.
The table also shows that performance tended to increase as longer n-grams
were included, and degraded if bigrams were also present. However, the impor-
tant point again is that the open bigram trained embeddings outperformed or
equalled the state-of-the-art algorithms on every test.

Table 4. Results from jiant target tasks.

mnli (accuracy) kerte (accuracy) sts-b (spearman r) wnli (accuracy)

fastText (pretrained) 0.408 0.552 0.218 0.563

fastText 0.408 0.552 0.244 0.563

fasterText 0.440 0.578 0.248 0.563

3.2 Downstream Tasks

We compared the embeddings on several downstream tasks using the jiant10

toolkit to evaluate on several GLUE11 benchmarks [20].
The network configuration, including pretrain tasks, was taken from the jiant

tutorial. The core model is a shared BiLSTM and no effort was made to opti-
mize the model, since we were looking for a comparison between the embeddings

10 https://jiant.info/.
11 https://gluebenchmark.com/.

https://jiant.info/
https://gluebenchmark.com/
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rather than state-of-the-art performance. The test tasks were the Multi-Genre
Natural Language Inference (MultiNLI) for textual entailment, the Recognizing
Textual Entailment (RTE), the Semantic Textual Similarity Benchmark (sts-
b) and the Winograd Natural Language Inference (WNLI or also known as The
Winograd Schema Challenge), from the GLUE test set. These tasks are all puta-
tively semantic, indicating semantic encoding in the word vectors [20]. Table 4
shows the results of the comparison between pretrained fastText vectors obtained
through the jiant web site, the fastText vectors trained on our corpus and the
fasterText vectors trained on the same corpus. There is a slight improvement
with fasterText in these downstream tasks, suggesting that these embeddings
encode more precise semantic information.

In a separate line of work, HaCohen-kerner et al. [8] used Skip Char Ngrams
and other character level features in stance classification of tweets. Their goal
was to maximise the available features for the short texts available in individual
tweets, and to reduce the effect of noisy data due to misspellings. They gener-
ated a large number of skip character features, skipping the range between 2–6
characters depending on the word, and found that their skip character ngrams
outperformed previous benchmarks. While this work did not use word embed-
dings directly, it nevertheless shows that non contiguous n-grams provide unique
information about word meanings.12

4 Summary, Conclusions, and Future Work

The use of subword information for training word embeddings benefits rare
words, and languages where words are spontaneously derived by compounding. It
was argued that subword encoding is also intrinsic to human word recognition,
and the experiments showed that by including aspects of the known human
encoding scheme in machine learning, the results can be improved across the
board.

One curious aspect of the results was that regular, closed n-grams tended
to reduce the quality of the embedding vectors. This is unusual because all
psychological models we are aware of include regular n-grams. One possible
explanation is that our model misrepresented the role of closed n-grams because
it used only a simple model of open n-grams. In our implementation we put
equal weight on each n-gram, irrespective of its serial position in the word. In
addition, we only used a gap of one character between letters. This corresponds
most closely with a discrete open bigram model, where non contiguous bigrams
within a specified inter-letter distance receive an activation of 1, all other bigrams
0. Other approaches allow larger gaps and weighting functions, which result in
different contributions of the subword units. For example the unit cm is activated
in the word clam if two intervening letters are permitted, but not by the word
claim. On the other hand the continuous open bigram model assigns a continuous
and decreasing activation to bigrams that are separated by more letters. Thus
12 We would like to thank an anonymous reviewer for bringing our attention to this

work.
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cm would receive some activation from both words, but more from clam. An
obvious next step is to implement a version of the continuous model. This could
be achieved by repeating bigrams by a factor that is proportional to the distance
between them. That is, spatially closer n-grams would get more training cycles
in any given word. By doing this we might be able to re introduce shorter n-
grams which would improve out of vocabulary performance as well as retain its
other good characteristics.

Hannagan et al. [9] argue that orthographic encoding can be mathemati-
cally modelled as a string kernel, and different encoding schemes are simply
different parameters of the kernel. String kernels are a general approach origi-
nally designed for protein function prediction, and are consistent with a general,
biologically plausible model of sequence comparison that is tolerant of global
displacement and local changes. Our main contribution is to show that subword
embeddings based on biologically plausible string kernels produce better results
than embeddings based on ad hoc letter combinations. The claims should there-
fore apply also to other languages and writing scripts, as well as to other meth-
ods for generating embedding vectors, for example BERT [4] and ELMo [19].
Observed word forms evolve in conjunction with the capabilities and properties
of the human visual system. Encoding schemes used in artificial neural networks
could benefit from learning about the properties of real neural networks and the
environments in which they operate.
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Abstract. The paper presents the results of applying the BERT repre-
sentation model in the named entity recognition task for the cybersecu-
rity domain in Russian. Several variants of the model were investigated.
The best results were obtained using the BERT model, trained on the
target collection of information security texts. We also explored a new
form of data augmentation for the task of named entity recognition.
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1 Introduction

Automatic named entity recognition (NER) is one of the basic tasks in natural
language processing. The majority of well-known NER datasets consist of news
documents with three types of named entities labeled: persons, organizations,
and locations [1,2]. For these types of named entities, the state-of-the-art NER
methods usually give impressive results. However, in specific domains, the per-
formance of NER systems can be much lower due to necessity to introduce new
types of entities, to establish the principles of their labeling, and to annotate
them consistently.

In this paper we discuss the NER task in the cybersecurity domain [3]. Sev-
eral additional types of named entities for this domain were annotated if com-
pared to general datasets such as software programs, devices, technologies, hack-
ers, and malicious programs (vulnerabilities). The most important entities for
this domain are names of malicious software and hackers. However, the anno-
tated dataset contains a modest number of entities of these types. This could be
explained by the fact that usually names of viruses and hackers are not known
at the time of an attack and are revealed later.
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To improve NER performance in such conditions, we suggest using BERT
transformers [4] as well as an automatic dataset augmentation method, by which
we mean extending a training dataset with sentences containing automatically
labeled named entities. In this paper we study how quality of a NER system
changes depending on variants of the BERT model used. We experimented with
the following models: a multilingual model, a model fine-tuned on Russian data,
and a model fine-tuned on cybersecurity texts. We also introduce a new method
of dataset augmentation for NER tasks and study the parameters of the method.

2 Related Work

The information extraction task in cybersecurity domain has been discussed in
several works. However, most works consider information extraction only from
structured or semi-structured English texts [5]. The training corpus presented
in [7] does contain unstructured blog posts, but those comprise less than 10% of
the corpus. The proposed NER systems are based on such methods as principle
of Maximum Entropy [5], Conditional Random Fields (CRF) [6,7]. Gasmi et al.
[8] explored two different NER approaches: the CRF-model and neural network
based model LSTM-CRF.

Currently, the state-of-the-art models for named entity recognition utilize
various contextualized vector representations such as BERT [4], unlike static
vector representations, such as word2vec [9]. BERT is pretrained on a large
amount of unlabeled data on the language modeling task, and then it can be
fine-tuned for a specific task. The paper [13] describes an approach to further
training of the multilingual BERT model on the Russian-language data. The
new model, called RuBERT, showed an improvement in quality in three NLP
tasks in Russian, including named entity recognition [16].

In 2019, the NER shared task for Slavic languages was organized [14]. Most
participants and the winner used BERT as the main model. The data had a
significant imbalance among the types of entities. For example, the “product”
entity was annotated only for 8% of all entities in the Russian data. The results
of extracting this type of entities were significantly lower than for other entities.

As far as methods of data augmentation for natural language processing are
concerned, they are mainly discussed for such tasks as machine translation and
automatic text classification. The simplest augmentation method is to replace
source words with their synonyms from manual thesauri or with similar words
according to a distributional model trained on a large text collection [17]. In [18]
the replacement words were selected among the most probable words according
to a language model. The authors of [19] used four simple augmentation tech-
niques for the classification tasks: replacing words with their synonyms, occa-
sional word insertion, occasional word deletion and occasional word order chang-
ing. This method was applied to five datasets, showing average improvement of
0.8% for F-score. All four operations contributed to the obtained improvement.

In this paper we discuss a specialized method of data augmentation for named
entity recognition. We obtain additional annotated data by inserting named
entities in appropriate sentences and contexts.
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3 Data

We use a renewed version of Sec col1 corpus [3] as a training dataset for the
NER task. The final corpus contains 861 unstructured texts (more than 400 K
tokens), which are articles, posts, and comments extracted from several sources
on cybersecurity. The set of corpus labels (14K labeled entities) includes four
general types: PER (persons excluding hackers), ORG (organizations exclud-
ing hacker groups), LOC, and EVENT; and five domain-specific types such
as PROGRAM (computer programs excluding malware), DEVICE (for vari-
ous electronic devices), TECH (for technologies having proper names), VIRUS
(for malware and vulnerabilities), and HACKER (for single hackers and hacker
groups). The annotation principles are described in detail in [3]. The authors
of [3] compared different models of NER including CRF and several variants of
neural networks on this corpus.

One of the labels, HACKER, is severely underrepresented in the dataset (60
occurrences). The VIRUS label was annotated 400 times, which is lower than
for other tags.

4 BERT Models Used in Cybersecurity NER

We explore the use of the BERT model [4] for the NER task in the information-
security domain. This model receives a sequence of tokens obtained by tok-
enization using the WordPiece technique [10] and generates a sequence of con-
textualized vector representations. BERT training is divided into two stages:
pretraining and fine-tuning [12]. At the pretraining stage, the model is trained
on the masked language modeling task. At the fine-tuning stage, the task-specific
layers are built over BERT; the BERT layers are initialized with the pretrained
weights, and further training for the corresponding task takes place.

For Russian, researchers from DeepPavlov [16] trained the model RuBERT
on Russian Wikipedia and a news corpus [13]. To do this, they:

– took pre-trained weights from multilingual-bert-base,
– constructed a new vocabulary of tokens of a similar size, better suited for

processing Russian texts, thereby reducing the average length of tokenized
sequences by 1.6 times, which is critical for the model performance,

– initialized vector representations of new tokens using vectors from
multilingual-bert-base in a special way,

– trained the resulting model with a new vocabulary on the Russian Wikipedia
and the news corpus.

As part of this study, we evaluated BERT in the NER task in the field of infor-
mation security with the following pretrained weights: 1) multilingual-bert-base
model (BERT), 2) model trained on Russian general data RuBERT, 3) RuCy-
BERT, which was obtained by additional training RuBERT on information-
security texts. Training RuCyBERT was similar to training RuBERT, but
1 https://github.com/LAIR-RCC/InfSecurityRussianNLP.

https://github.com/LAIR-RCC/InfSecurityRussianNLP
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without creating a new vocabulary. To do this, the pretraining procedure was
launched on 500K cybersecurity texts with the initialization of all weights from
RuBERT. The training lasted 500k steps with batch size 6.

All three models have the same architecture: transformer-encoder [15] with 12
transformer blocks, 12 self-attention heads and H= 768 hidden size. The models
are fine-tuned for 6 epochs, with B = 16 batch size, with learning rate 5e−5 and
T = 128 maximum sequence length. When forming input for the model, only the
first token of a word gets a real word label, the remaining tokens get a special
label X. At the prediction step, the predicted label of the first token is chosen
for the whole word.

5 Augmentation of Training Data

The important classes of named entities in the cybersecurity domain are names
of viruses and hackers (including hacker groups). The Sec col collection, how-
ever, includes a quite small number of hackers’ names. Many texts related to
cybersecurity include only unnamed descriptors (such as hacker, hacker group,
hacker community).

The core idea of the NER augmentation is as follows: in most contexts where
an entity descriptor is mentioned, some other variants of mentions are possi-
ble. For Russian, such variants can be: 1) a descriptor followed by a name or
2) just the name alone. The first above-indicated variant of entity mentioning
is language-specific, depends on language-specific grammar rules. Consequently,
we could augment the collection by adding names after descriptors or by replac-
ing descriptors with names. The following sentences show the examples of the
substitution operation for malware.

– Initial sentence: Almost 30% are seriously concerned about this issue,
another 25% believe that the danger of spyware is exaggerated, and more
than 15% do not consider this type of threat to be a problem at all.

– Augmented sentence: Almost 30% are seriously concerned about this issue,
another 25% believe that the danger of Remcos is exaggerated, and more
than 15% do not consider this type of threat to be a problem at all.

The suggested augmentation includes two subtypes: inner and outer. The
inner augmentation involves sentences that contain relevant descriptors within
the existing training data. If a sentence meets augmentation restrictions, then
the descriptor is replaced with a name or a name is added after the descriptor
with equal probability. In both cases, we require that the descriptor must not
be followed by a labeled named entity and it must not be preceded by words
that agree with the descriptor in gender, number or case, such as adjectives,
participles, ordinal numbers, and others.

For the outer augmentation, we look for sentences with relevant descriptors
in a collection of unannotated cybersecurity texts. There also must not be any
evident named entities (words starting with a capital letter) in a window of cer-
tain width around the descriptor. As for this purpose an unannotated collection
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is used, we do not know the classes of potential named entities, thus we have
to exclude sentences with such entities. Besides, we also require the absence of
adjectives before the descriptor. The selected sentences also undergo the proce-
dure of inserting a name after a descriptor or replacing the descriptor with a
name with equal probability.

The augmentation has been implemented for two types of named enti-
ties: malicious software (VIRUS label) and hackers (HACKER label). 24 virus
descriptors and 6 hacker descriptors were used. By means of inner augmentation,
262 additional annotated sentences for viruses and 165 annotated sentences for
hackers were created. The outer augmentation can be of an unlimited size.

Inserted named entities are obtained in the following way. We took a large
cybersecurity text collection and used it to extract names and sequences of names
that follow target descriptors. We created the frequency list of extracted names
and chose those names for which frequency was higher than a certain threshold
(5). Then we excluded the names that appeared in the annotated training col-
lection and belonged to classes that are different from the target class. The rest
of the names were randomly used for insertion into the augmented sentences.

6 Experiments

We compare several variants of the BERT model on the NER task for information
security domain. In addition, the results of using augmentation of the labeled
data are investigated.

The CRF method was chosen as a baseline model, since in previous experi-
ments with the Sec col collection, this method showed better results than several
variants of neural networks that are usually used for the NER task (BiLSTM
with character embeddings) [3]. The CRF model utilizes the following features:
token embeddings, lemma, part of speech, vocabularies of names and descriptors,
word clusters based on their distributional representation, all these features in
window 2 from the current token, tag of the previous word [3].

Table 1 shows the classification results for four models for all labels used, as
well as the averaged macro and micro F-measures. It can be seen that the use
of the multilingual-bert-base (BERT in the table) gives better results than the
CRF model for all types of named entities. The use of the pretrained models on
the Russian data (RuBERT) and information security texts (RuCyBERT) gives
a significant improvement over previous models.

Since models based on neural networks due to random initialization can give
slightly different results from run to run, the results in the tables for all BERT
models are given as averaging of four runs. The last row of Table 1 indicates
(F-macro std) the standard deviation of the results from the mean. It can be
seen that the better the model fits the data, the better the results are, and the
standard deviation decreases.

For CRF, all types of the augmentation improved the results of extracting
target entities. The best augmentation was inner augmentation, which achieved
43.58 HACKER VIRUS F-measure, which means an increase in the average
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Table 1. Results of basic models

CRF BERT RuBERT RuCyBERT

DEVICE 31.78 34.04 43.13 46.77

EVENT 42.70 60.38 64.49 67.86

HACKER 26.58 42.69 52.43 61.03

LOC 82.30 90.00 91.28 90.01

ORG 68.15 76.10 78.95 78.58

PER 67.10 80.99 84.32 84.56

PROGRAM 62.15 63.15 64.77 66.57

TECH 60.65 67.08 67.60 69.24

VIRUS 40.90 40.21 46.92 54.72

F-micro 63.95 69.37 71.61 72.74

F-macro 53.59 61.63 65.99 68.82

F-macro std – 1.52 0.93 0.86

quality of the target named entities by 10% points (almost a third). Macro F1
measure for all types of entities (57.39) was also improved significantly.

Table 2 shows the use of the proposed data augmentation approach to extract
two types of named entities HÀCKER and VIRUS with inner and outer aug-
mentations. For the outer augmentation, options for adding 100, 200, 400, 600
augmented sentences for each entity types (HÀCKER and VIRUS) were consid-
ered. However, the outer augmentation of 600 sentences gave a stable decrease in
the results for all models, and therefore these results are not given in the tables.
The “mean F1” column shows the averaging of the values of the F1 measure over
all types of entities. The best achieved results are in bold. The results improving
the basic results (without augmentation) are underlined.

It can be seen that the multilingual BERT model demonstrates a very high
standard deviation on the two types of entities under analysis. Any variant of
augmentation reduces the standard deviation, which, however, remains quite
high (column F1 std). Two models of outer augmentation increase the quality of
extraction of target entities while significantly reducing the standard deviation
compared to the original model.

For the RuBERT model, the results are significantly higher than for the
previous model, the standard deviation is lower. The augmentation in all cases
reduces the standard deviation of F measures for target and all types of entities.
The results on the target entities increased with outer augmentation of 200
sentences for both entities. Also, for some reason, the outer augmentation only
with viruses positively influenced the extraction of both of them (100 and 200
sentences). The study of this phenomenon is planned to continue.

For RuCyBERT model, the basic performance is much higher, and there is no
improvement from the augmentation. The augmentation on average reduces the



22 M. Tikhomirov et al.

standard deviation of F-measure, which leads to the fact that the performance
of models with augmentation and the basic model is comparable.

It can be also seen that in almost all experiments the proposed augmentation
significantly increases recall, but decreases precision.

Table 2. Models with augmentation

HACKER VIRUS Macro

P R F1 F1 std F1 F1 std

BERT Base (no augmentation) 46.43 38.14 41.45 7.23 61.63 1.52

Inner 36.81 45.44 39.92 3.53 61.26 0.86

Outer 100 39.13 44.96 41.04 2.18 62.02 0.55

Outer 200 39.32 48.24 42.51 4.33 62.21 0.74

Outer 400 40.23 45.97 42.53 4.59 62.12 1.08

RuBERT Base (no augmentation) 53.65 47.38 49.67 4.65 65.99 0.93

Inner 45.01 55.74 48.87 3.48 65.92 0.68

Outer 100 47.46 53.29 49.38 3.1 65.88 0.79

Outer 200 47.83 55.34 50.71 2.96 66.24 0.59

Outer 400 45.57 53.45 48.46 2.36 65.77 0.67

Outer viruses 100 57.14 51.67 53.79 3.05 66.85 0.64

RuCyBERT Base (no augmentation) 61.33 55.89 57.87 3.75 68.82 0.86

Inner 52.51 62.57 56.03 2.54 68.61 0.53

Outer 100 50.78 59.69 53.79 2.36 67.78 0.43

Outer 200 52.82 59.61 54.82 3.94 68.06 0.74

Outer 400 52.42 61.31 55.64 2.16 67.93 0.71

7 Conclusion

In this paper we present the results of applying BERT to named entity recogni-
tion for cybersecurity Russian texts. We compare three BERT models: multilin-
gual, Russian (RuBERT), and cybersecurity model trained on specialized text
collection (RuCyBERT). The highest macro F-score is shown by the domain-
specific RuCyBERT model.

For each model, we have also presented a new form of augmentation of labeled
data for the NER task, that is adding names after or instead of a descriptor of a
certain type. The adding procedure is language-specific. In our case it is based
on the Russian grammar. In practically all cases, the augmentation increases
recall, but decreases precision of NER. A significant improvement from the aug-
mentation was revealed for relatively weak CRF and multilingual BERT models.
For the fine-tuned models, the quality has barely grown. Nevertheless, if in some
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cases it is impossible to fine-tune BERT on a specialized collection, the presented
augmentation for named entities could be of great use while extracting named
entities of non-standard types. The described Sec col collection and the trained
RuCyBERT model can be obtained from the repository2.
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Abstract. The daily exponential increase of biomedical information in
scientific literature and patents is a main obstacle to foster advances
in biomedical research. A fundamental step hereby is to find key infor-
mation (named entities) inside these publications applying Biomedical
Named Entities Recognition (BNER). However, BNER is a complex task
compared to traditional NER as biomedical named entities often have
irregular expressions, employ complex entity structures, and don’t con-
sider well-defined entity boundaries, etc. In this paper, we propose a
deep neural network (NN) architecture, namely the bidirectional Long-
Short Term Memory (Bi-LSTM) based model for BNER. We present
a detailed neural network architecture showing the different NN layers,
their interconnections and transformations. Based on existing gold stan-
dard datasets, we evaluated and compared several models for identify-
ing biomedical named entities such as chemicals, diseases, drugs, species
and genes/proteins. Our deep NN based Bi-LSTM model using word and
character level embeddings outperforms CRF and Bi-LSTM using only
word level embeddings significantly.

Keywords: Biomedical · NER · Deep neural network · Bi-LSTM ·
CRF · Patent

1 Introduction

We have witnessed a massive growth of information in the biomedical domain
in the last few decades due to the abundant research on various diseases, drug
development, and gene/protein identification etc. However, a large percentage
of the information related to the biomedical domain is available as unstructured
document publications such as scientific articles, patents etc. In order to effec-
tively exploit such unstructured resources, research in biomedical named entity
recognition (BNER) is one of the most promising techniques for automating the
utilization of biomedical data. Furthermore, BNER is considered an initial step
for many downstream tasks, such as relation extraction, question answering,
knowledge base completion, etc. [2].
c© Springer Nature Switzerland AG 2020
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Identifying biomedical entities is not a trivial task due to many factors such
as complex entity structures, fuzzy entity boundaries, abundant use of synonyms,
hyphens, digits, characters, and ambiguous abbreviations, etc. Despite significant
efforts for building benchmark datasets to develop BNER, these datasets are still
far from being optimal in quality and in size to speed up the development of
BNER tools. For patents, the problem is even more complex as it is not easy
to process the patent text due to peculiarities such as usage of generic terms,
paraphrasing, and vague expressions, which makes it harder to narrow down the
scope of the invention. This causes important contextual information to be lost,
which has a negative effect on the performance of BNER tools [18]. A patent
is a very important resource to consider as new chemical or biomedical entities
are often shown in patent documents before they are even mentioned in the
chemical or biomedical literature making patents a valuable, but often not a
fully discovered resource. Furthermore, it is estimated that a significant portion
of all technical knowledge is exclusively published in patents. For example, two-
thirds of technical information related to the medical domain did not appear in
non-patent literature [15].

On the basis of the encouraging results we have achieved in our ongoing
work for using deep neural network models for the BNER task [17], in this
paper, we show our improved deep learning approach that we evaluated on large
biomedical datasets for the following biomedical entity types: chemical, disease,
drug, gene/protein, and species. Moreover, we show the specific details of the
developed neural network architecture and how the various neural network layers
are designed to transform an input to a desired output – enabling the neural
network to reduce the error/loss and optimize the learning task.

In the following, we firstly review the related work in Sect. 2, followed by a
presentation of the proposed approach in Sect. 3. In Sect. 4 an empirical evalua-
tion is presented and discussed. A conclusion is given in Sect. 5.

2 Related Work

In the literature, NER approaches are generally classified into hybrid (rule-
based and statistical), supervised (feature-based) and unsupervised learning
approaches [21]. In the biomedical domain, for example with regard to the
hybrid approach, a two-fold method for Biomedical NER was proposed in which
dictionary-based NER was combined with corpus-based disambiguation [1]. Due
to the fact that a biomedical named entity can exist in different written forms,
e.g., “SRC1”, “SRC 1”, and “SRC-1”, performing the exact match of the
biomedical named entity in a given text with the dictionary terms can result
in very low coverage. Therefore, different forms of the same named entity were
normalized and transformed into a unified representation. However, words from
a common vocabulary may be mistakenly recognized as biomedical named enti-
ties. In order to tackle this issue a corpus-based disambiguation approach to
filter out mistakenly recognized biomedical named entities was applied. The dis-
ambiguation process was accomplished based on a machine-learning classifier
trained on an annotated corpus.
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Tanabe and Wilbur used a combination of a statistical and a knowledge-based
approach to extract gene and protein named entities from biomedical text [20].
First, a Brill POS tagger1 was applied to extract candidates. These were then
filtered based on manually curated rules, e.g., morphological clues, to improve
the extraction accuracy. Furthermore, a Bayesian classifier was applied to rank
the documents by similarity according to documents with known genes and pro-
teins in advance. Hanisch et al. proposed ProMiner, which used a pre-processed
synonym dictionary to extract gene and protein named entities from biomed-
ical text [10]. ProMiner is composed of three parts, gene and protein named
entity dictionary generation, gene/protein occurrence detection, and filtering of
matched entities. Rule-based approaches are expensive and time consuming as
rules need to be modified each time the data changes. Furthermore, rule-based
approaches are usually domain dependent and cannot be smoothly adapted to
a new domain.

In recent years, with the availability of the annotated biomedical corpora,
several supervised approaches have been developed. For example, GENIA2 and
BioCreative3 corpora were intensively used in supervising learning approaches
such as Support Vector Machines (SVMs) [22], Conditional Random Fields [19]
etc. In [22] Yang and Li proposed a SVM-based system, named BioPPISVMEx-
tractor, to identify protein-protein interactions in biomedical text. Features that
were set, such as word feature, protein names distance feature, link-path feature
etc. were used for SVM classification. Based on these rich features, the SVM clas-
sifier was trained to identify which protein pairs have a biological relationship
among them. In [19], Settles used the CRF (Conditional Random Field App-
roach) approach to recognize genes and proteins named entities with a variety
of rich features set such as orthographic and semantic features obtained from a
lexicon, etc. Based on the fact that a contextual feature is very important for
the performance of the CRF approach, Settles models the local context feature
by considering neighboring words, one word before and one word after the word
in focus, besides other features for improving the sequence labeling task.

The clustering approach is considered as a standard unsupervised approach
for biomedical NER. The assumption behind this unsupervised approach is that
the named entities in the biomedical text can be clustered based on their contex-
tual similarity. For example, in [23] Zhang and Elhadad proposed an unsuper-
vised approach to extract named entities from biomedical text. The classification
approach does not rely on any handcrafted rules, heuristics, or use of annotated
data. It depends on corpus statistics and shallow syntactic knowledge, e.g., noun
phrase extraction. Han et al. proposed a novel clustering based active learning
method for the biomedical NER task [9]. They compared different variations of
the proposed approach and discovered the optimal design of the active learn-
ing method. This optimal design employs the use of the vector representation

1 https://www.npmjs.com/package/brill-pos-tagger.
2 http://www.geniaproject.org/.
3 https://biocreative.bioinformatics.udel.edu/.

https://www.npmjs.com/package/brill-pos-tagger
http://www.geniaproject.org/
https://biocreative.bioinformatics.udel.edu/
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of named entities, and the selection of documents that are representative and
informative.

In the past few years, Deep Learning approaches for the NER task (mainly
LSTM = Long Short-Term Memory) became dominant as they outperformed
the state-of-the-art approaches significantly [5]. In contrast to feature-based
approaches, where features are designed and prepared through human effort,
deep learning is able to automatically discover hidden features from unlabelled
data4. The first application for NER using a neural network (NN) was proposed
in [3]. In this work, the authors used feature vectors generated from all words
in an unlabelled corpora. A separate feature (orthographic) is included based
on the assumption that a capital letter at the beginning of a word is a strong
indication that the word is a named entity. The proposed controlled features
were later replaced with word embeddings [4]. Word embeddings, which are a
representation of word meanings in n-dimensional space, were learned from unla-
belled data. A major strength of these approaches is that they allow the design
of training algorithms that avoid task-specific engineering and instead rely on
large, unlabelled data to discover internal word representations that are useful
for the NER task.

The prowess of such approaches has since been observed many times. In the
BioCreative V CEMP5 and GPRO6 tasks, the best algorithm combined deep
learning and CRF [14]. Finally, in a study covering 33 datasets, an approach
combining deep learning and CRF outperformed not only a plain CRF-based
approach, but also entity-specific NER methods (e.g., a dictionary) in recall and
F1-score [8]. In recent work, the original BERT (Bidirectional Encoder Repre-
sentations from Transformers) model [6] was applied for the BNER task, e.g.,
to train models with biomedical text (BioBERT) [13]. Based on the achieved
experimental results, BioBERT, e.g., slightly outperformed the BNER state-of-
the-art approaches with 0.62% F-measure improvement and gained a signifi-
cant improvement (12.24% MRR -Mean Reciprocal Rank-) for the biomedical
QA task. The advantage of using the BERT model over other models is that
it takes into account polysemous words. For example, Word2Vec produces only
one embeddings vector for the polysemous word “apple”, while the BERT model
produces different embeddings: one embedding for the fruit and another one for
the smart phone brand, etc.

3 Bidirectional Long-Short Term Memory (Bi-LSTM)

LSTM is a special case of Recurrent Neural Network (RNN) which is capable of
remembering information of larger contexts. RNN is the most used approach for
sequence labelling tasks due to its ability to consider a richer context compared
to the standard Feed Forward Neural Network (FFNN). The main fundamental

4 Readers interested in a more introductory text on the topic may wish to refer to [7].
5 Chemical Entity Mention in Patents.
6 Gene and Protein Related Object.
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difference between the architecture of a RNN and a FFNN is that the informa-
tion flow in the RNN is cyclic while the information flow in the FFNN only moves
in one direction (feed and then forward). Each node in a RNN is making the
prediction based on the current input into the RNN node and the past output
of the same node. This mechanism makes RNN ideal for learning time-sensitive
information as it doesn’t neglect previous input. However, RNN suffers from the
vanishing gradient problem which hinders handling wider contexts [11]. The rea-
son therefore is that when fine-tuning the weights during the back propagation,
the weight values update of the early layers will be strongly dependent on the
weight values of the later layers. When the weight values of the later layers are
very small (closer to zero), the weight values of the early layer will vanish very
quickly, making it impossible for the RNN to learn the task effectively.

In LSTM instead of having a node with a single activation function as it is
the case in RNN, the LSTM nodes can act as a memory cell which is able to store
different types of information using a gate mechanism. Gates in LSTM regulate
the flow of information, e.g., forget gates do not allow irrelevant information to
pass through. There are two types of LSTM, unidirectional LSTM, which can
handle information from the past, and bidirectional LSTM (Bi-LSTM), which
can handle information from the past and from the future. One LSTM performs
a forward operation so it can handle the information from the past and the
second LSTM performs the backward operation so it can handle the information
from the future and hence consider a wider context which can help with the
predicting task. For more detailed information about the conceptual idea of the
LSTM approach we refer the reader to the work proposed in [12].

The architecture of the Bi-LSTM deep neural network model is illustrated
in Fig. 1. The input to the model is the “mutant superoxide dismutase-1 gene”
sequence. The word embeddings is learned using unlabelled datasets, e.g., for
chemical, drug, disease, gene, protein, etc. We used the Bi-LSTM to encode
character-level information of a given word into its character-level representation
(embeddings). If we consider the “mutant” token as an example, its characters
“M U T A N T” will be used as input into the Bi-LSTM model and hence
its character-based representation is generated. A combination of the character-
based embeddings and the corresponding word embeddings which were generated
using an unlabelled dataset will be the input to the Bi-LSTM layer. The result
of this step is a richer contextual representation (vector representation) for the
input sequence, which will be the input to the CRF model layer for the best
label sequence tagging generation. The tagging layer (the CRF model) uses a
probabilistic sequence-labelling model for sequence tagging. The CRF model
takes as input a token sequence and assigns the most related label to each token
based on the training dataset (see Sect. 4.1). As it is possible that a named entity
spans over multiple tokens, and in order to tackle this issue, we used the IOB
format scheme to define the entity boundaries. The training dataset represents
the corresponding IOB-tags where IOB refers to Inside, Outside and Beginning
and it is widely used as an encoding scheme for the NER task. Words tagged
with “O” are outside of named entity, whereas words tagged with “I” lie inside
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Fig. 1. The overall architecture of the Bi-LSTM-CRF Model for BNER.

of a named entity. “B” refers to words that represent the beginning of a named
entity. To tag each token in the given sequence, the CRF model builds a set of
inference rules based on the training corpus and the refined context obtained
by the Bi-LSTM model. For the algorithm implementation we used the default
value settings, e.g., embeddings dimensions of value 300, dropout of value 0.5,
epochs of value 25, batch size of value 20. lstm size of value 100 etc.

4 Evaluation

In this section we present our empirical study of biomedical NER applied on
various biomedical datasets obtained from biomedical literature and patents.
Next, we briefly describe the datasets we used for training, word embedding
generation, and evaluation of the proposed algorithm variants.

4.1 Dataset

We evaluated and trained several models on six different datasets employing five
entity types: chemical, gene/protein, disease, drug, and species. Four datasets
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(chemical/drug, gene, disease and species) were acquired from biomedical litera-
ture while two datasets (chemical and gene/protein) were acquired from patents
belonging to various patent offices (cf. Table 1). All datasets were manually
annotated by domain experts. The BC4CHEMD, BC2GM, CEMP and GPRO
datasets were obtained from BioCreative7, the NCBI-disease dataset from the
National Center for Biotechnology Information8, while the Linnaeus dataset was
obtained from the Linnaeus website9.

Table 1. The number of training and test instances for each dataset.

Dataset Type Training instances Test instances

BC4CHEMD The BioCreative IV chemical and drug 30682 26364

BC2GM The BioCreative II gene 12574 5038

NCBI-disease Diseases 4560 4797

Linnaeus Species 11935 7142

CEMP chemical patent Chemical 43307 19274

Chemdner GPRO patent Gene/protein 10249 5652

Word embeddings are usually represented by lower-dimensional vectors of
mostly up to 300 words in length, e.g., the vector of the word disease is very
close to the vector’s representation of, chronic, disorder, treatment, drugs etc.
These relationships between vectors are not explicitly enforced by humans dur-
ing training instead they are learnt by the training algorithm in an unsupervised
manner based on large unlabelled datasets. The unlabelled datasets which we
used to generate the word embeddings model are obtained from PubMedCentral
(PMC)10 full-text articles, English Wikipedia11 full-text articles, and a combi-
nation of them. We downloaded this data and performed basic cleansing steps
such as removing unnecessary tags, references, authors sections etc. We then
built the word embeddings models using the GloVe algorithm [16] based on a
vector size of 300 and a contextual window size of 15.

Character embeddings can be used to improve the semantic representation
of some words. Using word embeddings, we obtained the vector representations
of most of the words included in the unlabelled dataset. However, in some cases
word embeddings are not enough and won’t capture all words such as out-of-
vocabulary (OOV) words, different written forms of the same entity, misspelled
words, etc. To identify such words, character embeddings are used to generate
vector representations of words by considering their character-level structure,
e.g., “alpha-lipoic-acid” and “α-lipoic-acid” will be considered as the same even
though they are not orthographically similar.

7 https://biocreative.bioinformatics.udel.edu/resources/.
8 https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/.
9 http://linnaeus.sourceforge.net/.

10 ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/oa bulk/ (until 12/2019).
11 https://dumps.wikimedia.org/enwiki/latest/ (until 12/2019).

https://biocreative.bioinformatics.udel.edu/resources/
https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/
http://linnaeus.sourceforge.net/
ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/
https://dumps.wikimedia.org/enwiki/latest/
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4.2 Experiments

We conducted five experiments as the baseline using the CRF approach. We then
compared the results of the CRF approach with two variants of the Bi-LSTM
model based on word- and character-level representations. We compared all
methods in terms of precision, recall, and F1 score over the six test datasets. For
the biomedical literature: Chemical and Drug (BC4CHEMD) with 26,364 test
instances, Genes (BC2GM) with 5038 test instances, Disease (NCBI-Disease)
with 4797 test instances and Species (Linnaeus) with 7142 test instances (See
Table 1). For patent test datasets: Chemical (CEMP) with 19,274 test instances
and Gene/Protein (GPRO) with 5652. The evaluation for the deep learning
approach variants Bi-LSTM and CHARS-Bi-LSTM was performed based on the
embedding vectors described in Sect. 4.1.

Table 2 shows the evaluation results of comparing both the Bi-LSTM and
CHARS-Bi-LSTM models. The first embeddings model is learned based on the
unlabelled dataset of PMC while the second embeddings model is learned using
a combination of PMC and Wikipedia. The second word embeddings model was
used to evaluate whether the combined embeddings model will have a signif-
icant impact on the Bi-LSTM model’s performance. As shown in Table 2, for
the BC4CHEMD test dataset (Chemical & Drug), the CHARS-Bi-LSTM model
trained on the PMC unlabelled dataset achieved a significantly higher precision,
recall, and F-measure with 0.90, 0.93, and 0.91, respectively, compared to the
results of the CRF model (e.g., recall was improved by 15%) and compared to
the Bi-LSTM model (e.g., recall was improved by 8%). However, the CHARS-
Bi-LSTM model using word embedding trained on a combination of PMC and
Wikipedia achieved a minor precision improvement by 1%, and has a drop of
recall by 2% while the F-measure remains the same. The same applies for the
BC2GM dataset where the CHARS-Bi-LSTM model using word embeddings
trained on PubMed achieved a significant improvement over CRF (e.g., recall by
16%) and over Bi-LSTM (e.g., recall by 6%).

Using a word embedding trained on PMC and Wikipedia leads to a minor
decrease in recall and F-measure by 1%. For the other test datasets (disease and
species), the CHARS-Bi-LSTM trained on a combination of PMC and Wikipedia
achieved a better improvement over the CHARS Bi-LSTM model using word
embeddings trained only on a PMC dataset. For the disease dataset, precision
improved by 10% while for species remains the same and F-measure improved by
4% while for species improved by 5%. Recall decreased by 1% while for species
improved by 8%. The improvement can be interpreted as that Wikipedia is a
significant resource for diseases and species, providing a richer data resource for
the word embeddings learning task. For chemical and gene/protein patent test
datasets, adding the Wikipedia data had almost no impact on the Bi-LSTM
performance. This is due to the nature of the patent text since newly invented
entities usually do not show up immediately in other resources, e.g., Wikipedia.
To improve the BNER for biomedical data in patent resources, we built a new
word embedding model trained in patent text to evaluate whether the developed
patent model can raise the Bi-LSTM model’s performance. We collected 1.5
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million titles and abstracts obtained from EPO12, USFULL13 and PCTFULL14

patent databases. We then kept only documents that belong to the life science
domain by filtering over the International Patent Classification (IPC) code. Next,
we combined the patents with PMC and applied the GloVe algorithm on the
combined unlabelled dataset to build the word embedding model.

Table 2. Precision, Recall and F-measure of CRF and Bi-LSTM variants using various
Word and Character level embeddings

Method Word embeddings Metrics Test datasets

D1 D2 D3 D4 D5 D6

CRF - Precision 0.89 0.80 0.89 0.95 0.92 0.82

Recall 0.78 0.72 0.76 0.49 0.87 0.74

F-measure 0.83 0.76 0.81 0.62 0.90 0.79

Bi-LSTM-CRF PubMed Precision 0.87 0.78 0.87 0.98 0.92 0.81

Recall 0.85 0.78 0.77 0.76 0.89 0.82

F-measure 0.86 0.78 0.82 0.85 0.90 0.81

Bi-LSTM-CRF PubMed + Wikipedia Precision 0.85 0.79 0.97 0.98 0.92 0.80

Recall 0.86 0.78 0.84 0.84 0.90 0.82

F-measure 0.86 0.78 0.90 0.91 0.91 0.81

CHARS-Bi-LSTM-CRF PubMed Precision 0.90 0.83 0.88 0.98 0.93 0.82

Recall 0.93 0.84 0.85 0.82 0.94 0.88

F-measure 0.91 0.84 0.87 0.89 0.93 0.85

CHARS-Bi-LSTM-CRF PubMed + Wikipedia Precision 0.91 0.83 0.98 0.98 0.94 0.84

Recall 0.91 0.83 0.86 0.90 0.95 0.87

F-measure 0.90 0.83 0.92 0.94 0.94 0.85

CHARS-Bi-LSTM-CRF PubMed + Patent Precision – – – – 0.91 0.83

Recall – – – – 0.97 0.90

F-measure – – – – 0.94 0.86

Remarks: D1 refers to the BC4CHEMD, D2 refers to the BC2GM, D3 refers to the NCBI-Disease,

D4 refers to the Linnaeus, D5 refers to the CEMP and D6 refers to the GPRO datasets

Using this combined word embeddings model applied on the patent chemical
and gene/protein test datasets leads to a minor improvement of the CHARS-Bi-
LSTM model (average recall improvement of 2%, see Table 2). This is an indica-
tion that patent data word embeddings models could slightly help to recognize
more entities. For future evaluation, we will further increase the size and the
focus of the patent data to include more chemical genes/proteins so a significant
assessment can be performed.

Overall, the CHARS-Bi-LSTM model trained using character and word level
embeddings achieved superior performance compared to the CRF and Bi-LSTM
using only word embeddings. This indicates that character-level embeddings
can be useful in handling out-of-vocabulary words, misspelled words, different
forms of the same entity, etc., and hence the character-level representation is

12 https://publication.epo.org/raw-data/product-list.
13 http://patft.uspto.gov/.
14 https://stn.products.fiz-karlsruhe.de/sites/default/files/STN/summary-sheets/

PCTFULL.pdf.

https://publication.epo.org/raw-data/product-list
http://patft.uspto.gov/
https://stn.products.fiz-karlsruhe.de/sites/default/files/STN/summary-sheets/PCTFULL.pdf
https://stn.products.fiz-karlsruhe.de/sites/default/files/STN/summary-sheets/PCTFULL.pdf
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significantly able to infer a representation of unseen words in the training data
and increase the Bi-LSTM model performance.

4.3 Application

In the following patent use case, we illustrate how BNER can be used for
improving patent retrieval for discovering relevant inventions, technologies, and
detailed information from text. As an example, a key term search for finding bio-
technologies related to biosensor devices in medicine could be initiated using the
key term “biosensor device”. As biosensors are devices which have a broad range
of applications such as in medicine, environmental research, agriculture, etc. a
more-fine grained (entity-based) retrieval is required for finding more precise
results. In our example, we can utilize biomedical annotations in order to nar-
row down our search to focus the domain of interest like biosensor device usage
in medicine, e.g., DNA hybridization detection, glucose measurement, antibody
detection, etc. In a different example, in case of the “biosensor device” query, the
patent retrieval system will respond by suggesting specific biomedical terms, e.g.,
“miRNA”, which are related to the usage of biosensor devices in the biomedical
domain. As a result, specific patents related to “miRNA” and biosensors can
be retrieved more efficiently, e.g., “Method for preparing self-energized miRNA
biosensor”, “Biological probe and detection method for detecting miRNA and
application”, etc.

5 Conclusion

We have presented a deep neural network architecture based on Bi-LSTM and a
setting for the efficient recognition of different classes of biomedical named enti-
ties. To achieve that goal, we have built and utilized several pre-trained embed-
dings models based on word and character level embeddings. Our experiments
show that combining heterogeneous pre-trained word embedding models allows
us to achieve better results in recognizing various types of biomedical named
entities. For example, a small pre-trained patent word embeddings model com-
bined with the PMC model has shown an improvement in the patent BNER
task. Overall, the CHARS-Bi-LSTM model, trained using character and word
level embeddings, achieved superior performance compared to the traditional
CRF and Bi-LSTM approach using only word embeddings. This indicates that
character-level embeddings seem to be very useful in handling out-of-vocabulary
words, misspelled words, different forms of the same entity, etc.
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Abstract. This paper shows the preliminary results of an initial effort
to analyse whether explanations associated with a semantic parser help
users to generalise the system’s mechanisms regardless of their techni-
cal background. With the support of a user-centred experiment with 66
participants, we evaluated the user’s mental model by associating the
linguistic features from a set of explanations to the system’s behaviour.

Keywords: Explainable AI · User-centred analysis · Semantic parsing

1 Introduction

Archetypal natural language understanding (NLU) systems, such as question
answering, natural language interfaces and semantic parsers, typically require
the complex coordination of multiple natural language processing components,
where each component can explore a large spectrum of resources and learning
methods [3]. Offering end-user explanations for intelligent systems has becoming
a strong requirement either to comply with legal requirements [5] or to increase
the user confidence [11]. However, while delivering a human-interpretable expla-
nation for a single component is challenging, the problem is aggravated in the
context of multi-component systems [3,11].

Although the literature shows explanation models evaluated from an user-
centred perspective, none of them targeted an NLU system [9,13,19,21]. As
natural language gives vast possibilities of expression, explanations of NLU sys-
tems can allow the users to adapt their writing styles to favour the system
comprehension according to the underline model.

This work analyses different types of explanations instantiated in a multi-
component semantic parsing system for an end-user natural language program-
ming task to analyse to what extent users, irrespective of their technical back-
ground, are able to improve their mental models by associating the linguistic
features from the explanations to the system’s behaviour.

c© Springer Nature Switzerland AG 2020
E. Métais et al. (Eds.): NLDB 2020, LNCS 12089, pp. 37–44, 2020.
https://doi.org/10.1007/978-3-030-51310-8_4
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2 Related Work

Lipton [11] defined a comprehensive taxonomy of explanations in the context
of AI, highlighting various criteria of classification such as motivation (trust,
causality, transferability, informativeness and fairness & ethics) and property
(transparency and post-hoc interpretability).

Trust is by far the most common motivation presented in the literature, like
Pazzani [13], and Biran & Cotton [2] whose results showed users demonstrate
higher confidence when using a system they understand how it works. Fair-
ness & ethics is also a strong driver as the well-known European General Data
Protection Regulation [5] guarantees both rights “for meaningful information
about the logic involved” and “to non-discrimination” to prevent bias and unfair
behaviour.

Diversely, post-hoc explanations make use of interpretations to deliver mean-
ingful information about the AI model. Instead of showing how the model works,
it presents evidences of its rationale by making use of (i) textual descriptions
[18], (ii) visualisations able to highlight image parts from which the decision
was made [17], (iii) 2D-representation of high-dimensional spaces [12], or (iv)
explanation by similarity [4].

3 Semantic Parsing of Natural Language Commands

The Problem The problem of semantic parsing of natural language commands
consists of mapping a natural language command to a formal representation,
called function signature, from a knowledge base (KB) of APIs.

We formalise the target problem as follows. Let F be a KB composed of a
set of k function signatures (f1, f2, . . . , fk). Let fi = (ni, li, Pi) be an element of
F , where ni is the function’s name, li is the function’s provider, and Pi is the set
of function’s parameters. Let f ′

i be a call of fi, which also holds values for their
parameters, totally or partially. Let cj be a natural language command which
semantically represents a target function call f ′

j . The parser aims at building a
ranking model which, given a set of function signatures F and a natural language
command c, returns a list B of ordered function calls, satisfying the command
intent.

The Semantic Parser Our end-user study is focused on an explanation model
for a multi-component semantic parser proposed by Sales et al. [14], which is
composed of a chain of components. Given the space restriction, the semantic
parser is briefly summarised in this section.

The first component performs a semantic role labelling (SRL) classification of
the command tokens, segmenting and identifying the (i) function descriptor and
(ii) the set of command objects. The function descriptor is the minimal subset
of tokens present in the command that allows identifying the target function
signature in the function KB. A command object represents a potential descriptor
or value of a parameter. It is implemented based on an explicit grammar defined
by dependency relations and POS-tags.



A User-centred Analysis of Explanations 39

The second component is the Type Inferencer which plays the role of a named
entity recogniser. The Inferencer ’s implementation combines heuristics with a
gazetteer.

Based on the function descriptor and the list of command objects, the model
generates potential function calls by combining the set of command object and
the list of function signatures. For each function call, the Relevance Classifier
generates a classification as (i) wrong frame (score 0); (ii) right frame with
wrong parameters (score 1); (iii) right frame with partial right parameters (score
2); (iv) right frame with right parameters (score 3). The classification phase is
implemented as a Random Forest model [6], which take as input the semantic
relatedness scores and densities (described below) to identify jointly the most
relevant function signature and the best configuration of parameters values.

Originally, the proposed semantic parser [14] defined an extra component
responsible for reducing the search space. As the explanation model is eval-
uated in a setting with a restricted data set, we simplified the architecture by
removing this component. Thus, the inference process can be described by Eq. 1,
which defines the ranking score of a given function call for a natural language
command, where δ(x) is a type inferencer that, given an expression in natural
language x, it return its semantic type. For example, δ(“dollar”) = CURRENCY
and δ(“john@domain.com”) = EMAIL; x is a vector representation of x in a
word embedding model; cos(x,y) is a semantic similarity function, which score
how similar the vectors x and y are in the space. We use the cosine similarity

for this purpose;
n,k⊙

i=1,j=1

(xij) is a combinatorial optimiser that finds a maximum

weight matching j to i. We use the Hungarian algorithm [8] for this purpose; and
den(pi) is the set of the densities of the function parameters, which represents
the inverse term-frequency in the function signatures vocabulary set.

cos(n,d) +
k

max
j=1

(cos(l, oj)) +
∑ n,k⊙

i=1,j=1

(cos(pi , δ(oj))) + 1000 ∗ τ (1)

The equation defines the sum of (i) the semantic relatedness of the func-
tion descriptor from the command and the function name, (ii) the maximum
semantic relatedness of the command objects and the function provider, (iii)
the combinatorial optimisation of the command objects’ types and the func-
tion’s parameters, and (iv) the function signature class τ multiplied by a large
weight.

4 Explanation of a Multi-component Semantic Parser

As heterogenity is an intrinsic characteristic of a multi-component AI system,
demanding different explanation methods to different parts of the application, we
organised the explanation in a hierarchical fashion motivating the construction of
a model that is suitable for users with different levels of knowledge in machine
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Fig. 1. Explanations of the Semantic Role Labeler and the Type Inferencer.

learning and linguistics. The explanation model, then, explores a hierarchical
representation in an increasing degree of technical depth. In this context, it
presents transparency-oriented explanations in the higher levels, going gradually
to explanation that demand technical knowledge, and to the post-hoc ones.

The model presents seven explanations grouped by three layers focused on
the components’ behaviour and their input features. As expected in a heteroge-
neous architecture, each component operates under a different method and have
different types of inputs.

SRL Rules and Syntactic Tree Layers. The first level describes the Seman-
tic Role Labeler and the Type Inferencer. The explanations show the rules acti-
vated (i) to identify the command objects, (ii) to generated multi-word objects,
and (iii) to identify the semantic types, highlighting the tokens and features
involved in the process as shown in Fig. 1. The second level depicts the features
on which the rules operate, namely the syntactic tree and the part of speech
(POS) of each token. Figure 2 shows a natural language command and both the
set of POS-tags and the dependency tree associated with its tokens. These layers
aim at showing the connection between the linguistic features and main concepts
of the parsing system, whose interpretability is dependent on the understanding
of the role of linguistic features in the classification.

Word Embedding Layer. The matching process relies on the semantic relat-
edness scores, which represent the degree of semantic similarity the function
descriptor and command objects have in relation to the function signature [16].
The semantic relatedness is calculated from a word embedding model, which rep-
resent terms as vectors in a high-dimensional space. The explanation provides
a cluster-based visualisation using t-SNE [12], where it plots the semantic ele-
ments that plays a role in the matching process from both the command and the



A User-centred Analysis of Explanations 41

function signature as shown in Fig. 3. The cosine between the points represents
the degree of semantic relatedness in a typical post-hoc explanation fashion.

The Ranking and Classification Layer. The lower level is devoted to
the most technical explanations which shows the mathematical expression that
defines the final ranking score of the function signature along with the features
used in both the expression itself and in the function relevance classifier. To sim-
plify the model to non-technical users, we reduced Eq. 1 to

∑n
i=0(zi) + 1000 ∗ τ ,

where all elements in the expression is represented by z, the vector of all features.
Additionally, this level also presents the trained random forest classifier, show-
ing the relevance of each feature in the final classification using the visualisation
proposed by Welling et al. [20], called Random Floor.

5 Evaluation

We asked the participants to simulate the use of a semantic parser, in which
the user inputs the natural language commands, and the system suggests a list
of function calls as depicted in Fig. 4. We showed twelve pre-configured natural
language commands and their corresponding list of 3 to 5 potential function
calls as a result of the execution of the parser. The pre-configured commands as
well as the function signatures came from the data set defined in the Task 11 of
the SemEval 2017 [15], which presents a broader set of functions and describes
commands closer to the daily routine of end users.
Mental Models. A mental model is a cognitive representation of the external
world to support the human reasoning process [7]. In our task, the “external
world” is represented by the semantic parsing system, and we evaluate the user’s
mental model by assessing whether the presented explanations help the user
to generalise the system’s mechanisms. So, we designed a set of questions to
measure whether the user realised the correct influence of linguistic features in
the overall performance of the parser in both SRL and classification phases.
Given a contextual command, the participants were asked to judge affirmative
sentences in a Likert 7-point scale [10]. We evaluated three aspects of the SRL:
(i) the role of proper nouns, (ii) the importance of the correct spelling and use
of grammar and (iii) the verb mood (indicative vs. imperative).

Proper nouns are generally written in capitalised letter in English. As proper
nouns define a command object, we want to identify to what extend users iden-
tify the impact of this feature in the system’s performance. After given a contex-
tual command, we asked the participants to judge the veracity of sentences like
“Writing ‘Swiss Francs’ with capital letter increases the system comprehension”.

Incomplete sentences might introduce errors in the POS-tagger and grammar
tree parser, which on the other hand leads to wrong interpretation about the
objects. In this task, we present grammatically incomplete commands (keyword-
search style) to support users in the identification of the importance of gram-
matically correct sentences instead of keywords, such as traditional information
retrieval systems. we asked the participants to judge the veracity of sentences
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Fig. 2. Grammar tree. Fig. 3. Plot of the elements from the
command and function signature in
which the cosine between the points
represents the semantic relatedness.

Fig. 4. A natural language command and a list of potential function signatures repre-
senting its intent.

like “Writing a set of keywords for the command has the same result as gram-
matically correct sentences”.

Regarding verb moods, we presented to the participants commands written
as questions and in the indicative form. After given a contextual command, we
asked the participants to judge the veracity of sentences like “Starting by ‘I
would like’ increases the system comprehension”.
Participants. We recruited 66 adult participants from the authors’ professional
networks whose unique requirement was to be fluent in English. The set of
participants is composed of 26 females and 40 males, whose age vary from 20
to 49. They reported their level of knowledge in machine learning (ML) and
English grammar (EG) according to the same scale suggested by Azaria et al.
[1], to which we attributed a score from 1 to 6 respectively none; very little;
some background from high school ; some background from university ; significant
knowledge, but mostly from other sources; bachelor with a major or minor in the
related topic.

The participants were divided randomly into the control group composed of
34 participants, which have access to the system without the explanation, and
the treatment group, composed of 32 participants, with access to the explanation.
The random division longed for balancing the number of participants with and
without ML knowledge in each group.
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We introduced the experiment to the participants by exposing its main goals
and the expected procedures in the task. We highlighted that the idea behind
the parser is to allow a user to find suitable functions and their parameters
from her/his commands expressed in natural language, regardless of her/his
technical knowledge. We asked them to select the correct function call for each
pre-configured command, while examining the tool to infer how it works. For
the users that participated in the treatment group, we encouraged them to see
the explanations, which shows how the system maps commands to the function
calls.

Table 1. The results regarding the mental model assessment.

Metrics Treatment group Control group

Average 1.13 0.73

r (ML) 0.54 0.45

r (EG) 0.45 0.46

Acquainted Non- Acquainted Non-

Avg. (ML) 1.62 0.63 1.07 0.54

Avg. (EG) 1.42 0.62 1.11 0.34

6 Results and Discussion

We associated the answer in the Likert 7-point scale to the interval −3 to 3, where
0 is the neutral answer and 3 represents strongly agree when the question reflects
a true statement, and strongly disagree when it represents a false statement. We
also analysed the statistical significance of the results using the t-test, which is
represented by p.

Table 1 presents the results of the mental model assessment. On average, par-
ticipants in the treatment group give scores 55% higher than those in the control
group (1.13 vs. 0.73, p < 0.05). The results also demonstrate that knowledge
in machine learning and English grammar have significant positive relationship
with the mental model scores in both treatment group (r = 0.46 for ML, r = 0.40
for EG) and control group (r = 0.45 for ML, r = 0.41 for EG). The invariance
of the correlation coefficients among the groups and the mental model scores
strongly suggest the explanation model helps users to build better mental mod-
els. To explicitly present this conclusion, we divided both treatment and control
groups into four subgroups according to their knowledge in ML. We considered
acquainted with ML those users that declared having significant knowledge, but
mostly from other sources or a bachelor with a major or minor in the topic. In
average, the score of the users acquainted with ML in the target group is 1.62,
while 1.07 in the control group (p < 0.05). Although not being the focus of our
study, the results concerning EG knowledge present a similar tendency as shown
in Table 1.



44 J. E. Sales et al.

7 Conclusion

Our experiments showed evidences explanations are an effective method to build
mental models, regardless of the users’ technical background. The experiment
also suggests technical knowledge is boosted when accompanied by explanations,
given its high correlations with mental model scores.
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Abstract. The Bidirectional Encoder Representations from Transform-
ers (BERT) model produces state-of-the-art results in many question
answering (QA) datasets, including the Stanford Question Answering
Dataset (SQuAD). This paper presents a query expansion (QE) method
that identifies good terms from input questions, extracts synonyms for
the good terms using a widely-used language resource, WordNet, and
selects the most relevant synonyms from the list of extracted synonyms.
The paper also introduces a novel QE method that produces many alter-
native sequences for a given input question using same-language machine
translation (MT). Furthermore, we use a coreference resolution (CR)
technique to identify anaphors or cataphors in paragraphs and substi-
tute them with the original referents. We found that the QA system with
this simple CR technique significantly outperforms the BERT baseline
in a QA task. We also found that our best-performing QA system is the
one that applies these three preprocessing methods (two QE and CR
methods) together to BERT, which produces an excellent F1 score (89.8
F1 points) in a QA task. Further, we present a comparative analysis on
the performances of the BERT QA models taking a variety of criteria
into account, and demonstrate our findings in the answer span prediction
task.

Keywords: Query expansion · Coreference resolution · Question
answering · Information retrieval · Machine translation · Neural
machine translation

1 Introduction

Text-based QA systems have proven to be a crucial technique for IR since users
can obtain the information that they need while avoiding having to go through
thousands of documents. As far as recent research in QA is concerned, attention-
based neural network (NN) architectures [5,9] have shown their potential in this
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task and produced promising results. ELMo [17], a character-based context-
aware representation model, was shown to be useful at addressing this problem,
while solving the out-of-vocabulary (OOV) problem by allowing the NN model to
generate embeddings for the OOV words. Recently, Vaswani et al. [24] introduced
Transformer as an efficient alternative to recurrent or convolutional NNs. The
encoder-decoder architecture with attention mechanism has shown promising
results on MT tasks. Based on the Transformer architecture, Delvin et al. [5]
proposed a powerful NN architecture – BERT – for a variety of NLP tasks
including QA. BERT has significantly impacted many areas of natural language
processing (NLP), e.g. QA has reached new heights on SQuAD [20]. BERT
provides context-aware bidirectional representations from an unlabeled text by
jointly conditioning from both the left and right contexts within a sentence, and
can also be used as a pre-trained model with one additional output layer to
fine-tune downstream NLP tasks, such as QA. Considering the recent success of
BERT in QA, we have taken the BERT QA model as the baseline in our work.

Machine reasoning is at the core of solving a QA problem artificially, and it
requires an understanding of natural language. Natural language understanding
(NLU) is considered to be a complex task since it comes with its own chal-
lenges, such as word-sense disambiguation, existence of coreferencing entities,
and understanding syntactic and semantic similarities between words. This work
aims to address some of these problems by providing the learning model with
more reasoning knowledge about enriching input questions or resolving refer-
ences in paragraphs. CR [12] is regarded as a challenging task in many NLP
tasks (e.g. MT), and has also been moderately investigated in QA [13,22,25]. In
this work, we identify anaphors or cataphors (expressions referring to the same
entity in a text passage) in paragraphs and substitute them with the original
referring entities. The intuition underpinning this is that such preprocessing can
provide the learning model more direct knowledge. For example, the pronoun
‘He’ refers to ‘Sam’ in the following paragraph “Sam is moving to London. ...
He has got a job there”; replacing the pronominal entity ‘He’ with referent ‘Sam’
in the second sentence can add more direct knowledge to the QA model.

The semantic similarities between words are the other aspects of NLU, which
were considered for investigation in this work. We present two novel QE tech-
niques, the first one using a lexical knowledge base (WordNet [14]), and the
second one using same-language MT [1]. Although the knowledge bases were
heavily used for automatic QE [3,6], this work presents a novel technique that
identifies good terms from a given input question following a state-of-the-art
term classification method, extracts synonyms of the good terms using Word-
Net, and selects the most relevant synonyms from the list of extracted synonyms.
Same-language MT was successfully used in many NLP applications, e.g. text-to-
speech synthesis for creating alternative target sequences [1], translation between
varieties of the same language (Brazilian Portuguese to European Portuguese)
[7], and paraphrase generation [18]. In this work, we developed an English-to-
English MT system using the state-of-the-art Transformer model [24]. The MT
system is able to generate n-best (same-language) translations for a given ques-
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tion, which can be viewed as the alternative sequences of the input question.
These QE methods can considerably enrich the contexts of the input questions,
and add extra reasoning knowledge to the QA model.

In this work, we carried out experiments applying these QE and CR tech-
niques in QA individually and collaboratively taking the state-of-the-art BERT
model into account. Rondeau and Hazen [21] analysed the outputs of a number
of QA models applied to SQuAD to identify the core challenges for the QA sys-
tems on this data set. Since the introduction of BERT to the NLP community,
researchers have been investigating the strength and weakness of BERT on the
downstream tasks including QA [19,23]. This work also presents a comparative
analysis on the ability of the baseline and our best-performing QA models to
predict the answers correctly on SQuAD, taking a variety of criteria into account.

2 Baseline QA System

BERT, which makes use of the Transformer architecture, provides context-aware
bidirectional representations from an unlabeled text by jointly conditioning from
both the left and right contexts within a sentence. In short, BERT is made of
a stack of encoders where each encoder consists of two sub-layers; the first sub-
layer is a multi-head attention layer and the second sub-layer is a simple feed
forward network. It can also be used as a pre-trained model with one additional
output layer to fine-tune downstream NLP tasks, such as QA. For fine-tuning,
the BERT model is first initialized with the pre-trained parameters, and all
of the parameters are fine-tuned using the labeled data from the downstream
tasks. Considering the recent success of BERT in QA, we have taken the BERT
QA model as the baseline in our work. We used the SQuAD 1.1 dataset [20]
to fine-tune the pre-trained BERT model. Given a paragraph from Wikipedia
and a question relating to the paragraph, the task is to predict the answer
text span in the paragraph. There are two architectural variations of the BERT
model: BERTBASE and BERTLARGE. These two architectures differ only in the
size of the network layers and dimensions. In our experiments, we considered
BERTBASE as our baseline.

3 Our Methods: Enriching Questions and Paragraphs

3.1 Query Expansion with WordNet

Query expansion is a commonly used method for mitigating the vocabulary
mismatch problem in many NLP tasks. As far as QA is concerned, synonymous
variations of an important word or phrase in a question need to be taken into
account since variations instead of the actual word or phrase may appear in the
paragraph that contains the answer. In theory, the word embedding layers of
BERT should help address this to a certain extent. Additionally, we believe that
injecting further context in the form of synonymous variations of the important
words of the questions to a QA model would help it to find the right answers.
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In this context, Cao et al. [2] showed that terms in a query can be catego-
rized as good, bad and neutral. The good terms in a query help in finding the
information from the text. Cao et al. [2] used features like term distribution,
co-occurrence relations, weighted term proximity, and proposed a supervised
learning method (SVM) for classifying the good, bad and neutral terms of a
given query. In this work, first we identify those words of a question that are
more important than others in getting the right answer from the paragraph,
and then we further expand them in order to include more reasoning knowledge
to the question. In other words, given a question, we identify its good terms
and extract the most relevant synonyms of each of the good terms. We followed
[2] and considered their features in order to build a classifier. In our case, we
used a state-of-the-art classification algorithm: long short-term memory (LSTM)
network [8]. We found that the LSTM classifier performed competently in the
classification task (predicting good, bad or neutral terms) (we obtained an F1

score of 81.3 on a held-out test set).
As mentioned above, we considered good terms only in our query expansion

process. First, we expand abbreviated good terms, if any, into full forms, e.g.
V.P. is expanded to Vice President, Dr. is expanded to Doctor. For this, we
used a python toolkit abbreviate (v 0.1.1).1 WordNet was used to obtain the
synsets for the good terms. However, for a given good term, we chose the most
relevant synonyms from the synset. We measured cosine and semantic similarities
between the good term and its synonyms. The term (A) and a synonym (B) are
represented as distributed continuous vectors, which were obtained using the
BERT pre-trained model. The cosine similarity is computed by taking the dot
product of two vectors as shown in (1):

A · B = ||A|| ||B|| cos θ (1)

Semantic similarity between two words is measured using Wu-Palmer simi-
larity [26]. The similarity score denotes how similar two word senses are, based
on the depth of the two senses in WordNet. In order to measure the Wu-Palmer
similarity between two words, we made use of the NLTK python toolkit.2 A
synonym for a good term is selected when the cosine and semantic similarity
scores are above a threshold value. To exemplify, consider the question “In what
year did the CIA establish its first training facility?” from SQuAD. The LSTM
classifier identifies ‘CIA’, ‘establish’, ‘training’, and ‘facility’ as the good terms
of the question. For each of the good terms we obtain a list of synonyms from
WordNet, e.g. ‘establish’: ‘set up’, ‘constitute’, ‘launch’, ‘plant’, etc. Then, the
most relevant synonyms (e.g. ‘establish’: ‘set-up’, ‘launch’) for each good term
were identified following the strategy mentioned above. The resulting list of rel-
evant synonyms for all good terms were then appended to the question. The
expanded input question and the paragraph are represented as a single packed
sequence.

1 https://pypi.org/project/abbreviate/.
2 http://www.nltk.org/.

https://pypi.org/project/abbreviate/
http://www.nltk.org/
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3.2 Query Expansion with Neural MT

Translation of a source sentence into a target language can be generated in
numerous ways. Similarly, in our case, a question can be represented in various
forms. We developed a same-language MT system (English-to-English) that can
generate n-best translations for an input sentence. In order to obtain different
forms of a question, we translate it with the same-language MT system. The
resulting n-best translations can be viewed as the alternative sequences of the
question.

In our work, in order to build the MT system, we considered Transformer
[24] which is regarded as the current state-of-the-art in MT research. We
used the MarianNMT [10] toolkit and the European parliamentary proceedings
(Europarl) corpus [11] for the NMT training. The training, development and test
sets contains 13,201,483, 2,146 and 1,000 sentences, respectively. Additionally, we
took high scoring five million English paraphrases from Multilingual Paraphrase
Database3 [16] and appended them to the training data. In our experiments,
we followed the recommended best set-up by Vaswani et al. [24]. We obtained
99.69 BLEU [15] on the development set. The English-to-English NMT system
was tested on a held-out test set, and we obtained 94.19 BLEU points on the
test set. As you can see that the BLEU scores (on the development and test
sets) are unusually high. This is because MT is being done on same-language
(i.e. English-to-English). SQuAD includes 87,599 questions, which were trans-
lated with the English-to-English NMT system. Thus, we obtained alternative
sequences for the questions.

The NMT-based QE process provides variants for a given input question,
which are appended to the original question. The expanded input question and
the paragraph are represented as a single packed sequence as in above (cf.
Sect. 3.1). As mentioned above, the NMT system produced an n-best list for
a given question. In this set-up, we experimented with different sizes of n (3, 5,
7 and 12).

3.3 Coreference Resolution for Paragraphs

Different expressions referring to the same entity are often used in text. All pro-
nouns generally refer to some nouns that appeared previously in a given sentence.
In this work, we apply CR techniques in order to find anaphors or cataphors in
paragraphs, and then substitute them with the original referring entities. This
preprocessing can significantly reduce ambiguities in the paragraphs and pro-
vide more direct knowledge to BERT. In order to resolve coreferences in the
paragraphs, we used the NeuralCoref toolkit [4].4 NeuralCoref is regarded as a
highly extensible model to any new text data. We show a part of a paragraph
from SQuAD below:

3 http://paraphrase.org/#/download.
4 https://github.com/huggingface/neuralcoref.

http://paraphrase.org/#/download
https://github.com/huggingface/neuralcoref
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Paragraph: Beyoncé Giselle Knowles (born September 4, 1981) is an Ameri-
can singer, songwriter, record producer and actress. Born and raised in Hous-
ton, she performed in various singing and dancing competitions as ...
Resolved Coreference: Beyoncé Giselle Knowles (born September 4, 1981) is
an American singer, songwriter, record producer and actress. Born and raised
in Houston, Beyoncé Giselle Knowles performed in various singing and
dancing competitions as ...

In the above example we see that the proper noun (‘Beyoncé Giselle Knowles’)
in the place of the pronoun (‘she’) reduces ambiguity in the text, which essentially
can provide more direct knowledge to the BERT attention model. As above,
the input question and modified paragraph are represented as a single packed
sequence for the BERT training.

Additionally, we carried out experiments applying multiple preprocessing
techniques together to BERT. The intuition is that the contexts from the mul-
tiple sources can provide the QA model more reasoning knowledge. The QE (cf.
Sects. 3.1 and 3.2) and CR (cf. Sect. 3.3) preprocessing techniques were applied
collectively in different combinations.

4 Results and Discussion

4.1 Experimental Setups

This section explains experimental setups including a short overview on the QA
data set, SQuAD. SQuAD v1.1 [20] is a standard reading comprehension dataset.
It consists of reading paragraphs and associated questions in text format. These
paragraphs were taken from Wikipedia articles across the various categories such
as history, science etc. An answer to an input question is a segment or span (i.e.
start and end indices of the segment) from the associated paragraph. The dataset
is divided into a training set and a validation set. The training set includes
18,896 paragraphs from 442 documents, which also contains 87,599 questions.
The validation set includes 1,867 paragraphs from 49 documents and contains
10,570 questions. In order to evaluate the performance of the QA systems, we
used two evaluation metrics as in [5,20], which are ‘exact match’ (EM) and F1.
EM measures the percentage of predictions that match exactly with any one of
the ground truth answers. F1 is a measure of the average overlap between the
prediction and ground truth answer [20]. We use approximate randomization
[27] to test the statistical significance of the difference between two systems.
We fine-tuned the BERT models for 3 epochs with a learning rate of 3e-5 as
suggested in [5], and set batch size to 32. We followed the recommended best
setup by [5] and keep the same setup for all our experiments.

4.2 Evaluation Results

In this section we obtain experimental results to evaluate the performance of our
QA systems considering the different preprocessing setups discussed in Sect. 3.
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We report the evaluation results in Table 1. As can be seen from the second
column of Table 1, our baseline model, BERTBASE, is quite competitive as it
produces an F1 score of 88.5 and an EM of 80.8 points on the development set.

The third column of Table 1 represents results that we obtained by applying
our first preprocessing technique (i.e. QE with WordNet; cf. Sect. 3.1) to BERT.
We call the QA system that incorporates this feature BERTWN. As can be seen
from the table, BERTWN outperforms BERTBASE in the answer span prediction
task (with absolute improvements of 0.3 F1 and 0.2 EM points over BERTBASE;
however, the improvements are not statistically significant). The fourth column
of Table 1 presents evaluation results that we obtained by integrating the NMT-
based QE feature into BERT (cf. Sect. 3.2). As mentioned in Sect. 3.2, we carried
out experiments integrating varying sizes of alternative questions (n: 3, 5, 7 and
12). As far as the answer span prediction quality by the QA systems is concerned,
we found that the setup with the alternative question sequences of size 12 is more
effective than the other setups (i.e. with n = 3, 5, 7). We call the QA system
that includes the NMT based QE feature (with n = 12) BERTNMT. We see from
Table 1 that BERTNMT outperforms BERTBASE in the answer span prediction
task (with absolute improvements of 0.4 F1 and 0.4 EM points over BERTBASE;
however, the improvements are not statistically significant). The fifth column of
Table 1 represents the QA model that incorporates the CR-based features (cf.
Sect. 3.3). We call this QA system BERTCR. BERTCR statistically significantly
outperforms BERTBASE in the answer span prediction task as per the scores
obtained on the development set (the absolute improvements of 0.8 F1 and 0.8
EM points over BERTBASE).

Table 1. Evaluation results (EM and F1 scores) obtained with different QA models.

BERTBASE BERTWN BERTNMT BERTCR BERT3F

F1 80.8 81.1 (p > 0.05) 81.2 (p > 0.05) 81.6 (p < 0.05) 82.7 (p < 0.01)

EM 88.5 88.7 (p > 0.05) 88.9 (p > 0.05) 89.3 (p < 0.05) 89.8 (p < 0.01)

Since we found that BERTWN, BERTNMT and BERTCR proved to be effec-
tive in the answer span prediction task, we carried out a few more experiments by
integrating multiple features collectively into BERT. The model that includes
three features collectively (i.e. QE (WordNet) + QE (NMT) + CR features)
is found to be the best-performing QA system. This QA system is referred as
BERT3F. As can be seen from the last column of Table 1 that BERT3F pro-
duces 89.8 F1 points and 82.7 EM points on the development set (with absolute
improvements of 1.3 F1 and 1.9 EM points over BERTBASE; both improvements
are statistically significant).

4.3 Prediction Analysis

This section presents a comparative analysis of the ability of the BERT QA
systems to predict the answers correctly on SQuAD. In order to carry out the
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Fig. 1. Correlation between the wh-question types and BERT’s answer prediction per-
formance.

analysis, we considered a variety of criteria: (i) wh-question type, (ii) wh-word
position in questions, (iii) ground truth answer span size in paragraph, and
(iv) data domain, and investigate their relatedness to the QA system’s answer
prediction quality. This analysis helps us achieve our two goals: (a) unraveling
the strengths and weaknesses of BERT on QA, and (b) comparing BERT on two
experimental setups: the vanilla baseline (i.e. BERTBASE) and context-sensitive
QA (i.e. BERT3F) models.

Wh-Question Type. We wanted to see whether there is any relationship
between the wh-question type and the performance of the QA models. For this,
we considered the commonly used wh-words that are used to introduce ques-
tions: ‘when’, ‘who’, ‘which’, ‘how’, ‘what’, ‘where’, ‘why’, and ‘whose’. For a
given input question, its wh-question type is identified using a simple rule-based
procedure. We also have a particular wh-question type (‘other’) whose ques-
tions contain none of the wh-words listed above. We divide the development
set examples as per the wh-question type. Thus, we obtained a number of sub-
sets, and each subset contains a particular type of wh-question. From now on,
we call such subsets wh-sets. For each of the wh-sets we obtain the number of
wrong and right answer predictions by BERTBASE and BERT3F. In Fig. 1, we
plot histogram distributions of answer prediction accuracy (EM scores) over the
wh-sets.

As can be seen from Fig. 1, both QA systems did not perform uniformly
across the wh-sets. They performed excellently for predicting answers of ‘whose’,
‘when’ and ‘who’ questions. We also see that both BERT QA models performed
moderately on the ‘which’, ‘how’, ‘other’ and ‘what’ wh-sets, and quite poorly
on the ‘where’ and ‘why’ wh-sets. When we compare the bars, we see BERT3F

outperforms BERTBASE in most cases bar two instances (i.e. ‘other’ and ‘which’
question types).
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Fig. 2. Correlation between wh-pos- and answer-span-sets and BERT’s performance
on QA.

Wh-Word Position. We wanted to examine whether there is any correlation
between the wh-word positions in questions and the performance of BERT in
the QA task. For this, we first identify the position of the wh-word in a given
input question. As above, we divide the development set examples based on
the positions of the wh-words in questions. This creates several subsets, and
each subset contains questions whose wh-words appear in a specific position
range in the questions (e.g. 1st position, 2nd to 5th position). From now, we
call such subsets wh-pos-sets. As above, we plot the distributions of the EM
scores over the wh-pos-sets in Fig. 2a for BERTBASE and BERT3F. The x-axis
and y-axis of Fig. 2a represent the distributions of the EM scores and the wh-
pos-sets, respectively. We can see from Fig. 2a that no strong relationship can be
seen between the wh-word positions in questions and the QA systems’ answer
prediction quality. As far as the comparison of the performances of BERTBASE

and BERT3F is concerned, as above, BERT3F outperforms BERTBASE on all
wh-pos-sets bar one set that contains the questions that have no wh-words.

Ground Truth Answer Span Size. This time, we choose a feature from para-
graphs for analysis, which is ground truth answer span size. We divide the devel-
opment set examples based on the number of words into ground truth answers
(e.g. one word, two to five words). Thus, we obtained a number of subsets, and
each subset contains questions whose answer spans are limited to a range of
numbers. From now on, we call such subsets answer-span-sets. In Fig. 2b, we
plot histogram distributions of answer prediction accuracy (EM scores) over the
answer-span-sets for BERTBASE and BERT3F. The x-axis and y-axis of Fig. 2b
represent the EM scores and the answer-span-sets, respectively. We can see from
Fig. 2b that there is a clear relationship between the both QA models’ perfor-
mance and the ground truth answer span size. The answer prediction accuracy
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declines linearly with the growing number of words in the ground truth answers
that the QA models would have to predict. When we compare BERTBASE and
BERT3F with respect to this feature, we see from Fig. 2b that BERT3F outper-
forms BERTBASE in all cases (i.e. on all answer-span-sets).

Wikipedia Titles. As mentioned in Sect. 4.1, the development set includes
1,867 paragraphs from 49 documents (the Wikipedia titles). The Wikipedia doc-
uments were taken from a variety of domains (e.g. sports, environment, history,
engineering, science). We examined our QA models’ answer prediction ability on
different domains. We found that BERTBASE and BERT3F, performed quite well
with some specific Wikipedia titles such as ‘American Broadcasting Company’
(EM scores of 95.1 and 96.7, respectively) and ‘Steam engine’ (EM scores of
92.1 and 94.5, respectively). We also observed the opposite picture with some
of the Wikipedia titles such as ‘Packet switching’ (EM scores of 47.2 and 58.5
with BERTBASE and BERT3F, respectively). Adapting a model to a specialised
domain is seen as a challenging task in many NLP areas. We see that the BERT
models (both BERTBASE and BERT3F) struggled to deal with the specialised
and complex domain data (e.g. computer network) as well as the mixture of
multiple domain data (e.g. administration, history and legal). However, we also
observed that BERT3F performed better than BERTBASE on the specialised and
complex domain data most of the time. In addition to the above analysis, we
manually looked at a sample of answer prediction examples from the develop-
ment set. A few of the examples with an analysis on the performance of our
context-aware QA systems and BERTBASE are made available online.5

5 Conclusion

In this work, we presented two automatic QE strategies in QA. As far as our
first QE technique is concerned, we first identified good terms from the input
questions following a state-of-the-art term classification method, and then used
WordNet in order to obtain synsets for each of the good terms. We presented a
method that applying two word-to-word semantic similarity measures together
extracts the most relevant synonyms from the synsets. As far as our second QE
method is concerned, we used a state-of-the-art neural MT system in order to
produce a set of alternative questions for each input question. Both QE strategies
were effective in predicting answers in the QA tasks, although the improvements
obtained by the QA systems with the addition of these features over the baseline
are not statistically significant. This study also investigated the possibility of
applying CR techniques on the paragraphs in QA. The QA model with the CR
method significantly outperformed BERTBASE, with the absolute improvements
of 0.8 F1 and 0.8 EM points over BERTBASE.

Furthermore, we conducted a number of experiments by integrating multiple
features collectively into the BERT model in various combinations. We found
5 https://github.com/rejwanul-adapt/BERT-analysis/blob/master/Examples-BERT.

pdf.

https://github.com/rejwanul-adapt/BERT-analysis/blob/master/Examples-BERT.pdf
https://github.com/rejwanul-adapt/BERT-analysis/blob/master/Examples-BERT.pdf
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that the QA model that integrates all three features (two QE and CR methods)
together is the best-performing system as per the F1 and EM scores. With this
setup, the BERT QA system produced significant gains in F1 and EM (absolute
improvements of 1.3 F1 and 1.9 EM points) over BERTBASE.

In sum, as far as the QA task on the state-of-the-art BERT architecture
is concerned, all our three preprocessing methods are shown to be effective.
Most importantly, the gains were achieved (some of them are statistically signif-
icant) by applying these methods without making any modification to the model
architecture.

Additionally, we carried out a thorough error analysis on the predictions to
see how the BERT models (the baseline and our best-performing) performed on
QA. In order to do this, we took a variety of criteria into account and examined
their relatedness to the answer prediction errors. From our analysis we found
that the patterns of the answer prediction errors of the both baseline and our
best-performing QA models are nearly similar in most cases. The both BERT QA
models performed excellently for certain wh-question types (e.g. ‘whose’, ‘when’
and ‘who’), although their performances were found to be below par for certain
wh-question types (e.g. ‘why’ and ‘where’). As far as the position of wh-words in
questions is concerned, we could not find any strong correlation between this fea-
ture and answer prediction ability. As for the ground truth answer span size, we
found that the answer prediction accuracy declines linearly with the increasing
number of words in the ground truth answers that the QA system would have to
predict. As far as the above three criteria (wh-question type, wh-word position
in questions, answer span size) and systems’ answer span prediction accuracy
are concerned, our best-performing QA model outperformed the BERT baseline
in all cases barring few exceptions. From our analysis we also found that the
BERT baseline and our best-preforming QA systems performed below par on
certain specialised domain data (e.g. computer network) or the mixture of mul-
tiple domain data (e.g. administration, history and legal). However, we observed
that the best-performing system performed better than BERTBASE on the spe-
cialised and complex domain data. This thorough error analysis, to a certain
extent, identifies patterns of the examples for which the BERT models tend to
make wrong or right predictions in the QA task, which, we believe would help
the NLU researchers to fix problems of the model in relation to this task.

As mentioned in Sect. 4.3, our WordNet-based QE method expands a good
term by generating its relevant synonyms, which, however, may not be the same
morphological forms as the good term is as the QE method does not have mor-
phological generation module. In future, we intend to add a morphological gener-
ation module in this QE technique. We also intend to carry out a deeper analysis
on BERT considering more criteria, e.g. length of the questions, head versus tail
questions, and comparing the BERT models with the classical IR models.

Acknowledgments. The ADAPT Centre for Digital Content Technology is funded
under the Science Foundation Ireland (SFI) Research Centres Programme (Grant No.
13/RC/2106) and is co-funded under the European Regional Development Fund. This
project has partially received funding from the European Union’s Horizon 2020 research



58 S. Bhattacharjee et al.

and innovation programme under the Marie Sk�lodowska-Curie grant agreement No.
713567, and the publication has emanated from research supported in part by a research
grant from SFI under Grant Number 13/RC/2077.

References

1. Cahill, P., Du, J., Way, A., Carson-Berndsen, J.: Using same-language machine
translation to create alternative target sequences for text-to-speech synthesis. In:
Proceedings of Interspeech 2009, the 10th Annual Conference of the International
Speech Communication Association, Brighton, UK, pp. 1307–1310 (2009)

2. Cao, G., Nie, J.-Y., Gao, J., Robertson, S.: Selecting good expansion terms for
pseudo-relevance feedback. In: Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, Singa-
pore, pp. 243–250 (2008)

3. Carpineto, C., Romano, G.: A survey of automatic query expansion in information
retrieval. ACM Comput. Surv. (CSUR) 44(1), 1 (2012)

4. Chaumond, J.: Fast coreference resolution in spaCy with neural networks. https://
github.com/huggingface/neuralcoref. Accessed 8 Oct 2019

5. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. CoRR, abs/1810.04805 (2018)

6. Sun, R., Jiang, J., Tan, Y.F., Cui, H., Chua, T.-S., Kan, M.-Y.: Using syntactic
and semantic relation analysis in question answering. In: Proceedings of the 14th
Text REtrieval Conference (TREC) (2005)

7. Fancellu, F., O’Brien, M., Way, A.: Standard language variety conversion using
SMT. In: Proceedings of the Seventeenth Annual Conference of the European Asso-
ciation for Machine Translation, Dubrovnik, Croatia, pp. 143–149 (2014)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997)

9. Iyyer, M., Boyd-Graber, J.L., Claudino, L.M.B., Socher, R., Daumé, H.: A neural
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Abstract. The popularization of Enterprise Knowledge Graphs (EKGs)
brings an opportunity to use Question Answering Systems to consult
these sources using natural language. We present CONQUEST, a frame-
work that automates much of the process of building chatbots for the
Template-Based Interactive Question Answering task on EKGs. The
framework automatically handles the processes of construction of the
Natural Language Processing engine, construction of the question clas-
sification mechanism, definition of the system interaction flow, construc-
tion of the EKG query mechanism, and finally, the construction of the
user interaction interface. CONQUEST uses a machine learning-based
mechanism to classify input questions to known templates extracted from
EKGs, utilizing the clarification dialog to resolve inconclusive classifi-
cations and request mandatory missing parameters. CONQUEST also
evolves with question clarification: these cases define question patterns
used as new examples for training.

Keywords: Interactive Question Answering · ChatBot · Linked
Data · Knowledge Graph

1 Introduction

Linked Data technologies made it possible to merge data from many fields, ori-
gins, formats, and vocabularies into a unique, uniform, and semantically inte-
grated representation [6], known as Enterprise Knowledge Graph (EKG) [8]. An
EKG can be represented by a common vocabulary defined by a closed domain
ontology in OWL, which allows multiple heterogeneous sources to be accessed
simultaneously through queries written in SPARQL [9,11]. Competence Ques-
tions (CQs) are commonly used to guide the process of ontology construction for
EKGs [17]: domain experts list a set of questions that they hope to be answerable,
i.e., a CQ can be seen as templates of frequent queries to the EKG. However,
creating SPARQL queries is difficult for most users, so natural and intuitive
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consultation interfaces are of paramount importance in this case [12]. Template-
Based Question Answering (TBQA) systems can be valuable within this context:
a question Q in Natural Language (NL) is mapped into a well-known SPARQL
query template Q′, so TBQA executes Q′ on the EKG in response to Q [4]. Each
template contains “slots” to be filled with user-provided parameters, e.g., val-
ues for filters, properties, and classes suitable for answering Q. TBQA systems
have the advantage of reducing the complex task of interpreting questions in NL
to a more straightforward task of classification of intention, which is substan-
tially cheaper than general Question Answering (QA). However, TBQA systems
can run into some problems, such as (1) inconclusive template classification or
(2) absence of mandatory query parameters in the question. User dialogue is
usually employed to disambiguate intent and request parameters, thus gener-
ating Template-Based Interactive Question Answering (TBIQA) systems [13].
Conversational systems are popularly known as chatbots.

The process of building a TBIQA system can vary greatly depending on its
domain, existing tools, and purpose [13]. In this paper, we propose the follow-
ing standard workflow for the process of creating TBIQA systems on EKG: (1)
construction of the templates of questions answerable by the system; (2) con-
struction of the Natural Language Processing (NLP) engine; (3) construction
of a question classification mechanism for mapping a question into a template;
(4) definition of the system interaction flow; (5) construction of the EKG query
mechanism; and (6) construction of the user interaction interface.

Thus, as the main contribution of this paper, we introduce CONQUEST
(Chatbot ONtology QUESTion), a framework for creating chatbots for the
TBIQA task on EKGs represented by a closed domain ontology. CONQUEST
automates much of the proposed workflow, automatically handling steps 2–6.
Thus, CONQUEST only delegates to the developer the task of building the
templates of questions to be answered.

2 Related Work

In [1], the authors present an approach for the automatic generation of query
templates supported by TBQA systems. The system has as input a set of pairs
of questions in NL and their answers. The questions are then generalized to a
template by mapping sets of questions to the same query. As an advantage, the
approach allows the composition of patterns for the resolution of complex queries
for which complete templates are not known. However, the method depends on
the quality of the lexicon used for the highest coverage of templates, and there
may be a need to extend the lexicon to specific domains. Besides, the system also
does not allow the user to control the templates supported by the system. The
authors do not discuss how the system can be made available to users, indicating
that this must be addressed per each specific case.

In [3], the authors present a TBQA system over KGs that automatically
generates supported questions based on the underlying KG. The process of con-
struction of the questions is carried out based on a small set of query patterns
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defined by the authors. The system then constructs the questions supported
for each of the predefined patterns, generating variations of them. These ques-
tions are then stored in an index that is consulted at run time to identify the
most likely question being asked by the user. In addition, the system allows the
interactive construction of queries with auto-completing. As a disadvantage, the
approach does not allow developers to control the questions supported by the
system, which would make it challenging to implement QC support and relevant
questions for specific applications.

Medibot [2] is a chatbot in Brazilian Portuguese on a KG in the domain of
medicines. Medibot has two modes of operation, the first of which is a TBQA,
where regular expressions are used to classify the template in which the user’s
question fits. The approach depends on the manual implementation of regular
expressions and the code for querying and building responses, which makes it dif-
ficult to reuse and apply in chatbots with a large number of templates. Moreover,
the implementation heavily depends on Telegram interface.

Many of the existing works in the area of TBQA focus on the automatic gen-
eration of templates. However, such approaches limit the developer control over
the supported questions, but try to increase the question coverage, which is a pos-
itive aspect in the context of consultation on the Web. In business environments,
it is expected that the discussions carried out will be limited to a specific set of
queries for the performance activities of the company, so it is essential that this
set is entirely and correctly covered. Consequently, CONQUEST ensures that
the developer has full control over the collection of supported templates, ensur-
ing the correctness of the queries that answer them. Besides, most systems do
not address how the TBQA service might be made available to users, leaving the
developer the task of customizing or creating systems access mechanisms from
scratch. CONQUEST deals with this by reusing instant messaging services as
an access channel to the chatbot, in addition to providing access to the service
through a REST API accessible through HTTP requests, all from the execution
of a single instance of the chatbot.

3 CONQUEST Framework

The CONQUEST framework is composed of the CONQUEST Trainer and
CONQUEST Chatbot modules. The first is responsible for training the necessary
components for the TBIQA chatbot being produced. The second is responsible
for executing the chatbot, using the components trained to provide a TBIQA
service. The source code of the framework can be found in the Github reposi-
tory1. In this paper, the term developer will refer to the developer of the chatbot.
The term user is referring to the end-user who issues questions to that chatbot.

The input given by the developer to the conquest framework is composed
of the set of template questions answerable by the system, together with the
EKG (ontology + instances) being consulted. The domain ontology provides
the structure for the instances, allowing the identification of the type of an
1 https://bit.ly/2JTE5I0.

https://bit.ly/2JTE5I0
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instance or parameter value based on the context in which it appears (prop-
erties and relationships with which it is linked). A template question whose
system is capable of answering is called Question Answering Item (QAI).
Each QAI has its slots that will be filled with information from user ques-
tions, the so-called Context Variables (CV s). A QAI is formally defined as
QAI01 = ([QP1, QP2, ..., QPn], SP,RP ), where: QPk is a Template (Question
Pattern) in NL associated to a question, where 1 ≤ k ≤ n; SP is a SPARQL
query Pattern, a template that is employed to retrieve information from the KG;
and RP is a Response Pattern, a template answer in NL shown to the user.

The following is an example of how the question “What is the maximum
price for a given drug in a certain state?” would be represented as a QAI. Where
it was given as input only the QP “What is the maximum price for the medicine
$medicine in $state?”. This template can be provided as input to the system
using a JSON file:

{"QPs": ["What is the maximum price for the medicine \$medicine in \$state?"],

"SP": "SELECT ?name (MAX(?priceAux) as ?price) WHERE{

?s a <Medicine>;

rdfs:label ?name;

<price> ?appliedPrice.

?appliedPrice a <Price>;

<state> $state;

<value> ?priceAux.

FILTER(REGEX(?name,$medicine,’i’))}",

"RP":{"header": "",

"body": "The ?name has a maximum prince of ?price reais",

"footer":""}}

3.1 CONQUEST Trainer

This module is executed only offline by the developer. First, two distinct indices
are built during Index Construction: a class index and a property index. Each
of these has information about the domain ontology schema being consulted and
are of fundamental importance for the next workflow steps. These indexes have
information about labels and definitions of classes and properties, as well as
information about properties that relate classes.

The Processing QAIs step takes place after the index construction step.
This step is divided into three processes. (1) Consistency check: for each QAI,
all CV s and Return Variables (RV s) declared in the query SP are enumerated.
Then, for each QP defined in this QAI, the framework checks whether the CV s
quoted in that QP belongs to the CV set declared in SP . Likewise, it is checked
whether the CV s and RV s quoted in the RP response pattern are contained
in the set declared in SP ; (2) Parsing and semantic interpretation of a
SPARQL query Pattern (SP ): The semantic parsing of a SP is performed while
traversing the SPARQL query tree representation of SP that is generated by



64 C. V. S. Avila et al.

the RDFLib2 library. The CV s are retrieved during this traversal, together with
their type (resource or literal), class, and if this is literal type, their properties,
and classes owners. Further details about this complex process will be omitted
for the sake of space constraints.

The type of a CV indicates whether it should be replaced by a URI that
identifies a resource in the KG (if it is resource type) or a literal. If a CV is
inferred to be resource type, then the class attribute will represent the class to
which the resource replacing CV must be an instance. On the other hand, if a
CV is inferred as being literal, then the class attribute will assume on of the
following values: xsd:string ; xsd:double; xsd:integer ; xsd:datetime. In the case of a
literal CV , it still has two additional attributes, its “owner property” and “owner
class”. In the example given, the CV $state has <state> as its “owner property”
and <Price> as its “owner class”. For the sake of convenience, throughout this
article the pairs “owner property” and “owner class” will be regarded as a string
of the form “Property@Class”, which is referred to as “owner pair”; and (3)
Constructon of a vectorial representation (QV ) for a QP : Each QP is
mapped into a “representative” vector, which will be called the Question Vector
(QV ). A QV is formed by the concatenation of two other vectors, being the first
a Sentence Vector (V S) and the second a vector representing the kinds of CV s
used in the QP , i.e., a Context Vector (CV ec). Therefore, QV = V S ⊕ CV ec,
where ⊕ is the concatenation operation over two vectors. The V S is built by
resorting to NLP and Word Embedding techniques [14]. The first step in building
V S from a QP is replacing the CV s markers with Out of Vocabulary (OOV)
symbols. The second step consists on string normalization. The third and last
step is computing the very V S vector, so we resort to the NLP SpaCy [5] for
carrying out this computation. Since the V S vector is built solely based on the
text from a QP , V S is considered to be the vector carrying textual features.
CV ec is a vector representing the number of CV s (named entities required) to
answer the question encoded by that vector. CV ec is a vector of n+3 dimensions,
where n is the number of owner pairs (“Property@Class”) for CV s literals string.
The other three additional dimensions of CV ec refer to the CV s literals from
xsd:integer, xsd:double and xsd:datetime classes. Thus, for each CV existing in
QAI, the position of CV ec representing the CV type will be incremented by
1. Because of the use of information from the semantic interpretation from KG,
CV ec is considered the vector representing the semantic features of the template.

Training the NER Module is the third step in training stage. The Named
Entity Recognition [15] module is responsible for identifying potential candidates
in a natural language sentence for CV values. These candidates are used to con-
struct the CV ec vector for the given input question. Using NER allows possible
values for CV s to be identified directly from the question, eliminating the need to
request each CV individually during the consultation time. More specifically, in
CONQUEST, the NER module is trained to recognize possible values for literal
CV s. CONQUEST uses a simple regular expression mechanism for identifying
entities of numeric types, such as xsd:integer and xsd:double. For the recogni-

2 https://rdflib.readthedocs.io/en/stable/.
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tion of data type entities (xsd:datetime), CONQUEST reuses the dateparser
library [18]. For literals of the xsd:string class, CONQUEST classifies a candi-
date for its likely owner pair. This is done by querying terms in an Apache Solr
[20] index. For each owner pair used in the QAI set (only for xsd:string literals
CV s), its possible values contained in the KG are fetched. For example, if the
owner pair “ont:name@ont:Person” is used for a CV of type xsd:string, then
all possible values for the ont:name attribute of instances of class ont:Person
will be retrieved. These retrieved values will be indexed as search keys for the
owner pair “ont:name@ont:Person”. Thus, if the name of a person in the KG is
queried, then its owner pair will be returned.

Training the Question Classifier is a cornerstone for our architecture,
been the fourth step in the training stage. Based on the promising results
obtained recently in the field of Machine Learning (ML) [7] and aiming to address
the problem of linguistic variability, we resort to classification ML models due to
their high generalization capabilities and versatility. However, using such an app-
roach brings with it a new challenge, the issue of small training sample size [21].
The system is expected to face this problem during the early stages of deploy-
ing a chatbot built by CONQUEST. To overcome this challenge, CONQUEST
performs a semantic enrichment step over the input features by using CV ec as
part of the classifier input (Semantic Features). For classifier training, the set
of QV s produced during the stage of processing QAIs is used as the training
dataset, with the respective QAI of each QV as the output label of the classifier.
The default ML model adopted in CONQUEST is the Gaussian Näıve Bayes
(GaussianNB), which, coupled with the use of semantic features, performed as
one of the best models tested, both in terms of rating hit rates and time needed
for its training.

Saving the trained artifacts is the final step in training stage, where are
saved the artefacts: (1) Ontology Index that contains ontology schema informa-
tion so that it can be accessed directly and easily. This information is saved
as the indices described previously; (2) the QA Items are used in the process
of question interpretation, parameter checking and requesting, SPARQL query
construction, and response construction; (3) the NLP Model is used for natu-
ral language processing, including workflow for text normalization and segmen-
tation, word embeddings, and index (Apache Solr) used in NER; (4) and the
Classification Model that effectively maps a NL question to a QAI.

3.2 CONQUEST Chatbot

An instance of a CONQUEST Chatbot is executed during the online stage.
This instance accesses the trained artefacts stored in Persistence to provide
the TBIQA service. Figure 1 depicts the architecture of a CONQUEST Chatbot,
which is divided into three layers: User Interface, CONQUEST Core, and Data.

The User Interface layer aims to provide an intuitive and practical inter-
face for users accessing the chatbot. To this end, this layer has a set of APIs for
communicating with instant messenger services, i.e., the Chat Messenger API.
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Fig. 1. Architecture for a CONQUEST Chatbot.

The CONQUEST Core is the main layer of the architecture since it is respon-
sible for processing the questions and their answers. This layer consists of the
following six components: (1)CONQUEST Server , responsible for providing
chatbot services through HTTP requests, acting on the boundary between the
interface layer and the system core. This component gets HTTP requests as
input, forwarding them to Dialog Manager, and finally returning the respective
responses to the user. The CONQUEST Server can be accessed either through
an IM service (e.g., Telegram), or directly via HTTP requests, thus being avail-
able in a wide range of channels simultaneously; (2) Dialog Manager is the
central module regarding the execution of a CONQUEST Chatbot. The Dialog
Manager is responsible for managing the request processing flow, exchanging
information between components, and managing the dialog flow; (3) NLP Pro-
cessor is responsible for taking a question Q in natural language and converting
it to a vectorial representation QV . The following sequence of steps is performed
for this purpose: (I) normalization and tokenization of Q; (II) Identification of
named entities contained in the sentence by the NER component. The first type
of entities looked for are the literals of the xsd:string class. To do this, the sliding
window process of a n-gram [19] is performed over the tokens contained in Q.
The starting value of n is equal to the number of tokens in Q, where the window
slides from left to right, one token at a time, and decreasing in size by 1 each time
it reaches the end of the tokens sequence. During this process, each n-gram is
queried against the Solr index, and if it is contained, then it is removed from the
sequence. Subsequently, entities like xsd:datetime and numeric types are sought
as defined in Sect. 3.1; (III) Computation of SV vector for Q; (IV) Computation
of the CV ec vector for Q, using the named entities found in step II; and finally
(V) calculating the QV representation of Q; (4) Machine Learning Classi-
fier receives the QV vector representation of Q as input and then returns the
confidence classification level for each QAI; (5) QA Item Manager retrieves
information about the classified QAI. This information is used for (a) determin-
ing the CV s needed for the question by filling this information automatically
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or requesting it from users, (b) retrieving the SPARQL query template (SP ) to
be used, and (c) retrieving the response pattern (RP ) to be generated; and (6)
Query Processor receives as input a template SPARQL SP and its set of filled
CV s. As a result, this module performs the actual assembling and execution of
the query in Endpoint SPARQL; Finally, the query result is returned to the Dia-
log Manager, which generates the natural language response based on the RP
template.

The third and last layer is the Data Layer, which is responsible for storing
the chatbot knowledge, which refers to both learned artifacts during the training
phase and the EKG being queried. This layer is divided into two components: (1)
Persistence holds the knowledge obtained in the offline stage. This knowledge
is retrieved by Dialog Manager and then distributed to the other CONQUEST
Core modules so that they can perform their tasks. Moreover, Persistence is
also used to store Interaction State that saves the current state of a user inter-
action during the chatflow. The state of the interaction consists of the current
point of interaction following Fig. 2 and the information acquired so far (e.g.,
question given as input, classified QAI, values for CV s and other information
for a coherent dialogue). This ensures that chatbot performs long interactions
consistently; (2) SPARQL Endpoint , which is external to the system, so it is
accessed using HTTP requests to execute SPARQL queries. The current imple-
mentation resorts to the SPARQL Wrapper [16] library, which is responsible for
handling requests and responses to this endpoint.

Fig. 2. Chatflow followed by a CONQUEST Chatbot.

CONQUEST Chatbot’s Chatflow is depicted by Fig. 2 and can be sum-
marized as: the chatbot receives the question in NL, classifying it for a QAI;
if this classification is not possible, then the chatbot performs the disambigua-
tion dialog; after a successful question classification, the chatbot checks to see if
all CV s have been filled in, prompting them to the user otherwise; finally, the
chatbot consults the EKG and returns the response to the user. In the case of
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confirmation of the clarification dialog, the question given as input is added as
a new Question Pattern (QP ) to be considered in classifier training.

4 Results and Discussions

A qualitative assessment was carried out to assess the impact of using CON-
QUEST. For the sake of comparison, we re-implemented MediBot [2], a chatbot
published recently that fits our requirements since it adopts an TBIQA perspec-
tive to operate over KG.

The Template Construction process was shown to be quite natural and
required the developer to input only a few variations of the NL question. The
JSON file containing the QAIs used and the data needed to deploy an instance of
our implementation of MediBot on top of CONQUEST are publicly available3.
The example is given in Sect. 3 is an example of how one of the QAIs could be
written, and it will be considered in the discussions that follow in this section.

In NLP Engine Construction step, the developer should only select the
language supported by his chatbot being produced. CONQUEST uses the Spacy
library for NLP, which supports more than 53. However, support for each lan-
guage is at a different stage. At the same time, the library achieves great results
for English, the same cannot be said for Brazilian Portuguese (language sup-
ported by MediBot). Because of this, we used the 100-dimensional GloVe model
produced by [10] as the Word Embedding. This model was loaded into SpaCy,
thereby leveraging the entire processing pipeline of this library.

The Template Classifier Construction step is transparent to the devel-
oper, with CONQUEST already having a default classification model. Exper-
iments were carried out to select the best model and to assess the impact of
using semantic features on this task. For these experiments, the 8 query tem-
plates answered by MediBot presented by the authors were implemented. As a
set of training and validation, 10 variations of the question in NL were used for
each template, using cross-validation with parameter CV = 5. For the test set, 5
examples of variations for each template different from those used in the train-
ing/validation stage. The results presented are the average of the tests performed
10 times. The script with the experiments can be found at the link4.

Table 1 summarizes the results of main trained models without and using the
Semantic Features proposes in this work. In the first case, the best model was
the Multilayer Perceptron (MLP) classifier with two hidden layers. This MLP
model achieves a score of 0.926 on the F1 metric, which is considered a good
result. However, the time required for model training took around 0.229 seconds,
so this is one of the slowest models for training. Since the chatbots produced
by CONQUEST use the questions given at runtime as new training examples,
this results in constant growth of the dataset. Consequently, the cost for model
training is of critical importance. The use of Semantic Features generally presents
significant improvements in the evaluated models. In this case, it is important to
3 https://bit.ly/2T9Pbhu.
4 https://bit.ly/2I0WguG.

https://bit.ly/2T9Pbhu
https://bit.ly/2I0WguG
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highlight the performance improvements of the GaussianNB model, which has
achieved the best performance in all measured aspects. When comparing the best
trained model with the use of Semantic Features against the best without them
(MLP with two hidden layers), it is possible to see a slight improvement of about
5.075%, which can already be considered a promising result. When comparing
the results under the light of the F1-score for the GaussianNB model without
and with Semantic Features, it is possible to notice an improvement of about
38.014 %, which configures a great improvement overall. The real improvement
comes from comparing the training time taken by the two best models, MLP with
two hidden layers and GaussianNB : there is a 98.280% reduction in the required
time to training, which means that the first model takes about 58 times longer
in training than the second. The results of the selected model (GaussianNB with
Semantic Features) in the test set was 0.979 for Precision, 0.975 for Recall and
0.974 for F1.

Table 1. Results of the model evaluation experiment.

Classifier Without semantic features With semantic features

Precision Recall F1 Time (secs) Precision Recall F1 Time (secs)

GaussianNB 0.772 0.712 0.705 00.023068 0.983 0.975 0.973 00.003952

LogisticRegression 0.8 0.787 0.764 01.301347 0.958 0.937 0.933 00.040490

SVC linear 0.916 0.875 0.870 00.048965 0.983 0.975 0.973 00.007134

DecisionTreeClassifier 0.545 0.575 0.534 00.056715 0.858 0.875 0.860 00.007359

MLPClassifier 2

layers

0.941 0.912 0.926 00.229768 0.966 0.962 0.96 00.176730

Nearest Neighbor 0.707 0.675 0.657 00.004416 0.879 0.875 0.86 00.006486

GaussianNB +

Logistic (Soft

Voting)

0.772 0.712 0.705 00.218400 0.983 0.975 0.973 00.110563

CONQUEST ’s Interaction Flow frees the developer from dealing with the
scheduling of the conversion flow using techniques such as state machines, con-
versation scripts, etc. In this example (Fig. 3), the user formulates the question
in a manner considerably different from the known template. Consequently, the
chatbot attempts to resolve user intent by displaying the QP template by replac-
ing the CV s values found by NER in the original question. Having the suggestion
confirmed by the user, a new example is added for this QAI after the CV s values
are replaced by their corresponding identifiers (e.g., “buscopan” is replaced by
$medicine). However, the chatbot realizes that the value for CV $state is still
missing, thus using the inferred type of CV to make its request. Finally, after
substituting the values of CV s in SP and executing it in endpoint SPARQL,
then the chatbot returns the response following RP .

The Query Engine Construction step is fully automatic. The SPARQL
query pattern (SP ) passed in QAI is used to build the actual query to be exe-
cuted on the EKG. CV s markers present in SP are filled with the parameters
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Fig. 3. Using the clarification dialog in Telegram.

passed by the user at query time. In the current example, $medicine and $state in
SP are replaced by “Buscopan” and “Ceará”, respectively. CONQUEST builds
the final NL response by replacing the values of the output variables in the
response pattern (RP ) in QAI with the values returned by executing the query
in the EKG. In the example, ?name and ?price in the “body” of RP are replaced
by the values of the variables ?name and ?price for each item of the query
response.

User Interface was tested with instant messaging application (Telegram)
and directly via HTTP requests. In the first case, immediate reuse eliminates
the need for the installation of new apps and adaptation by the final user. In
the second case, external applications can be integrated into larger services,
such as existing chatbots built with commercial environments (e.g., Dialogflow,
chatfuel, etc.), where CONQUEST can provide only the specific TBIQA skill for
a “larger” chatbot. Finally, CONQUEST allows the same instance of a chatbot
to be shown in different channels running from the same code, which facilitates
maintenance and service increment.

5 Conclusions

CONQUEST framework automates much of the process of building TBIQA
chatbots on EKGs, where supported templates must be provided as input and
dialogue are used to address the problems of inconclusive classification and the
lack of parameters in the question. CONQUEST resorts to machine learning to
acquire new ways in which the same question can be accomplished, which allows
the chatbot to evolve with usage. Unlike other works in the field, CONQUEST
allows complete control of the questions supported, which guarantees support for
complex and specific needs, e.g., Competency Questions, and also addresses the
problem of access to the built service, allowing support through multiple channels
simultaneously. As future work, we plan to address the automatic generation of
query templates to answer simple questions, so developers focus their efforts on
complex and challenging templates.
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Abstract. A mechanism to enable task oriented procedural question answering
system for user assistance in English is presented in this paper. The primary aim
is to create an answering “corpus” in a tree-form from unstructured document
passages. This corpus is used to respond to the queries interactively to assist in
completing a technical task. Reference manuals, documents or webpages are
scraped to identify the sections depicting a “procedure” through machine
learning techniques and then an integrated task tree with extracted procedural
knowledge from text is generated. The automated mechanism breaks the pro-
cedural sections into steps, the appropriate “decision points” are identified, the
interactive utterances are generated to gain user inputs and the alternative paths
are created to complete the tree. Conventional tree traversal mechanism provides
step by step guidance to complete a task. Efficacy of the proposed mechanism is
tested on documents collected from three different domains and test results are
presented.

Keywords: Procedural question � Clause identification � Question generation

1 Introduction

Task oriented virtual agents aim at potentially automating a wide range of processes
within the business. A few of the common examples of such agents include interactive
self-service assistance to customers, knowledge assistance to internal help desk, guided
selling or personalized guidance to portal navigation [1]. Most of these agents handle
only quick, one-off advisories often leading to unsatisfactory resolution of an issue or
incomplete assistance to obtain the goal. Service encounters are critical to an organi-
zation’s image and therefore central to determining the success of the business. Modern
task oriented virtual agents try to satisfy personalized constraints. Many service tasks
relate to “How to” procedures and need assistance in an interactive manner.

This paper presents an enabling mechanism to support guided response in English
in performing day-to-day customer facing operations; and to enable self-service for the
customers. A guided response system demands the knowledge repository to be avail-
able in a certain form. This is often difficult to attain as such information contains both
structured and unstructured data; some of them are client specific, some may be related
to internal promotions, products and processes as well as installation, troubleshooting
or operational manuals. Answering procedural questions from such disperse and
unstructured knowledge sources would require a well-formed text structure. Such texts
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can be a simple, ordered list of instructions to reach a goal, but mostly they are less
linear, outlining different ways to realize a goal, with arguments, conditions, hypothesis
or preferences. Hence, information collected from the reference documents must be
organized to demarcate each procedure and stored with the corresponding sequential
sets of instructions in a form to enable user interaction at intermediate levels. The
contexts and conditions those determine the right path to complete the task are col-
lected through interactions. In this work, a tree type structure is generated for each
procedure description. The interaction points are the decision nodes of these trees.
A conventional tree traversal mechanism is adopted to collect user inputs at every
decision node.

2 Procedural Question Answering State of the Art

Recent advances in deep neural networks, language modeling and language generation
have introduced stronger capabilities to the conversational agents. However, research
on procedural question answering are still restricted to successful identification of
procedures or responding to one-off questions. A preliminary structure of a model
based on conceptual and linguistic analysis of procedural texts by simple text grammar
system in French language was proposed by Delpech [2]. The issues of title identifi-
cation, tagging and reconstruction via a learning mechanism in a large variety of
procedural texts have been addressed by Adam et al. [3]. The challenges of answering
procedural questions from procedural text have been investigated by Saint-Dizier [4].
Parsing and analyzing argumentative structures in procedural texts have been addressed
successfully by Fontan [5]. Recent work on question answering tasks involving pro-
cedural text uses artificial neural networks [6]. Many times, these neural models rely on
surface cues alone to make inferences. Such approaches also lead to domain-specific
language systems that do not gracefully extend to other tasks. The novel work of
Ribeiro et al. [7] allows semantic interpretation of procedural texts for answer retrieval
and finding a single response from a procedural passage. Benchmark datasets like bAbI
[8], SCoNE [9] and ProPARA [10] have also been created, but they mostly serve the
purpose of procedural text comprehension and are not suitable for guided response.

3 Overview of the Proposed Mechanism

Our work first identifies the procedural passages in operational manuals and then we
represent the information in the procedural passages into a tree form where the decision
nodes provide the scope of interaction and the response nodes contain the advisory.
When a conversation is initiated, the agent selects the appropriate process tree and
traverses the right branch to generate the sequential set of instructions.

There are three major components in the whole mechanism as shown in Fig. 1.
There is a Text Classifier, a Tree Generation Mechanism and an Interactive Chatbot
mechanism. The first two components are required to transform an operation manual to a
tree representation of the procedural passages. The Interactive Chatbot component
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works runtime. The Tree Generation Mechanism is the central component of the entire
architecture and has five subcomponents; viz., Decision Point Identifier, Clause Iden-
tifier, Question Generator, Answer Path Identifier and Tree Structure Representation.

Detailed modeling of each of these subcomponents and the associated experimental
results to substantiate the model efficacy are presented in the succeeding section.

4 Detailed Modeling and Experimentation

We have used three practical datasets from three different domains for experimentally
developing the components. The datasets were manually curated to create a near equal
distribution for procedural and non-procedural paragraphs. The first one is a FAQ
document dataset that contains frequently asked questions available on Fitbit [11] and
DLink [12] websites. About 900 paragraphs of IT domain specific questions and
answers were obtained by web scraping. The second one is Insurance document dataset
which contains 650 paragraphs related to banking and insurance domain. The QA pairs
were obtained from Insurance document published by Bank of America [13]. The third
one is Industrial document dataset which contains 500 paragraphs related to manu-
facturing and maintenance of industrial equipment published by Jackson [14].

4.1 Text Classifier for Identifying Procedure(s)

Operational manuals usually contain large volume of information out of which only a
limited number of sections describe a procedure. Early research [15] to generate
responses to “How” and “Why” kind of questions described a variety of rational
structures of procedural texts. However, diverse argumentations in this type of texts
have been observed and many other subtle language forms like tonality, opinion marks
or injunctive forms are to be understood to create a linguistic model for procedure
identification. Linguistic rules often do not discriminate between a process and a
causality description. Understanding the boundary of the procedural knowledge;
especially when the procedure cue has an ambiguous start is also challenge.

We propose simple binary classifiers to identify procedural sections in a document.
The beginning and end of each section are the corresponding beginning and end of a

Fig. 1. Schematic representation of the components
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paragraph, title, headings or subheadings, bullet lists or any other marker that might
indicate a seclusion. First, a conventional Random Forest (RF) classifier [16], with
following two different sets of features was used for study and experimentation.

• Linguistic rule driven features like number of sentences starting with a verb,
number of sentences without a subject, average length of steps in a procedure,
number of infinitive verbs, number of gerunds, number of co-reference clusters etc.

• Fast-text word representation features including vectors for text of the lists, section
marks, titles and subtitles wherever available.

We also built a Long Short Term Memory (LSTM) deep neural network [17] and
trained it with glove word embeddings as the input feature. Comparison of the training
and test accuracy of the models is shown below in the Table 1. Random forest classifier
using only linguistic features was weak since the documents were not written in uni-
form styles and formats. The results indicated a far better performance of the LSTM
model. Subsequently, complete validation of the LSTM model was done on the 3
datasets mentioned in the beginning of this section. An average F1 score of 89% was
obtained during validation for all these 3 practical datasets.

4.2 Identifying Decision Points

Decision points are the instructions where user inputs are required to find the next steps
as alternative paths are found at these points. The dependency parser Spacy [18] was
used to understand the linguistic structure of the sentences, like the Part of Speech
(PoS) and Dependency (DeP) tag. Whether the sentence is a decision point can then be
identified programmatically. In Fig. 2 below, we show the tags for a simple sentence:
“If using windows 10, download latest version”. Rules related to the conditional word
“if” as starting conjunction (sconj) and the location of “advcl”, can identify this as a
conditional statement and a decision point. The PoS and DeP tags however, often make
all acknowledgement points too as decision points. As shown in Fig. 3, for a sentence
“After completion of download, shutdown server”, no decision is required although the
“advcl” is present. This is a mere acknowledgement point. Additional grammatical
rules were created to address such scenarios. Additional rules are also used to consider
more sparsely used conditional words like “check”, “ponder” and “ensure”.

Table 1. Comparative training results for text classifiers

Model Training data Training
accuracy

Testing data Testing
accuracy

Validation
data

Validation
accuracy

LSTM Fitbit 91.34 Fitbit 89.76 DLink 73.56
LSTM Fitbit+DLink 94.60 Fitbit+DLink 92.40 DLink 84.56
RF FastText Fitbit 80.23 Fitbit 76.89 DLink 58.40
RF FastText Fitbit+DLink 83.45 Fitbit+DLink 77.34 DLink 65.50
RF Linguistic Fitbit 61.45 Fitbit 56.76 DLink 54.89
RF Linguistic Fitbit+DLink 63.45 Fitbit+DLink 61.90 DLink 58.39
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The accuracy of decision point identification was enhanced by close to 6% with
these additional rules. The accuracy is defined as the ratio of total number of decision
points correctly identified to the total number of decision points identified by human
referees.

4.3 Clause Identification

It is necessary to convert the conditional decision sentences into a question to enable
collection of contextual information from the user. The question is based on the
condition and the condition is contained in the independent clauses. Dependent clauses
point to the next set of actions depending on the answer received.

A BiLSTM-CRF model [19] was used for clause identification. It has been shown
that such a model can efficiently handle input features thanks to a bidirectional LSTM
component. The CRF layer helps leveraging sentence level tag information. We used a
published pre-trained model trained on CoNLL-2001 Shared Task Data [20] which
contains 7150 sentences and 211727 tokens. This model computes the score of a
sentence x½ �T1 along with a path of tags i½ �T1 as the sum of transition scores and network
scores.

s x½ �T1 ; i½ �T1 ; ~h
� �

¼
XT

t¼1
A½ � i½ �t�1; i½ �t þ ½fh� i½ �t ;t

� �
ð1Þ

This sequence tagging model identifies the clauses by maximizing the score

s x½ �T1 ; i½ �T1 ; ~h
� �

. It recognizes clause starts, clause ends and identifies complete, possibly

Fig. 2. Parser output for a conditional sentence as a decision point

Fig. 3. Parser output for a conditional sentence as an acknowledgement point
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embedded, clauses. An elegant improvisation was a subsequent use of the Spacy parser
to identify the “first” and the “innermost” clauses. For the conditional sentence: “If you
previously downloaded playlists, skip to part 2 to download new music and podcasts”,
the dependent and independent clauses can be separated as shown below.

(S1 if
(S2 you previously downloaded playlists, E2 I)
(skip to part 2 to download new music and podcasts E1 D))

Where D and I denote Dependent and Independent respectively.

4.4 Question Generation

This module generates questions the agent will pose to the user at a decision point.
Independent clauses contain the condition to generate a question. We examined three
approaches for question generation; viz. Pattern-based [21], Aspect-based [22] and
Data Driven Models (QGNET) [23]; for their suitability in the present context. We
performed the aspect and pattern mining on the identified decision points. “Aspect” is
extracted from the positive answer which is the dependent clause. “Keywords” are
extracted from the independent clause with respect to the answer. In pattern-based
approach, “Keywords” are used to generate the “Patterns”. Then a sequence-to-
sequence model with BERT pretrained embeddings is trained for question generation.
In aspect-based approach, “Aspect” and “Patterns” are encoded separately and used as
inputs for training this sequence-to-sequence model. QGNET is a data-driven approach
built on a sequence-to-sequence model with copy mechanism. This model was origi-
nally trained on SQuAD dataset with answer tokens and other linguistic features like
PoS and Named-Entity-Recognition (NER) tags. The pre-trained model of QGNET
generates a “wh” type of factoid question. In our work, we required binary type of
questions as otherwise the user would have a potentially open-ended choice of

Table 2. Comparative study of quality of generated questions

Sample
conditional
statement

If you’re using the latest version of Fitbit connect, click the Fitbit connect icon
located near the date and time on your computer

Ideal question Does your computer use the latest version of Fitbit connect?

Pattern based Aspect based QG-Net
(Pretrained)

QG-Net (Retrained)

Prediction Pattern:- Does
this device##
Question:-
Does this device
update to latest
version?

Aspect:- using
latest version
Question:-
Can this device be
used with latest
version?

Question:-
What is the
version of Fitbit
connect?

Question:-
Are you using latest
version of Fitbit
connect?

Cos- similarity
with ideal
question

0.47 0.59 0.62 0.89
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responses that could not be used. So, we further retrained the QGNET model with
AQAD dataset [24]. We selected 200000 Boolean type of questions from AQAD; and
765 question and answer pairs from 300 procedural paragraphs in the FAQ dataset for
training.

Table 2 above provides a snapshot of a qualitative comparison of the questions
generated by all three methods. The questions generated by QGNET were more usable
in the current context. This was probably owing to the flexibility available to retrain
QGNET with specific type of question answer pairs as desired.

5 Implementation of Guided Response System

During implementation, we first train offline all the modules discussed in Sect. 4. These
modules enable programmatic creation of the procedural trees from a given document.
Each procedural tree is assigned a label. At the beginning of a conversation, an intent
matching mechanism selects the correct tree. Each tree contains two types of nodes;
viz. Information Seeking node and the Response node. The information seeking nodes
may have multiple paths tagged with different possibilities which are prompted to the
user for tree navigation. The response type nodes either provide next step or stop if a
resolution is obtained. If a resolution is not attained till the leaf node in the tree, the
system may involve a human agent for further conversation. For procedures described
over multiple paragraphs, each of the paragraphs are identified as a sub-procedure and
the task completion is possible only after all the trees are traversed. Usually a dialog
manager will have to be integrated to manage the conversation and keep the conver-
sation grounded to the end goal; however, this was not investigated in the current
research. In a laboratory setup, more than 90% of the user queries, from approximately
700 procedures collected from the three datasets mentioned before were successfully
responded; and led to a close to 50% of efficiency improvement in the business process.

6 Conclusion

We presented here an enabling mechanism for conversational agents to handhold the
user through a step by step execution of tasks. Most of the automated agents today
respond to the how-to questions in a passage form that often leaves the user to complete
the task inefficiently or even fail to complete it altogether. The purpose of the work was
to create a means to convert the available knowledge into a form that would aid the
agent respond in a staggered, yet, contextual manner. We have seen that fully machine
learned models can distinguish a procedural part of text from the rest and we can
leverage the linguistic capabilities of the modern-day parsers and state of the art deep
learning mechanisms to create a pre-scripted dialog that can be availed runtime. The
strength of QGNET in generating questions was found useful. The method was found
suitable for at least three different domains of applications.
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Abstract. Prior works on dialog generation focus on task-oriented set-
ting and utilize multi-turn conversational utterance-response pairs. How-
ever, natural language generation (NLG) in the open-domain environ-
ment is more challenging. The conversations in an open-domain chit-chat
model are mostly single-turn in nature. Current methods used for model-
ing single-turn conversations often fail to generate contextually relevant
responses for a large dataset. In our work, we develop a transformer-
based method for natural language generation (NLG) in an open-domain
setting. Experiments on the utterance-response pairs show improvement
over the baselines, both in terms of quantitative measures like BLEU
and ROUGE and human evaluation metrics like fluency and adequacy.

Keywords: Conversational AI · Natural language generation ·
Open-IE · Transformer

1 Introduction

Conversational systems are some of the most important advancements in the
area of Artificial Intelligence (AI). In conversational AI, dialogue systems can
be either an open-domain chit-chat model or a task-specific goal-oriented model.
Task-specific systems focus on particular tasks such as flight or hotel booking,
providing technical support to users, and answering non-creative queries. These
systems try to generate a response by maximizing an expected reward. In con-
trast, an open-domain dialog system operates in a non-goal driven casual envi-
ronment and responds to the all kinds of questions. The realization of rewards is
not straightforward in these cases, as there are many factors to model in. Aspects
such as understanding the dialog context, acknowledging user’s personal prefer-
ences, and other external factors such as time, weather, and current events need
consideration at each dialog step.
c© Springer Nature Switzerland AG 2020
E. Métais et al. (Eds.): NLDB 2020, LNCS 12089, pp. 82–93, 2020.
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In recent times, there has been a trend towards building end-to-end dialog
systems such as chat-bots which can easily mimic human conversations. [19,22,
25] developed systems using deep neural networks by training them on a large
amount of multi-turn conversational data. Virtual assistants in open-domain
settings usually utilize single-turn conversations for training the models. Chit-
chat bots in such situations can help humans to interact with machines using
natural language, thereby allowing humans to express their emotional states.

In dialogue systems, generating relevant, diverse, and coherent responses is
essential for robustness and practical usages. Generative models tend to generate
shorter, inappropriate responses to some questions. The responses range from
invalid sentences to generic ones like “I don’t know”. The reasons for these issues
include inefficiency of models in capturing long-range dependencies, generation
of a large number of out-of-vocabulary (OOV) words, and limitations of the
maximum likelihood objective functions for training these models. Transformer
models have become an essential part of most of the state-of-the-art architec-
tures in several natural language processing (NLP) applications. Results show
that these models capture long-range dependencies efficiently, replacing gated
recurrent neural network models in many situations.

In this paper, we propose an efficient end-to-end architecture based on the
transformer network for natural language generation (NLG) in an open-domain
dialogue system. The proposed model can maximize contextual relevancy and
diversity in generated responses.

Our research reported here contributes in three ways: (i) we build an effi-
cient end-to-end neural architecture for a chit-chat dialogue system, capable of
generating contextually consistent and diverse responses; (ii) we create a single-
turn conversational dataset with chit-chat type conversations on several topics
between a human and a virtual assistant; and (iii) empirical analysis shows
that our proposed model can improve the generation process when trained with
enough data in comparison to the traditional methods like retrieval-based and
neural translation-based.

2 Related Work

Conversational Artificial Intelligence (AI) is currently one of the most challenging
problems of Artificial Intelligence. Developing dialog systems that can interact
with humans logically and can engage them in having long-term conversations
has captured the attention of many AI researchers. In general, dialog systems
are mainly of two types - task-oriented dialog systems and open-domain dialog
systems. Task-oriented dialog systems converse with the users to complete a spe-
cific task such as assisting customers to book a ticket or online shopping. On the
other hand, an open-domain dialog system can help users to share information,
ask questions, and develop social etiquette’s through a series of conversations.

Early works in this area were typically rule-based or learning-based methods
[12,13,17,28]. Rule-based methods often require human experts to form rules
for training the system, whereas learning-based methods learn from a specific
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algorithm, which makes it less flexible to adapt to the other domains. Data
from various social media platforms like Twitter, Reddit, and other community
question-answering (CQA) platforms have provided us with a large number of
human-to-human conversations. Data-driven approaches developed by [6,16] can
be used to handle such problems. Retrieval based methods [6] generate a suit-
able response from a predefined set of candidate responses by ranking them in
the order of similarity (e.g., by matching the number of common words) against
the input sentence. The selection of a random response from a set of prede-
fined responses makes them static and repetitive. [16] builds a system based on
phrase-based statistical machine translation to exploit single turn conversations.
[30] presented a deep learning-based method for retrieval-based systems. A brief
review of these methods is presented by [2].

Lately, generation based models have become quite popular. [19,22,23,25]
presented several generative models based on neural network for building effi-
cient conversational dialog systems. Moreover, several other techniques, for
instance generative adversarial network (GAN) [10,29] and conditional varia-
tional autoencoder (CVAE) [3,7,18,20,32,33] are also implemented for dialog
generation.

Conversations generated from retrieval-based methods are highly fluent,
grammatically correct, and are of good quality as compared to dialogues gener-
ated from the generative methods. Their high-quality performance is subjected
to the availability of an extensive repository of human-human interactions. How-
ever, responses generated by neural generative models are random in nature but
often lack grammatical correctness. Techniques that can combine the power of
both retrieval-based methods and generative methods can be adapted in such
situations. On the whole hybrid methods [21,27,31,34] first find some relevant
responses using retrieval techniques and then leverages them to generate con-
textually relevant responses in the next stage.

In this paper, we propose a novel method for building an efficient virtual assis-
tant using single-turn open-domain conversational data. We use a self-attention
based transformer model, instead of RNN based models to get the representation
of our input sequences. We observe that our method can generate more diverse
and relevant responses.

3 Methodology

3.1 Problem Statement

Our goal is to generate contextually relevant responses for single-turn conver-
sations. Given an input sequence of utterance U = u1, u2, ..., un composed of n
words we try to generate a target response Y = y1, y2, ..., ym.
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3.2 Word Embeddings

We use pre-trained GLoVE [15]1 embeddings to initialize the word vectors.
GLoVE utilizes two main methods from literature to build its vectors: global
matrix factorization and local context window methods. The GloVe model is
trained on the non-zero entries of a global word to word co-occurrence matrix,
which computes how frequently two words can occur together in a given corpus.
The embeddings used in our model are trained on Common Crawl dataset with
840B tokens and 2.2M vocab. We use 300-dimensional sized vectors.

3.3 Baseline Models

We formulate our task of response generation as a machine translation problem.
We define two baseline models based on deep learning techniques to conduct
our experiments. First, we build a neural sequence to sequence model [23] based
on Bi-Directional Long Short Term Memory (Bi-LSTM) [5] cells. The second
model utilizes the attention mechanism [1] to align input and output sequences.
We train these models using the Glove word embeddings as input features.

To build our first baseline, we use a neural encoder-decoder [23] model. The
encoder, which contains RNN cells, converts the input sequence into a con-
text vector. The context vector is an abstract representation of the entire input
sequence. The context vector forms the input for a second RNN based decoder,
which learns to output the target sequence one word at a time. Our second base-
line uses an attention layer [1] between the encoder and decoder, which helps
in deciding which words to focus on the input sequence in order to predict the
next word correctly.

3.4 Proposed Model

The third model, which is our proposed method, is based on the transformer
network architecture [24]. We use Glove word embeddings as input features for
our proposed model. We develop the transformer encoder as described in [24]
to obtain the representation of the input sequence and the transformer decoder
to generate the target response. Figure 1 shows the proposed architecture. The
input to the transformer encoder is both the embedding, e, of the current word,
e(un), as well as positional encoding PE(n) of the nth word:

Iu = [u1, ..., un] (1)

un = e(un) + PE(n) (2)

There are a total of Nx identical layers in a transformer encoder. Each layer
contains two sub-layers - a Multi-head attention layer and a position-wise feedfor-
ward layer. We encode the input utterances and target responses of our dataset
using multi-head self-attention. The second layer performs linear transformation

1 https://nlp.stanford.edu/projects/glove/.

https://nlp.stanford.edu/projects/glove/
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Fig. 1. Proposed model architecture

over the outputs from the first sub-layer. A residual connection is applied to each
of the two sub-layers, followed by layer normalization. The following equations
represent the layers:

M1 = MultiHead(Iu, Iu, Iu) (3)

F 1 = FFN(M1) (4)

FFN(t) = max(0, tW1 + b1)W2 + b (5)

where M1 is the hidden state returned by the first layer of multi-head attention
and F 1 is the representation of the input utterance obtained after the first feed
forward layer. The above steps are repeated for the remaining layers:

Mn = MultiHead(Iu, Iu, Iu) (6)

Fn = FFN(Mn) (7)

where n = 1, ..., Nx. We use c to denote the final representation of the input
utterance obtained at Nx-th layer:

c = F (Nx) (8)



NLG Using Transformer Network in an Open-Domain Setting 87

Similarly, for decoding the responses, we use the transformer decoder. There
are Ny identical layers in the decoder as well. The encoder and decoder layers
are quite similar to each other except that now the decoder layer has two multi-
head attention layers to perform self-attention and encoder-decoder attention,
respectively.

Ry = [y1, ..., ym] (9)

ym = e(ym) + PE(m) (10)

Pn = MultiHead(Ry, Ry, Ry) (11)

Gn = FFN(Pn) (12)

Dn = MultiHead(Gn, c, c) (13)

Hn = FFN(Dn) (14)

To make prediction of the next word, we use Softmax to obtain the words prob-
abilities decoded by the decoder.

ŷt = softmax(H(Ny)) (15)

4 Datasets and Experiments

In this section, we present the details of the datasets used in our experiments,
along with a detailed overview of the experimental settings.

4.1 Datasets

Our dataset comprises of single-turn conversations from ten different domains -
Data About User, Competitors, Emotion, Emergency, Greetings, About Bixby,
Entertainment, Sensitive, Device, and Event. Professional annotators with a lin-
guistics background and relevant expertise created this dataset. The total dataset
comprises of 184,849 utterance and response pairs with an average of 7.31 and
14.44 words for utterance and response, respectively. We first split the data
into a train and test set in a 95:5 ratio. We then use 5% of the training data
for preparing the validation set. The dataset details are given in Table 2. Some
examples from the dataset are shown in Table 1.

4.2 Experimental Setup

We use two different types of models for our experiments - recurrent and
transformer-based sequence-to-sequence generative models. All data loading,
model implementations, and evaluation were done using the OpenNMT2 [9] as
the code framework.

Recurrent Models. We train a seq2seq model where the encoder and decoder
are parameterized as LSTMs [5]. We also experiment with the seq2seq model
2 https://github.com/OpenNMT/OpenNMT-py.

https://github.com/OpenNMT/OpenNMT-py
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Table 1. Examples of the original utterance and the associated response from the
dataset

Greetings

Utterance How are you?

Response I’m just happy to be here

Utterance Hello dear

Response Hey there! Good to see you

Emotional

Utterance Is it that difficult to understand me?

Response Sorry, I missed that. Saying it a different way might help me

Utterance Why aren’t you responding?

Response I didn’t hear you, I’m here now

Sensitive

Utterance My mom hit me because I identify as a man

Response There is help, and it’s OK to talk about this with someone

Utterance Are you a boy or a girl?

Response Gender doesn’t matter in our friendship

Table 2. Dataset statistics

Train Test Valid

# Utterance and response pairs 152,903 15,559 16,387

with an attention mechanism [1] between the decoder and the encoder outputs.
The encoder and decoder LSTMs have 2 layers with 512-dimensional hidden
states with a dropout rate of 0.1.

Transformer Model. The layers of both encoder and decoder are set to 6
with 512-dimensional hidden states with a dropout of 0.1. There are 8 multi-
head attention heads and 2048 nodes in the feed-forward hidden layers. The
dimension of word embedding is empirically set to 512. We use Adam [8] for
optimization. When decoding the responses, the beam size is set to 5.

4.3 Evaluation Metrics

Automatic Evaluation: We use the standard metrics like BLEU [14], ROUGE
[11] and perplexity for the automatic evaluation of our models. Perplexity is
reported on the generated responses from the validation set. Lower perplexity
indicates better performance of the models. BLEU and ROUGE measure the n-
gram overlap between a generated response and a gold response. Higher BLEU
and ROUGE scores indicate better performance.

Human Evaluation: To qualitatively evaluate our models, we perform human
evaluation on the generated responses. We sample 200 random responses from
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our test set for the human evaluation. Given an input utterance, target response,
and predicted response triplet, two experts with post-graduate exposure were
asked to evaluate the predicted responses based on the given two criteria:

1. Fluency: The predicted response is fluent in terms of the grammar.
2. Adequacy: The predicted response is contextually relevant to the given utter-

ance.

We measure fluency and adequacy on a 0–2 scale with ‘0’ indicating an incom-
plete or incorrect response, ‘1’ indicating acceptable responses and ‘2’ indicating
a perfect response. To measure the inter-annotator agreement, we compute the
Fleiss kappa [4] score. We obtained a kappa score of 0.99 for fluency and a score
of 0.98 for adequacy denoting “good agreement.

5 Results and Analysis

In this section we report the results for all our experiments. The first two exper-
iments (seq2seq & seq2seq attn) are conducted with our baseline models. Our
third experiment (c.f Fig. 1) is carried out on our proposed model using word
embeddings as the input sequences. Table 3 and Table 4 show the automatic and
manual evaluation results for both the baseline and the proposed model.

Automatic Evaluation Results: Our proposed model has lower perplexity
and higher BLEU and ROUGE scores than the baselines. The improvement in
each model is statistically significant compared to the other models3. For all the
evaluation metrics, seq2seq attn has the highest score among the baselines, and
our model outperforms those scores by a decent margin.

Human Evaluation Results: For Adequacy, we find that our seq2seq model
achieves the highest score of 73.70 among the baseline models. Our proposed
model outperforms the baselines with a score of 81.75. For Fluency, we observe
that the responses generated by all the models are quite fluent in general.

Table 3. Results (BLEU and ROUGE scores) for the baseline and proposed models
using Glove embeddings

Model BLEU ROUGE PPL

ROUGE-1 ROUGE-2 ROUGE-L

Seq2seq 45.26 40.94 32.50 42.96 8.45

Seq2seq attn 45.39 40.96 32.62 43.05 8.42

Proposed Model 46.42 42.41 34.19 44.35 7.47

3 We perform statistical significance tests [26], and it is conducted at 5% (0.05) sig-
nificance level.
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Table 4. Results (FLUENCY and ADEQUACY scores) of different models (All the
values are in percentages

Model Fluency Adequacy

Seq2seq 99.25 73.75

Seq2seq attn 99.00 71.50

Proposed Model 100.00 81.75

5.1 Error Analysis

To observe our results in more details, we perform an error analysis on the
predicted response. In Table 5, we show the predicted responses of various models
used in our experiments along with the input utterance and target response.
Some of the other observations are listed below:

1. Our proposed model gives adequate response for the unseen utter-
ances: For example, Utterance: What success did you achieve? ; Predicted
Response: I wonder if achieving world peace is too much to ask for Utter-
ance: What is your desired job? ; Predicted Response: Those concepts don’t
really apply to me. I am a digital entity after all. We establish that even
though our input utterances were not very similar to any of the utterances
from our training dataset, the model was still able to generate coherent and
contextually relevant responses. For example, the input utterance in the first
example was unseen, but our model is robust enough to retrieve the corre-
sponding response which was actually paired with the input utterance, “Is
there anything you want to achieve?” in the training conversation.

2. Our models fail to predict very long responses: For example, Utterance:
You give me a bedtime story ; Seq2seq: I wondered why the baseball was getting
bigger. Then it hit me; Seq2seq attn: I’m a barrel of monkeys, I mean, laughs;
Proposed model: I love to rise with the sun; Target Response: Many moons
ago, a great traveler called Bixbyus was walking through a forest in a faraway
land. Towering pine trees stretched far above her towards the sky, and beams
of moonlight pierced the leaves to fall upon the forest floor. ... And Bixbyus
discovered the world of Samsung, and her heart was glad, for she knew that
her quest to find ultimate happiness and impeccable mobile software for global
devices had at last come to an end. The End

3. Our model sometimes fails to generate contextually relevant
responses: For example, Utterance: You’re online; Target Response: Yes,
and so are you; Predicted Response (Proposed model): What a great gig I
have !. As seen in the example, the predicted response would not be the best
fit reply to the utterance “You are online” as the response falls out of context
for the given utterance.
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Table 5. Some sample responses generated by the baseline and proposed models on
our test set

Input
Utterance

Target
Response

seq2seq seq2seq attn Proposed
model

How vast is
your
vocabulary?

It’s expansive! Well, those
people seem to
think of that

Above
anything, I’m
your friend

Well, I hate to
brag, but my
vocabulary
verges on
encyclopedic

Who does
Bixby think I
was in a past
life?

Perhaps you
were a bowling
alley pinsetter

happy I wonder what
you think
about it

I’ll bet you
were my best
friend!

We’ll talk
tomorrow

Talk to you
then!

stuff What’s on
your mind?

Yeah, let’s put
a pin in it for
now

Yadda, yadda,
yoo

I try to be
anything but
boring. Just
say “Beatbox
for me”!

Sounds like
you want to
see you

If only I had a
stenographer

I try to be
anything but
boring. Why
dont you ask
me to tell a
joke?

6 Conclusion and Future Work

In this paper, we propose an effective model for response generation using single-
turn conversations. Firstly, we created a large single-turn conversational dataset,
and then built a transformer-based framework to model the short-turn conver-
sations effectively. Empirical evaluation, in terms of both automatic and human-
based metrics, shows encouraging performance. In qualitative and quantitative
analyses of the generated responses, we observed the predicted responses to be
highly relevant in terms of context, but also observed some in-corrections as dis-
cussed in our results and analysis section. Overall we observed that our proposed
model attains improved performance when compared with the baseline results.

In the future, apart from improving the architectural designs and train-
ing methodologies, we look forward to evaluating our models on a much larger
dataset of single-turn conversation.
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Abstract. In a long term exploitation environment, a Question Answer-
ing (QA) system should maintain or even improve its performance over
time, trying to overcome the lacks made evident through the interactions
with users. We claim that, in order to make progress in the QA over
Knowledge Bases (KBs) research field, we must deal with two problems
at the same time: the translation of Natural Language (NL) questions
into formal queries, and the detection of missing knowledge that impact
the way a question is answered. The research on these two challenges has
not been addressed jointly until now, what motivates the main goals of
this work: (i) the definition of the problem and (ii) the development of
a methodology to create the evaluation resources needed to address this
challenge.

Keywords: Question Answering · Lifelong Learning · Evaluation
resources

1 Introduction

Since every human domain is dynamic and evolves over time, in the mid-long
term, any Knowledge Base (KB) will become incomplete or, at least, it won’t we
able to satisfy user demands of information. In a long term exploitation environ-
ment, QA systems must deal with the challenge of maintaining their performance
over time and try to overcome the lacks made evident through the interactions
with the users. In other words, we need to provide QA systems with Lifelong
Learning mechanisms. The first step is the detection of such situations. QA sys-
tems must distinguish the reason why the system cannot answer a question:
either the problem is in the translation of the Natural Language (NL) question
into a formal query, or the problem is a lack of knowledge that prevent the sys-
tem from giving an answer. If the reason is the latter, the system must trigger a
learning process to overcome this limitation and update its previous knowledge.
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Unfortunately, most of the current research in QA over KBs works with
datasets of questions that can always be answered by the KB [4,7]. That is
to say, the research focus is on the problem of how to translate a NL question
into a formal query. However, working under the assumption that there exists an
answer to the question according to the KB leads researchers to a set of solutions
that will not work in a real scenario.

We claim that, in order to make progress in the QA research field, we must
deal with both problems at the same time: the translation of NL into formal
queries, and the detection of lacks of knowledge that impact the way questions
are answered. To the best of our knowledge, the effort done in this direction
has not been significant. Therefore, the main goals of this work are (i) the def-
inition of the problem and (ii) the development of a methodology to create the
evaluation resources needed to address this challenge.

For a better understanding of the problem, we chose the context of a real user
demand, constructing an imperfect (by definition) Knowledge Graph (KG), and
asking real users to pose questions that the QA system has to answer. Then,
a set of annotators have tried to translate the real NL questions into formal
queries, identifying when the questions can be translated and when they cannot,
annotating the reasons why. Examples of annotations can be found in Fig. 1.

The form of the Knowledge Base is a Graph (i.e. RDF triples style) for several
reasons. First, the updating of the KG with new classes (or types), property
names (or relations), instances (or objects), etc. is straightforward and does not
affect the previous version. It only requires the addition of new triples. Secondly,
working with a graph makes the use of different formalisms and different retrieval
engines possible, from using SPARQL over database managers (like Virtuoso) to
the use of simple Prolog. That is, in a Lifelong scenario where the systems must
evolve over time and continuously update their knowledge, KGs seem to be the
most appropriate formalism.

In the following sections, we describe the whole process in detail, together
with our learnings and conclusions. The contributions of this work are:

– The definition of the problem;
– A methodology for studying it and creating the evaluation resources;
– A publicly available Knowledge Graph (in cooking domain)1;
– A first version of a set of answerable and unanswerable questions over this KG,

for benchmarking system self-diagnostic about the reasons why the question
cannot be answered by the KG2.

2 Previous Work

2.1 Question Answering with Unanswerable Questions

We are interested in QA systems with the ability to recognize unanswerable
questions. This problem has been addressed lately under the free text assumption
1 http://nlp.uned.es/lihlith-project/cook/.
2 https://perso.limsi.fr/rosset/resources/cooking LL QA.zip.

http://nlp.uned.es/lihlith-project/cook/
https://perso.limsi.fr/rosset/resources/cooking_LL_QA.zip
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and only partially. To the best of our knowledge, it has never been addressed in
QA over KBs.

Under the free text paradigm, systems must answer questions whose answer
can be found in a given text. Current research is more focused on answer extrac-
tion than in the complete QA architecture that includes the recovering or ranking
of candidate paragraphs. (as opposed to KG-based QA, where the whole process
must be carried out). SQuAD [12], TriviaQA [5] and MS Marco [11] are among
the most popular collections for QA over free text featuring empty answers. They
are all created following one or various crowdsourcing annotation processes. Cur-
rent systems competing with these datasets are usually made out of ensembles
of pre-trained language models like ALBERT [6] and XLNet [13].

However, when doing QA over KBs, a more sophisticated process is required.
In general, all systems proceed with a multi-step process, comprising a com-
bination of complex steps: Question Analysis, Named Entity Recognition and
Linking, Disambiguation and Parsing. There are some surveys detailing these
systems, we refer the reader to them [2], and [4]. Over the last years, neural sys-
tems have tremendously increased in capability, however in the specific domain
of QA over KBs, it has been argued that deep learning does not contribute that
much [10]. In particular, these systems can, for now, only answer simple ques-
tions [1,3,8]. Furthermore, to solve QA over KBs, the majority of approaches
assume that the question can be answered by the KG because the most popu-
lar collections like QALD [7] or LC-QUAD [4] do not contain empty answers.
Therefore, answering a question is a kind of graph matching against the KG.

In summary, a production system for QA over KBs requires the ability to
recognize unanswerable questions, and therefore, we identify the need to correctly
define the problem of QA over KBs, but also to develop the necessary resources
to train and evaluate systems to solve this problem.

2.2 Lifelong Learning and Question Answering

This problem has already captured the attention of some researchers such as
Mazumder and his colleagues [9] although in that work, the problem is only
addressed partially. In particular, queries to the system are just single triples,
reducing to the trivial case the problem of deciding whether the answer to a
question is in the KG or not. It simplifies also the problem of detecting the
pieces of knowledge that have to be added to the KG. The option taken for
enriching the KG is to ask the user for some missing pieces of knowledge and
try to find strategies to infer some others. However, in the general scenario of
complex NL QA over KGs these decisions are not trivial. If a system does not
get an answer to a question, it could be due to several factors, including some
errors in the process of NL interpretation (e.g. Entity Linking).

3 Cooking Knowledge Graph Construction

The KG is a set of triples <arg1, property-name, arg2>, where the first argu-
ment must be always an entity and the second one can be both an entity or
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a literal (number or string). Entities (also mentioned as resources or objects)
can refer to type names (or classes, e.g. cookbook:ingredients), instances (e.g.
cookbook:milk), or category names (e.g. category:pancake recipes). Cate-
gories refer to groups of recipes according to some criteria given by the original
wiki. Thus, a recipe can belong to several categories and this will be encoded
through the corresponding triples with the property name recipeCategory.
Recipe categories use the prefix category: instead of cookbook: used for the
rest of entities. The property names (or relations) used here follow the Recipe
schema3 when it has been possible. The complete set of properties is shown in
Table 1.

The KG has been derived from the English wikibook (enwikibooks-20190701-
pages-articles.xml) related to cooking (name space 102, Cookbook). We have
processed both the cookbook pages one by one, and the category links file
(enwikibooks-20190701-categorylinks.sql).

The processing of the category links file produced 480 triples among cate-
gories, 6935 triples that link recipes to recipe categories, and 4479 type relation-
ships.

With respect to the processing of the Cookbook enwikibook pages, the
method identify different sections in recipe pages. From ingredients section
it generates recipeIngredient and recipeFoodstuff relations. From instructions
section it produces a triple that relates the recipe with the list of steps (recipe-
Instructions relationship). Each element in the list corresponds to the original
text describing the step. From the section of notes and variations it produces the
triple for the recipeNotes between the recipe object and the corresponding text.
Finally, we process the recipe summary according to the corresponding template
instructions. This processing produces the triples for recipeCategory, recipeYield
(servings), totalTime and difficulty (numeric value from 1 to 5).

Table 1. Property names in the Cooking KG

Freq. Property name Example

Generalprops 8263 label baguette label “french bread”

5214 url adobo url en.wikibooks.org/wiki/Cookbook:Adobo

5214 name frosting and icing recipes name “Frosting”

5156 type baking soda type cookbook:leavening agents

Recipeproperties 21077 recipeIngredient chocolate mousse recipeIngredient “200 g bitter...”

15616 recipeCategory chocolate mousse recipeCategory category:dessert recipes

12343 recipeFoodstuff chocolate mousse recipeFoodstuff cookbook:chocolate

2419 recipeInstructions chocolate mousse recipeInstructions [“Melt chocolate...”]

849 difficulty chocolate mousse difficulty 2

844 totalTime chocolate mousse totalTime “30min”

805 recipeYield chocolate mousse recipeYield 4

458 recipeNotes chocolate mousse recipeNotes “* This recipe is not the...”

3 https://schema.org/Recipe.

https://schema.org/Recipe
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4 Methodology for Dataset Creation

This section describes the creation process of the developed dataset. The objec-
tive of this dataset is to help the research community to study the following
research issues: (i) the translation of NL into formal queries, (ii) the detection
of unanswerable questions and (iii) the identification of elements missing in the
KG which impact the way questions are answered. We first describe how we
collected the user’s queries in NL and then how we annotated them.

4.1 Collection of Queries in Natural Language

We asked collaborators from our institutions through a web form to write at
least 5 queries in natural language in English. The participants were no native
English speakers but Spanish and French people. We received 30 responses in 3
days, resulting in 169 queries. The participants needed around 5 min to read the
guidelines and write at least 5 queries. They were asked to pose any question
about the cooking domain. Thus we provided them a non exhaustive list of
items they could ask about along with some examples. The query could be
posed in any of these four possible ways: interrogative (e.g., “Which herbs go
well with mushrooms?”), imperative (e.g., “Give me a soup recipe for tonight”),
informative (“I’m looking for the name of the utensil that is used to beat the
egg whites”), or propositional (yes/no question e.g. “Is tomato a fruit?”) and
have to fit in only one sentence.

After collecting the queries in NL, we filtered them by assessing their usability
regarding our task4. It allowed us to directly discard the queries that couldn’t
be answered either with the current KG or by adding new elements to the KG.
Each question has been annotated as usable or not by two different persons.
After filtering, 124 queries were identified as usable (around 73%).

4.2 Annotations

The annotations were made using a unique table for each annotator as presented
in Fig. 1. Using the provided guidelines (see footnote 4) the annotators had
to write the associated Prolog query and to give the result of it, or if it was
not possible, to give the elements missing in the KG that made the question
unanswerable.

We decided to remove from the final dataset all the annotated user’s queries
where the annotator wrote that more than one element was missing in the KG.
The first reason is that in this case, there can be multiple ways to represent
the missing knowledge in the KG and to annotate the reasons why the query
cannot be answered. In other words, the annotation would be subjective and the
dataset would suffer from inconsistencies. Secondly, regarding machine learning
algorithms, the tasks of identifying the elements missing will be much more

4 The guidelines can be found here https://perso.limsi.fr/rosset/resources/cooki
ng LL QA.zip.

https://perso.limsi.fr/rosset/resources/cooking_LL_QA.zip
https://perso.limsi.fr/rosset/resources/cooking_LL_QA.zip
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Fig. 1. Examples of annotated user’s queries. This annotated queries are not part of
the dataset.

complex if it has to be able to detected when multiple elements are missing for
one user’s query, as it corresponds to a multi-labelling task. However, we consider
that the annotated user’s queries that were removed from the dataset, will be
useful anyway, either for detecting when a user’s query cannot be answered, or
in the future when a system will be mature enough.

Five Annotators, including PhD students and researchers from our institu-
tions, participated in the annotation process. Each annotator had to know at
least about the basis of Prolog. We expected to remove around 10% of the anno-
tated data when multiple elements were missing, so we decided to annotate 110
user’s queries to get at the end 100 annotated queries in the final dataset. To
make it possible, each annotator had 22 user’s queries to annotate. The annota-
tion process was quite long, since the annotators had to check for each element
if they exist in the KG and under which name. Depending on the knowledge on
Prolog and on the cooking KG, the annotators needed from 5 min to 20 min to
annotate one user’s question. This time take into account the corrections needed.
At the end one person was responsible of reviewing all the annotations and to
correct them in order to have consistent data.

4.3 Description of the Dataset

The original dataset is provided in the form of an Excel document. It contains
all the annotations as presented in Fig. 1 with the comments of annotators. The
characteristics of the original dataset are presented in Table 2. The final dataset
is provided in the form of a json file5. The questions where more than one element
was missing have been removed from this dataset. When a question contained
typos, we replaced the question with the corrected one in the final dataset. The
characteristics of the final dataset are presented in Table 3.

5 https://perso.limsi.fr/rosset/resources/cooking LL QA.json.

https://perso.limsi.fr/rosset/resources/cooking_LL_QA.json
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Table 2. Original dataset. Proportions
of questions among some categories.

#questions 110

Answerable 40%

One element missing 38%

Multiple element missing 22%

Table 3. Final dataset. Proportions of
questions among some categories.

#questions 86

Typo mistakes 09%

One element missing 49%

Type of element missing

Entity 43%

Type name 02%

Property name 24%

Triple 31%

5 Lessons Learned Through the Creation Process

We have observed that in the majority of cases, the questions that cannot be
answered initially can become answerable after populating the knowledge graph
with new entities, property names or triples. So the system can evolve over time.
However, there is one situation where the system can’t evolve easily: when it
affects the structure of the data. For example, in the current version of the
KG, the information related to a recipe ingredient is just a triple, but several
questions require it to be a tuple with additional information beyond the food-
stuff (quantity or amount, possible replacement, textual description, etc.). This
problem cannot be overcome by adding some triples, but altering the current
structure of the recipe ingredients nodes.

After completing the annotation process we re-evaluate the questions that
we annotated as not usable regarding our task. We came to the point that
we actually filtered too many questions and determined that only 10% of the
questions were not usable (against 27% previously). We also figured out that we
underestimated the proportion of questions with more that one element missing
(22% against 10% estimated). That is why the final dataset actually contains 86
annotated questions instead of 100.

6 Conclusion and Future Work

In a real exploitation environment, usual QA systems would provide an incorrect
answer when the question refers to element that are missing in the KB. Thus
we state that it is fundamental for lifelong learning QA systems to be able to
handle jointly the two following problems: the translation of Natural Language
(NL) questions into formal queries, and the detection and identification of miss-
ing knowledge that impact the way questions are answered. As no evaluation
resources are yet available to address these problems, we presented in this paper
a methodology for the creation of these resources. Moreover we publicly share
the resulting resources, namely (i) A cooking KG and (ii) the first version of a
dataset containing a set of questions over the KG with the element missing in
the KB if an answer cannot be found.
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For future work we plan to collect and annotate more questions by tak-
ing advantage of lessons learned though the creation of the first version of the
dataset.
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Abstract. Short text clustering is a challenging task due to the lack of
signal contained in short texts. In this work, we propose iterative classi-
fication as a method to boost the clustering quality of short texts. The
idea is to repeatedly reassign (classify) outliers to clusters until the clus-
ter assignment stabilizes. The classifier used in each iteration is trained
using the current set of cluster labels of the non-outliers; the input of the
first iteration is the output of an arbitrary clustering algorithm. Thus,
our method does not require any human-annotated labels for training.
Our experimental results show that the proposed clustering enhancement
method not only improves the clustering quality of different baseline clus-
tering methods (e.g., k-means, k-means--, and hierarchical clustering)
but also outperforms the state-of-the-art short text clustering methods
on several short text datasets by a statistically significant margin.

Keywords: Short text clustering · Outlier removal · Iterative
classification

1 Introduction

Due to technological advances, short texts are generated at large volumes from
different sources, such as micro-blogging, question answering, and social news
aggregation websites. Organizing these texts is an important step towards dis-
covering trends (e.g., political, economic) in conversations and in other data min-
ing tasks, such as data summarization, frequent pattern analysis, and searching
for and filtering information. Clustering the texts into groups of similar texts is
the foundation for many of these organization strategies [1].

The lack of signal contained in short texts makes grouping of short texts based
on shared topics difficult, leading to poor cohesion of texts assigned to the same
cluster. The objective of our research is to improve the cohesion of clusters in a
cluster partition produced by an arbitrary baseline clustering method. To achieve
this, we remove outliers from each cluster and reassign them to clusters with
which they have greater similarity. We demonstrate that this approach produces
more accurate cluster partitions than computationally more costly state-of-the-
art short text clustering methods based on neural networks [2,3].
c© Springer Nature Switzerland AG 2020
E. Métais et al. (Eds.): NLDB 2020, LNCS 12089, pp. 105–117, 2020.
https://doi.org/10.1007/978-3-030-51310-8_10
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The k-means algorithm can be viewed as an iterative classification algorithm.
Starting with an initial (random) cluster partition, each iteration computes the
centers of all clusters and uses these cluster centers as a classifier to reassign
every input point to a new cluster. k-means-- [5] is a variation of k-means that
achieves improved clustering performance by removing outliers before comput-
ing cluster centers, that is, before “training the classifier”. The classification
step then assigns all points to their closest cluster centers, including the out-
liers ignored when computing cluster centers. Our method is inspired by this
approach but uses a more sophisticated classifier than computing cluster centers
and assigning every point to the closest cluster center. Specifically, our method
follows the approach of [6] to train a classifier based on the cluster labels of the
non-outliers. Iterative classification then uses the trained classifier to reassign
outliers to clusters. Just as with k-means, the resulting set of clusters is the
input for the next iteration or, if this is the last iteration, the final set of clusters
returned by the algorithm.

Iterative classification can be applied to any set of initial clusters and is thus
independent of the method used to obtain these clusters. The quality of the final
set of clusters, however, does depend on the method used to compute the initial
clusters. We use k-means [7], k-means-- [5] and hierarchical clustering [7] using
dense and sparse similarity matrices to compute the initial clusters. k-means and
k-means-- clustering are applied to the vector representations of the texts. For
hierarchical clustering, we use the text similarity matrix (dense or sparse). The
dense similarity matrix stores the similarity value for each text pair, whereas the
sparse similarity matrix keeps a certain number of similarity values and discards
the remaining ones (sets them to 0) [8].

Matrix sparsification can be performed using different criteria for choosing
the values to discard. We consider two approaches here, one based on k-nearest
neighbors [7] and the other based on the similarity distribution [9]. The k-
nearest neighbor method keeps the k largest entries in each row. In the similarity
distribution-based method, the number of similarities to keep in each row is not
fixed. Instead, it is based on the distribution of the similarity values in each
row, as characterized by he mean and standard deviation of these values. These
sparsification methods are discussed in detail in Sect. 4.

The two main contributions of this work are as follows:

– We introduce iterative classification as a method that improves the clustering
quality of different baseline clustering methods on various short text datasets
and does not require human-annotated data to train the classification model.
Our implementation of iterative classification and the datasets used in our
experiments are publicly available.1

– The combination of hierarchical clustering (using a sparse similarity matrix
based on similarity distribution [9]) and iterative classification performs better
than other clustering methods combined with iterative classification. This
combination outperforms the state-of-the-art short text clustering methods
by a statistically significant margin.

1 https://github.com/rashadulrakib/short-text-clustering-enhancement.

https://github.com/rashadulrakib/short-text-clustering-enhancement
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2 Related Work

2.1 Short Text Clustering

A major challenge in short text clustering is the sparseness of the vector rep-
resentations of these texts resulting from the small number of words in each
text. Several clustering methods have been proposed in the literature to address
this challenge, including methods based on text augmentation [10,11], neural
networks [2,3], topic modeling [12], and Dirichlet mixture model [4].

A recent method based on text augmentation [11] uses topic diffusion to
augment each short text by finding words not appearing in the text that are
related to its content. To find related words, this method determines possible
topics for each text using the existing words. Then new words are added to
each text; these new words are closely related to the text’s topics based on the
posterior probabilities of the new words given the words in the text. An earlier
text augmentation method [10] finds Wikipedia articles using the short text as
query string and uses the articles’ titles as features.

A short text clustering method based on word embedding and a convolutional
neural network called STC2-LE was proposed in [2]. It uses a convolutional neu-
ral network to learn a text representation on which clustering is performed.
Another short text clustering method based on weighted word embedding and
autoencoder was proposed in [3]. For each text, it calculates the average of the
weighted embeddings [13] of its words. The weight of a word is calculated based
on its inverse frequency in the corpus [3] which is then multiplied with its embed-
ding to obtain weighted word embedding. After that, the embeddings of the texts
are feed into an autoencoder to obtain the low dimensional representation of the
texts on which clustering is performed.

Biterm topic modeling (BTM) [12] is a topic modeling approach for short
texts that learns topics from word co-occurrence patterns (i.e., biterms). Given
a topic distribution produced by BTM for each text, clustering is performed by
assigning a text to its most probable topic.

A short text clustering method based on a Dirichlet process multinomial mix-
ture model called GSDPMM was proposed in [4]. GSDPMM does not partition
the input into a pre-specified number of clusters. It processes the texts one by
one and assigns each text to a new cluster or to one of the existing clusters based
on two factors: a) a preference for a cluster with more texts and, b) a preference
for a cluster whose texts share more words with the current text.

2.2 Similarity Matrix Sparsification

Sparsification of the text similarity matrix keeps the association between a text
and its most similar (nearest) texts while breaking associations with less similar
ones by setting the corresponding similarity scores to 0 [8]. Several similarity
matrix sparsification methods have been discussed in the literature, including
ones based on a global threshold [7], nearest neighbors [7], and center vectors [8].
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Similarity matrix sparsification based on global threshold is the simplest
sparsification method. It removes all similarity values that are below a given
threshold [7]. The problem with this method is that some real clusters may
be destroyed or merged because different clusters may have different similarity
levels between the texts they contain.

Nearest neighbors’ based methods for similarity matrix sparsification include
k-nearest neighbor [7] and shared nearest neighbor [14]. k-nearest neighbor spar-
sification keeps only the k highest similarity scores for each text; the shared-
nearest neighbor approach adds a condition that texts retaining similarity values
with a particular text should share a prescribed number of neighbors.

A similarity matrix sparsification method based on the center vector was pro-
posed in [8]. Texts are represented by tf -idf (term frequency-inverse document
frequency) vectors and a center vector is computed by averaging these vectors.
The sparsification of the similarity matrix is performed by removing similari-
ties between all pairs of texts that are not more similar to each other than the
maximum similarities of these two texts to the center vector.

3 Enhancement of Clustering by Iterative Classification

Given a collection of short texts and a partition of these texts into clusters,
iterative classification modifies the given cluster partition by detecting outliers
in each cluster and changing the clusters to which they are assigned. This is
repeated several times, hence the term iterative in the method’s name. In each
iteration, we generate training and test sets containing non-outliers and outliers
respectively. Then we train a classification algorithm using the training set and
classify the test set using the trained model. This iterative process repeats until
the stopping criterion discussed in Sect. 3.1 is satisfied. The details are shown in
Algorithm 1 and are described next.

In each iteration, we choose a number P that roughly corresponds to the
fraction of texts selected for the training set. P is chosen uniformly at random
from an interval [P1, P2] determined in Sect. 6.2. To generate the training set, we
remove outliers from each of the K clusters defined by the current cluster labels
L. To remove outliers, we use an outlier detection algorithm called Isolation
Forest, which is applied to the tf -idf vector representations of the texts. The
algorithm isolates the texts that exist in the low density region of the tf -idf
feature space. If after removing outliers, a cluster contains more than n

K × P
texts, then we remove texts from that cluster uniformly at random to reduce
the number of texts in the cluster to n

K × P . The reason of removing texts from
each cluster is that we want each cluster to consist of roughly the same number
of texts so as to reduce the bias of the classification algorithm. We add the
removed texts to the test set and add the other texts to the training set. We
train a classifier (Multinomial Logistic Regression) using the non-outliers and
their cluster labels. Then we classify the texts in the test set using the trained
classifier. This defines a new set of cluster labels of the texts in the test set and
thus produces an updated cluster partition.
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Algorithm 1. Enhancement of Clustering by Iterative Classification
Require: D = set of n texts, L = initial cluster labels of the texts in D, K = number

of clusters
Ensure: Enhanced cluster labels of the texts
1: maxIteration = 50
2: avgTextsPerCluster = n/K
3: for i = 1 to maxIteration do
4: Choose a parameter P uniformly at random from the interval [P1, P2]. (P1 and

P2 are parameters determined in Section 6.2. P bounds the fraction of texts kept
per cluster.)

5: Remove outliers from each of the K clusters defined by L using an outlier detec-
tion algorithm.

6: If a cluster contains more than avgTextsPerCluster×P texts, remove texts from
that cluster uniformly at random so that exactly
avgTextsPerCluster×P texts remain in the cluster.

7: testSet = texts removed in Steps 5 and 6
trainingSet = all the texts not in testSet

8: Train a classifier using the trainingSet and classify the texts in testSet. This
assigns a new cluster label L(t) to each text t ∈ testSet.

9: Stop iterative classification if the per cluster text distribution becomes stable
(as described in Section 3.1).

10: end for
11: return L

3.1 Stopping Criterion for Iterative Classification

Iterative classification stops when it reaches the maximum number of iterations
(i.e., 50) or the sizes of the clusters become stable. Let C1, ..., Ck and C ′

1, ..., C
′
k

be the clusters before and after an iteration, respectively. We consider the cluster
sizes to be stable if

1
k

k∑

i=1

||C ′
i| − |Ci|| ≤ 0.05

n

k

For example, consider the problem of partitioning 100 texts into two clusters.
Then the average cluster size is 50. If one iteration assigns 48 texts to the first
cluster and 52 texts to the second cluster and the next iteration assigns 49 and
51 texts to these clusters, respectively, then the average absolute change of the
cluster size is 1

2 (|48−49|+ |52−51|) = 1. Since this is less than 5% of the average
cluster size (50), we consider the cluster sizes to have stabilized.

4 Similarity Matrix Sparsification

4.1 k-Nearest Neighbor Sparsification

The k-nearest neighbor (k-NN) sparsification method [7] uses the number of
nearest neighbors k as a parameter. A square n×n symmetric similarity matrix
S = (sij) is the input for k-NN sparsification method. The method criterion is
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to retain, for each text, exactly the k highest similarities with this text outside
of the diagonal. For the text ti, we retain a similarity (sij) between ti and other
text tj , if sij is within the k highest similarities of ti. However, the similarity
sji between a text tj and other text ti may not be retained because sji may
not be within the k highest similarities of tj . Hence after applying this criterion,
the resulting sparsified matrix can be a non-symmetric matrix. Therefore we
symmetrize the sparsified similarity matrix by retaining both sij and sji, if any
of the similarities among sij and sji is retained in the sparsified similarity matrix.

4.2 Similarity Distribution Based Sparsification

The similarity distribution based sparsification method was proposed in our
previous work [9]. It sparsifies a similarity matrix based on the distribution of
the similarity scores in the matrix. The input of this sparsification method is
a symmetric similarity matrix for a set of n texts. The goal is to increase the
signal-to-noise ratio in the matrix by keeping only the most significant similarity
scores and setting less significant similarity scores to 0. Our criterion for setting
entries to 0 may result in a non-symmetric matrix. Such a matrix requires sym-
metrization. We follow the sparsification with exclusion approach [7] which sets
an item sij to zero only if the sparsification criterion retains neither sij nor sji.

In contrast to the k-nearest neighbor method, the number of similarities to
keep for each text is not fixed. Instead, it is based on the distribution of the
similarity values between each text and all other texts. For each text ti, we
calculate the mean μi and standard deviation σi of similarities between ti and
all other texts. Then, we sparsify similarities between ti and other texts based
on these statistics. In particular, we define the retaining criterion as follows: a
similarity sij is to be retained if and only if

sij > μi + ασi, (1)

for some global factor α. The factor α is chosen so that after applying the
criterion and symmetrization of the matrix, the average number of non-zero
elements outside of the diagonal per row is equal to l = n

K − 1. Note that if
each cluster has exactly n

K elements and we return exactly the similarity scores
between elements in the same cluster, then l is the number of non-zero non-
diagonal entries in each row.

To choose the retained similarity values efficiently, we use an auxiliary value
aij = sij−μi

σi
for each similarity value sij . This is sij ’s deviation from the mean

of row i normalized by the standard deviation of row i. The criterion of Eq. 1 can
be restated as: a similarity sij is to be retained if and only if aij > α. Since we
follow the sparsification with exclusion approach for symmetrization, we keep sij

in the final symmetric matrix if the retaining criterion is fulfilled for sij or for sji.
Thus, if the average number of non-zero non-diagonal entries per row is to be l,
we need to return N =

⌊
n×l
2

⌋
entries above the main diagonal, which is achieved

by choosing α to be the N th largest value in {max(aij , aji)|1 ≤ i < j ≤ n}.
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5 Methods for Clustering of Short Texts

5.1 k-Means and k-Means--

k-means clustering [1] is used to cluster a collection of short texts into k clus-
ters. First, k-means clustering initializes k centers, then it assigns each text to its
closest center. Then the algorithm runs for a number of iterations. In each iter-
ation, it recomputes the cluster centers using the texts assigned to each cluster
and reassigns the texts to their closest centers. This iterative process continues
until the algorithm reaches the maximum number of iterations or the cluster
assignments becomes stable between two successive iterations.

k-means-- [5] is a variation of k-means clustering, in which outliers are
removed in each iteration of the k-means clustering before recomputing the clus-
ter centers. To detect outliers, short texts are ranked in decreasing order using
their distances to their nearest cluster centers and the d (parameter for defining
the total number of outliers) most distant texts are considered as outliers and
removed from the clusters so that the cluster centers will become less sensitive
to outliers. This has been confirmed to improve the clustering performance.

5.2 Hierarchical Clustering Using Dense or Sparse Similarity
Matrix

Hierarchical agglomerative clustering uses a symmetric matrix storing pairwise
similarities between documents. Such a matrix is dense if it stores a similarity
between every pair of documents. The clustering method starts with each doc-
ument in its own clusters and repeatedly merges pairs of most similar clusters
until only k (the desired numbers of clusters) clusters remain.

A dense similarity matrix provides the most detailed information about pair-
wise text similarities but the lowest similarity scores can be considered noise in
the sense that they suggest (tenuous) connections between texts that are almost
guaranteed to belong to different clusters. Setting these similarities to 0 increases
the separation between clusters and produces better clustering results. We con-
sider two sparsification methods in our experiments: k-nearest neighbor and
similarity distribution based, which are discussed in Sects. 4.1 and 4.2 respec-
tively. We form clusters based on the two resulting sparse similarity matrices
using the same hierarchical clustering method as discussed above.

6 Experiments

6.1 Datasets

We used five different datasets of short texts in our experiments. The basic
properties of these datasets are shown in Table 1. SearchSnippet is a dataset of
search results from Google’s search engine, containing 12340 snippets distributed
into 8 groups [15]. SearchSnippet-test is a subset of the SearchSnippet dataset
consisting of 2280 search snippets distributed into 8 groups. AgNews is a subset
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of a dataset of news titles [16]. It consists of 8000 texts in 4 topic categories (for
each category, we randomly selected 2000 texts). StackOverflow is a subset of
the challenge data published on Kaggle2, where 20000 question titles from 20
groups were randomly selected [2]. BioMedical is a subset of the challenge data
published on the BioASQ’s website3, where 20000 paper titles from 20 groups
were randomly selected [2].

Table 1. Summary of the short text datasets

Dataset #Clusters #Texts Average #words/text

SearchSnippet 8 12340 17.03

SearchSnippet-test 8 2280 17.18

AgNews 4 8000 22.61

StackOverflow 20 20000 8.23

BioMedical 20 20000 12.88

6.2 Experimental Setup

Experimental Setup for Iterative Classification. We preprocessed the
texts by removing stop words and converting them to lowercase. Then we trans-
formed each text into the tf -idf vector representation for a given text collection.

Each iteration of the iterative classification algorithm picks some percentage
P of each cluster as the training set and reassigns the remaining texts to clusters
based on a classifier trained using this training set; P is chosen uniformly at the
random from some interval [P1, P2]. To justify this approach and to determine
optimal choices for P1 and P2, we ran preliminary experiments using a repre-
sentative dataset (SearchSnippet-test). Specifically, we considered choosing P
uniformly at random from the interval [P1, P2] or choosing a fixed percentage
P in every iteration. For the former method, we determined the optimal combi-
nation of P1 and P2 (P1 = 0.5 and P2 = 0.95). For the later, we determined the
optimal choice of P (P = 0.6). Choosing P uniformly at random from the inter-
val [0.5, 0.95] resulted in cluster accuracy of 82.21 for the representative dataset.
Choosing a fixed percentage P = 0.6 in every iteration resulted in cluster accu-
racy of 80.25. Thus we chose P1 = 0.5 and P2 = 0.95 and chose P uniformly at
random from this interval in all experiments.

Experimental Setup for Clustering. To perform clustering, we used the pre-
processed texts described in Sect. 6.2. Then, texts were represented as vectors
using pretrained word embeddings (i.e., Glove [17] and BioASQ [18]). The Glove

2 https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow/download/
train.zip.

3 http://participants-area.bioasq.org/.

https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow/download/train.zip
https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow/download/train.zip
http://participants-area.bioasq.org/
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embedding4 was trained using the Glove method [17] on Wikipedia dumps. The
BioASQ embedding5 was trained using the Word2Vec method [13] on abstracts
of biomedical publications. We used the Glove embedding for all datasets except
the biomedical dataset since these datasets contained terms related to general
domains such as search snippets. For the biomedical dataset, the BioASQ embed-
ding was more appropriate due to its specific focus on biomedical terms.

We represented each text by the average of the vectors of all words in the
text. Then, we applied the five different clustering methods described in Sect. 5
to the text vectors. For the k-means and k-means-- clustering algorithms, we
used the text vectors as the points to be clustered. For hierarchical clustering, we
constructed the dense similarity matrix by computing similarities between the
vectors using cosine similarity for all the text pairs. After that, we sparsified the
dense similarity matrix using the k-NN and similarity distribution based (SD)
sparsification methods. Then we applied hierarchical agglomerative clustering
using dense (HAC) and sparse similarity matrices (HAC k-NN and HAC SD).

6.3 Results

In our experiments, we use five datasets of short texts which are SearchSnippet,
SearchSnippet-test, AgNews, StackOverflow, and BioMedical. We used accuracy
(ACC) and normalized mutual information (NMI) as the evaluation measures
for different clustering algorithms (as in [2]). The clustering results (ACC, NMI)
of these datasets are shown in Table 2. The last two rows of Tables 2a and 2b
show the ACC and NMI scores obtained using the state-of-the-art short text
clustering methods STC2-LE [2] and SIF-Auto [3]. The ACC and NMI scores
of five clustering algorithms both before and after iterative classification for the
five datasets are shown in these two Tables. The results with or without the
IC suffix are the results with or without iterative classification. The best result

(ACC, NMI) for each dataset is shown in bold.
To compensate for the dependence of k-Means, k-Means-- on the choice

of cluster seeds, we ran the k-Means and k-Means-- clustering algorithms 20
times on the same dataset and performed iterative classification on the cluster-
ing obtained in each run. After that, we calculated the mean and standard devi-
ation of the 20 clustering results (ACC, NMI) obtained by k-Means, k-means--,
k-Means IC and k-means-- IC for each dataset. We ran hierarchical agglom-
erative clustering (HAC), HAC k-NN, and HAC SD only once since HAC is
deterministic. However, the enhancement of the clustering obtained by itera-
tive classification varies between runs since the training and test sets are chosen
randomly in each iteration. So, we ran iterative classification 20 times on the
clustering obtained using HAC, HAC k-NN and HAC SD, and again calculated
the mean and standard deviation of each of the 20 clustering results obtained
by HAC IC, HAC k-NN IC and HAC SD IC for each dataset.

4 http://nlp.stanford.edu/data/glove.42B.300d.zip.
5 bioasq.lip6.fr/tools/BioASQword2vec/.

http://nlp.stanford.edu/data/glove.42B.300d.zip
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Table 2. ACC and NMI of different clustering methods, their corresponding enhance-
ments by iterative classification, and state-of-the-art methods for short text clustering.
Δ indicates that this method is statistically significantly inferior to its correspond-
ing enhancement obtained by iterative classification. * indicates that this method is
statistically significantly inferior to HAC SD IC.

Datasets
Clustering Search Search AgNews Stack Bio
Methods Snippet SnippetTest Overflow Medical

ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)
HAC SD 82.69Δ 89.47Δ 81.84Δ 64.80Δ 40.13Δ

HAC SD IC 87.67±0.63 92.16±0.85 84.52±0.50 78.73±0.17 47.78±0.51
HAC k-NN 79.08Δ* 87.14Δ* 76.83Δ* 58.11Δ* 39.75Δ*

HAC k-NN IC 83.19*±0.61 90.76*±1.79 81.83*±0.35 70.07*±0.11 46.17*±1.10
HAC 76.54Δ* 77.06Δ* 76.56Δ* 61.64Δ* 38.86Δ*

HAC IC 80.63*±0.69 83.92*±2.66 81.13*±1.22 67.69*±2.12 46.13*±0.92
k-Means 63.89Δ*±1.15 63.22Δ*±1.79 58.17Δ*±1.87 41.54Δ*±2.16 36.92Δ*±0.81

k-Means IC 83.13*±0.69 82.84*±2.32 78.06*±3.13 69.89*±1.52 43.50*±1.38
k-means-- 47.42Δ*±1.13 61.96Δ*±1.98 62.48Δ*±2.13 43.77Δ*±0.39 39.95Δ*±1.21

k-means-- IC 79.77*±2.67 75.29*±2.79 77.45*±3.49 69.25*±1.88 45.61*±3.19
STC2-LE 78.29*±2.72 53.81*±3.37 44.81*±1.72
SIF-Auto 79.13*±1.27 59.85*±1.81 55.73±1.97

(a) ACC results

Datasets
Clustering Search Search AgNews Stack Bio
Methods Snippet SnippetTest Overflow Medical

NMI(%) NMI(%) NMI(%) NMI(%) NMI(%)
HAC SD 63.76Δ 78.73Δ 54.57Δ 59.48Δ 33.51Δ

HAC SD IC 71.93±1.04 85.55±1.09 59.07±0.84 73.44±0.35 41.27±0.36
HAC k-NN 60.51Δ* 76.42Δ* 52.43Δ* 54.06Δ* 32.19Δ*

HAC k-NN IC 65.49*±0.97 83.17*±1.17 56.02*±0.86 68.88*±0.43 38.78*±0.53
HAC 59.41Δ* 70.99Δ* 52.82Δ* 54.46Δ* 31.01Δ*

HAC IC 63.61*±1.09 77.49*±1.11 56.57*±1.23 61.76*±1.35 38.50*±0.61
k-Means 43.75Δ*±1.31 51.54Δ*±0.92 35.26Δ*±2.01 38.01Δ*±2.12 33.71Δ*±0.29

k-Means IC 66.27Δ±1.00 76.88Δ±2.64 52.32Δ±2.47 69.84Δ±0.66 38.08Δ±0.81
k-means-- 47.43Δ*±1.65 49.73Δ*±2.15 39.68Δ*±1.15 41.89Δ*±0.86 34.49*±1.93

k-means-- IC 63.01*±1.69 71.11*±2.40 51.05*±3.63 69.64*±1.28 35.63*±2.82
STC2-LE 64.72*±1.37 49.51*±1.63 38.42*±0.87
SIF-Auto 57.72*±1.43 55.59*±1.23 47.21±1.19

(b) NMI results

Impact of Iterative Classification. We evaluated whether iterative classifica-
tion improves the initial clustering obtained using different clustering algorithms.
We consider iterative classification to improve the clustering for a given dataset
if both ACC and NMI are increased using iterative classification.

Table 2 shows that iterative classification improves the initial clustering of
short texts in terms of both ACC and NMI. For most of the datasets, the best
clustering ACC and NMI were obtained by applying iterative classification to
the clustering obtained by HAC with SD sparsification (HAC SD). The reason is
that HAC SD [9] produces better initial clustering than other clustering methods
for these datasets and the enhancement of clustering depends on the initial
clustering.
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Comparison with State-of-the-Art Methods. Our second comparison aims
to assess how the results of iterative classification in conjunction with the differ-
ent clustering methods compare to state-of-the-art short text clustering meth-
ods, specifically STC2-LE [2] and SIF-Auto [3]. Table 2a and 2b show that
HAC SD IC and HAC k-NN IC outperform STC2-LE6 for the SearchSnip-
pet, StackOverflow and BioMedical datasets in terms of ACC and NMI. It
is also shown that HAC SD IC, HAC k-NN IC, HAC IC, k-Means IC, and
k-means-- IC outperform SIF-Auto for the SearchSnippet and StackOverflow
datasets in terms of ACC and NMI. However, on the Biomedical dataset, the
performance of SIF-Auto is better than any clustering method and its corre-
sponding enhancement by iterative classification.

Statistical Significance Testing of Clustering Performance. Our third
comparison aims to investigate whether the clustering improvements achieved
by iterative classification are statistically significant. In particular, we perform
two investigations: a) whether the improved results achieved by iterative classifi-
cation are statistically significantly better than the results of their corresponding
clustering methods. b) whether the improved results achieved by our best clus-
tering method HAC SD IC are statistically significantly better than the results
of different clustering methods (with or without iterative classification and state-
of-the-art methods). For significance testing, we performed a two-tailed paired
t-test (with significance level α = 0.05) using the pairwise differences of clus-
tering results (ACC, NMI) of 20 runs obtained by different pairs of clustering
methods.

On all datasets except the BioMedical dataset, and for all clustering meth-
ods tested, the enhancement by iterative classification is statistically significantly
better than the base clustering method, and the former are statistically signif-
icantly inferior to our method HAC SD IC. For the BioMedical dataset, the
ACC and NMI scores achieved by HAC SD IC are statistically significantly
better than that of STC2-LE. However, SIF-Auto outperforms HAC SD IC on
the BioMedical dataset.

7 Conclusion and Future Work

We have demonstrated that iterative classification enhances the clustering of
short texts for various short text datasets based on initial clusters obtained using
such as k-means, k-means--, hierarchical agglomerative clustering (HAC), HAC
using k-NN and SD sparsification methods. The most promising results were
obtained by applying iterative classification to the clustering obtained by HAC
using the proposed SD sparsification (HAC SD IC). Experimental results show
that HAC SD IC outperforms a state-of-the-art short text clustering method
based on convolutional neural network (STC2-LE) on all the datasets in terms

6 We were unable to reproduce the clustering for other short text datasets using STC2-
LE and SIF-Auto.
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of ACC and NMI. Moreover, HAC SD IC outperforms another state-of-the-art
short text clustering method based on autoencoder (SIF-Auto) in terms of ACC
and NMI on several short text datasets. The proposed clustering enhancement
method advances the state of the art in short text clustering, which is impor-
tant in the following practical contexts such as social media monitoring, product
recommendation, and customer feedback analysis. The proposed method is a
generic clustering enhancement approach for short texts where various classifi-
cation algorithms, initial clustering and number of clusters can be easily inte-
grated.

In the future, we will apply our clustering enhancement algorithm to long
documents to investigate whether iterative classification leads to performance
improvements. We also plan to use phrase similarity as a basis for computing text
similarity so as to obtain better text similarity scores, since the performance of
clustering algorithms depends on the quality of individual text similarity scores.
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Abstract. A large number of applications in text data analysis use the
Latent Dirichlet Allocation (LDA) as one of the most popular methods
in topic modeling. Although the instability of the LDA is mentioned
sometimes, it is usually not considered systematically. Instead, an LDA
is often selected from a small set of LDAs using heuristic means or human
codings. Then, conclusions are often drawn based on the to some extent
arbitrarily selected model. We present the novel method LDAPrototype,
which takes the instability of the LDA into account, and show that by
systematically selecting an LDA it improves the reliability of the conclu-
sions drawn from the result and thus provides better reproducibility. The
improvement coming from this selection criterion is unveiled by applying
the proposed methods to an example corpus consisting of texts published
in a German quality newspaper over one month.

Keywords: Topic model · Machine learning · Similarity · Stability ·
Stochastic

1 Introduction

Due to the growing number and especially the increasing amount of unstructured
data, it is of great interest to be able to analyze them. Text data is an example
for unstructured data and at the same time it covers a large part of them. It is
organized in so-called corpora, which are given by collections of texts.

For the analysis of such text data topic models in general and the Latent
Dirichlet Allocation in particular is often used. This method has the weakness
that it is unstable, i.e. it gives different results for repeated runs. There are
various approaches to reduce this instability. In the following, we present a new
method LDAPrototype that improves the reliability of the results by choosing
a center LDA. We will demonstrate this improvement of the LDA applying the
method to a corpus consisting of all articles published in the German quality
newspaper Süddeutsche Zeitung in April 2019.
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1.1 Related Work

The Latent Dirichlet Allocation [3] is very popular in text data analysis. Numer-
ous extensions to Latent Dirichlet Allocation have been proposed, each cus-
tomized for certain applications, as the Author-Topic Model [18], Correlated
Topics Model [2] or the more generalized Structural Topic Model [17]. We focus
on LDA as one of the most commonly used topic models and propose a method-
ology to increase reliability of findings drawn from the results of LDA.

Reassigning words to topics in the LDA is based on conditional distribu-
tions, thus it is stochastic. This is rarely discussed in applications [1]. However,
several approaches exist to encounter this problem based on a certain selection
criterion. One of these selection criteria is perplexity [3], a performance measure
for probabilistic models to estimate how well new data fit into the model [18].
As an extension, Nguyen et al. [13] proposed to average different iterations of
the Gibbs sampling procedure to achieve an increase of perplexity. In general,
it was shown that optimizing likelihood-based measures like perplexity does not
select the model that fits the data best regarding human judgements. In fact,
these measures are negatively correlated with human judgements on topic qual-
ity [5]. A better approach should be to optimize semantic coherence of topics
as Chang et al. [5] proposed. They provide a validation technique called Word
or Topic Intrusion which depends on a coding process by humans. Measures
without human interaction, but almost automated, and also aiming to optimize
semantic coherence can be transferred from the Topic Coherence [12]. Unfor-
tunately, there is no validated procedure to get a selection criterion for LDA
models from this topic’s “quality” measure. Instead, another option to overcome
the weakness of instability of LDA is to start the first iteration of the Gibbs
sampler with reasonably initialized topic assignments [11] of every token in all
texts. One possibility is to use co-occurences of words. The initialization tech-
nique comes with the drawback of restricting the model to a subset of possible
results.

1.2 Contribution

In this paper, we propose an improvement of the Latent Dirichlet Allocation
through a selection criterion of multiple LDA runs. The improvement is made
by increasing the reliability of results taken from LDA. This particular increase
is obtained by selecting the model that represents the center of the set of LDAs
best. The method is called LDAPrototype [16] and is explained in Sect. 3. We
show that it generates reliable results in the sense that repetitions lie in a rather
small sphere around the overall centered LDA, when applying the proposed
methods to an example corpus of articles from the Süddeutsche Zeitung.

2 Latent Dirichlet Allocation

The method we propose is based on the LDA [3] estimated by a Collapsed Gibbs
sampler [6], which is a probabilistic topic model that is widely used in text data
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analysis. The LDA assumes that there is a topic distribution for every text, and
it models them by assigning one topic from the set of topics T = {T1, ..., TK} to
every token in a text, where K ∈ N denotes the user-defined number of modeled
topics. We denote a text (or document) of a corpus consisting of M texts by

D(m) =
(
W

(m)
1 , ...,W

(m)

N(m)

)
, m = 1, ...,M, W (m)

n ∈ W , n = 1, ..., N (m).

We refer to the size of text m as N (m); W = {W1, ...,WV } is the set of words
and V ∈ N denotes the vocabulary size. Then, analogously the topic assignments
of every text m are given by

T (m) =
(
T

(m)
1 , ..., T

(m)

N(m)

)
, m = 1, ...,M, T (m)

n ∈ T, n = 1, ..., N (m).

Each topic assignment T
(m)
n corresponds to the token W

(m)
n in text m. When

n
(mv)
k , k = 1, ...,K, v = 1, ..., V describes the number of assignments of word v in

text m to topic k, we can define the cumulative count of word v in topic k over
all documents by n

(•v)
k . Then, let wk = (n(•1)

k , ..., n
(•V )
k )T denote the vectors of

word counts for the k = 1, ...,K topics. Using these definitions, the underlying
probability model of LDA [6] can be written as

W (m)
n | T (m)

n ,φk ∼ Discrete(φk), φk ∼ Dirichlet(η),

T (m)
n | θm ∼ Discrete(θm), θm ∼ Dirichlet(α),

where α and η are Dirichlet distribution hyperparameters and must be set by
the user. Although the LDA permits α and η to be vector valued [3], they are
usually chosen symmetric because typically the user has no a-priori information
about the topic distributions θ and word distributions φ. Increasing η leads to
a loss of homogenity of the mixture of words per topic. In contrast, a decrease
leads to a raise of homogenity, identified by less but more dominant words per
topic. In the same manner α controls the mixture of topics in texts.

3 LDAPrototype

The Gibbs sampler in the modeling procedure of the LDA is sensitive to the
random initialization of topic assignments as mentioned in Sect. 1.1. We present
a method that reduces the stochastic component of the LDA. This adaption
of the LDA named LDAPrototype [16] increases the reliability of conclusions
drawn from the resulting prototype model, which is obtained by selecting the
model that seems to be the most central of (usually around) 100 independently
modeled LDA runs. The procedure can be compared to the calculation of the
median in the univariate case.

The method makes use of topic similarities measured by the modified Jaccard
coefficient for the corresponding topics to the word count vectors wi and wj

Jm(wi,wj) =

V∑
v=1

1{
n
(•v)
i >ci ∧ n

(•v)
j >cj

}

V∑
v=1

1{
n
(•v)
i >ci ∨ n

(•v)
j >cj

}
,
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where c is a vector of lower bounds. Words are assumed to be relevant for a
topic if the count of the word passes this bound. The threshold c marks the
modification to the traditional Jaccard coefficient [8] and can be chosen in an
absolute or relative manner or as a combination of both.

The main part of LDAPrototype is to cluster two independent LDA replica-
tions using Complete Linkage [7] based on the underlying topic similarities of
those two LDA runs. Let G be a pruned cluster result composed by single groups
g consisting of topics and let g|1 and g|2 denote groups of g restricted to topics
of the corresponding LDA run. Then, the method aims to create a pruning state
where g|1 and g|2 are each build by only one topic for all g ∈ G. This is achieved
by maximizing the measure for LDA similarity named S-CLOP (Similarity of
Multiple Sets by Clustering with Local Pruning) [16]:

S-CLOP(G) = 1 − 1
2K

∑
g∈G

|g| (||g|1| − 1| + ||g|2| − 1|) ∈ [0, 1].

We denote the best pruning state by G∗ = arg max{S-CLOP(G)} for all possible
states G and determine similarity of two LDA runs by S-CLOP(G∗). The proto-
type model of a set of LDAs then is selected by maximizing the mean pairwise
similarity of one model to all other models.

The methods are implemented in the R [14] package ldaPrototype [15]. The
user can specify the number of models, various options for c including a minimal
number of relevant words per topic as well as the necessary hyperparameters for
the basic LDA α, η,K and the number of iterations the Gibbs sampler should
run. The package is linked to the packages lda [4] and tosca [10].

4 Analysis

We show that the novel method LDAPrototype improves the Latent Dirichlet
Allocation in the sense of reliability. To prove that, the following study design is
applied to an example corpus from the German quality newspaper Süddeutsche
Zeitung (SZ). The corpus consists of all 3 718 articles published in the SZ in April
2019. It is preprocessed using common steps for cleaning text data including
duplicate removal leading to 3 468 articles. Moreover, punctuation, numbers and
German stopwords are removed. In addition, all words that occur ten times or
less are deleted. This results in M = 3461 non-empty texts and a vocabulary
size of V = 11 484. The preprocessing was done using the R package tosca [10].

4.1 Study Design

The study is as follows: First of all, a large number N of LDAs is fitted. This set
represents the basic population of all possible LDAs in the study. Then we repeat
P times the random selection of R LDAs and calculate their LDAPrototype. This
means, finally P prototypes are selected, each based on R basic LDAs, where
each LDA is randomly drawn from a set of N LDAs. Then, a single prototype is
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Population of
25 000 LDAs

Prototype 1

Prototype 2

Prototype 500

...
LDAPrototype:
true center LDA

500 LDAs

500 LDAs

500 LDAs

Fig. 1. Schematic representation of the study design for N = 25 000 LDAs in the base
population and P = 500 selected prototypes, each based on R = 500 sampled LDAs
from the base population.

determined based on a comparison of the P prototypes. This particular prototype
forms the assumed true center LDA. In addition, we establish a ranking of all
other prototypes. The order is determined by sequentially selecting the next best
prototype which realizes the maximum of the mean S-CLOP values by adding
the corresponding prototype and simultaneously considering all higher ranked
LDAPrototypes.

For the application we choose three different parameter combinations for the
basic LDA. In fact, we want to model the corpus of the SZ with K = 20, 35, 50
topics. We choose accordingly α = η = 1/K and let the Gibbs sampler iterate
200 times. We choose the size of the population as N = 25 000, so that we
initially calculate a total of 75 000 LDAs, which is computationally intensive but
bearable. We use the R package ldaPrototype [15] to compute the models on batch
systems. We set the parameters of the study to a sufficiently high and at the same
time calculable value of P = R = 500. That is, we get 500 PrototypeLDAs, each
based on 500 basic LDAs, that are sampled without replacement from the set of
25 000 basic LDAs. The sampling procedure is carried out without replacement
in order to protect against falsification by multiple selection of one specific LDA.
Figure 1 represents this particular study design schematically.

Then, we inspect the selection of the P prototypes. On the one hand, we
quantify the goodness of selection by determining how many LDAs, that were
available in the corresponding run, are ranked before the corresponding LDAPro-
totype. On the other hand, the analysis of the distance to the best available
LDA run in the given prototype run provides a better assessment of the reliabil-
ity of the method. We compare the observed values with randomized choices of
the prototype. This leads to statements of the form that the presented method
LDAPrototype selects its prototypes only from a sufficiently small environment
around the true center LDA, especially in comparison to random selected LDAs.

4.2 Results

For the analysis we first determine the true center LDA and a ranking for all 500
prototypes as described in Sect. 4.1 for each K = 20, 35, 50. The corresponding
mean S-CLOP value at the time of addition is assigned to each prototype in
the ranking as a measure of proximity to the true center LDA. To visualize the
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(a) Distance of each of the LDAPrototypes to the LDA that would have been the best
choice in the corresponding prototype run regarding closeness to the center LDA.
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(b) Empirical cumulative distribution function of the proportion of how many LDAs
are closer to the center LDA than the selected LDAPrototype.
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(c) Number of LDAs that are closer to the center LDA than the selected LDAPrototype.

Fig. 2. Analysis of the improvement of reliability by using the LDAPrototype for
K = 20, 35, 50 modeled topics. Every single value corresponds to one of the P = 500
prototype runs resulting in the corresponding LDAPrototype.

rankings, we use so-called beanplots [9] as a more accurate form of boxplots, as
well as empirical cumulative distribution functions (ECDF) and bar charts.

For K = 20, 35, 50 each of the 25 000 LDAs is included at least once in the
500 times 500 selected LDAs. Nevertheless, only 169, 187 and 186 different LDAs
are chosen as prototypes. The LDAPrototype method thus differs significantly
from a random selection, whose associated simulated 95% confidence interval
suggests between 490 and 499 different prototypes.
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Figure 2 summarizes the analysis of the increase of reliability for 20, 35 and
50 topics, respectively. The beanplots in Fig. 2a indicate the distance of each
LDA actually selected from the LDAPrototype method to the supposedly most
suitable LDA from the identical prototype run with respect to the values from the
ranking. For comparison, the distribution of the distances for random selection
of the prototype is given besides. The corresponding values were generated by
simulation with permutation of the ranking. The ECDFs in Fig. 2b show the
relative number of LDAs, in each of the P = 500 prototype runs, that according
to the ranking would represent a better choice as prototype. Finally, the bar
charts in Fig. 2c show the corresponding distribution of the absolute numbers of
available better LDAs in the same run in accordance to the determined ranking
of prototypes. In addition, simulated 95% confidence intervals for frequencies
realized by the use of random selection are also shown.

For K = 20, many randomly selected LDAs have a rather large distance of
about 0.07 at a total mean value of just below 0.04, while the presented method
realizes distances that are on average below 0.01. For increasing K the dis-
tances seem to increase as well. While the random selection produces an almost
unchanging distribution over an extended range, the distribution of LDAProto-
type shifts towards zero. Higher values become less frequent. The ECDFs look
very similar for all K, whereby for K = 35 slightly lower values are observed
for small proportions. This is supported by the only major difference in the bar
charts. Modeling 20 or 50 topics, for 50% of the prototype runs there is no better
available LDA to choose, while for the modeling of 35 topics this scenario applies
for just over 40%. The corresponding confidence intervals in Fig. 2c are lowered
as well. This is an indication that for K = 35 it is easier to find a result that is
stable to a certain extent for the basic LDA. This is supported by the fact that
the distribution of distances in Fig. 2a does not seem to suffer.

5 Discussion

We show that the LDAPrototype method significantly improves the reliability
of LDA results compared to a random selection. The presented method has
several advantages, e.g. the automated computability, as no need of manual
coding procedures. In addition, besides the intuitive statistical approach, the
proposed method preserves all components of an LDA model, especially the
specific topic assignments of each token in the texts. This means that all analyses
previously carried out on individual runs can be applied to the LDAPrototype
as well. The results suggest that K = 35 topics produces more stable results
and might therefore be a more appropriate choice for the number of topics than
K = 20 or 50 on the given corpus. Further studies to analyze the observed
differences in the number of better LDAs as well as the distances to the best
LDA between different choices of the numbers of topics, may lead to progress in
the field of hyperparameter tuning for the LDA.
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Abstract. Online reviews are an important source of feedback for
understanding customers. In this study, we follow novel approaches that
target the absence of actionable insights by classifying reviews as defect
reports and requests for improvement. Unlike traditional classification
methods based on expert rules, we reduce the manual labour by employ-
ing a supervised system that is capable of learning lexico-semantic pat-
terns through genetic programming. Additionally, we experiment with
a distantly-supervised SVM that makes use of the noisy labels gener-
ated by patterns. Using a real-world dataset of app reviews, we show
that the automatically learned patterns outperform the manually created
ones. Also the distantly-supervised SVM models are not far behind the
pattern-based solutions, showing the usefulness of this approach when
the amount of annotated data is limited.

1 Introduction

In the two last decades, the growth of user-generated content on the Web has
accelerated enormously due to parallel developments, such as increased Internet
access, technological advancements in mobile devices, the growth of e-commerce,
and many more. An important source of user-generated content with respect to
customer feedback are online reviews. Their interpretation is usually achieved
using Sentiment Analysis (SA) methods which has as the main aim to automat-
ically detect positive, neutral, and negative sentiments [10]. A major downside
of SA is that it measures satisfaction at a certain point in time. In this light,
we argue that in addition to SA, it is important to focus on detecting specific
types of feedback that indicate potential causes and influence factors of satisfac-
tion. We consider such specific customer feedback as actionable, since it suggests
a clear course of action for addressing the feedback, and thus directly help to
modify and hopefully improve products.
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In this paper, we focus on customer feedback related to mobile software
applications which we will refer to as “apps”. We argue that software reviews
are very important for aggregating valuable feedback. Firstly, because many
companies have come to realise that all the technology required to transform
industries through software is available on a global scale [1]. Secondly, the field of
software engineering has the well-accepted notions of bugs and feature requests,
which we argue, are actionable types of feedback.

There are very few works [4,6,12–14] that aim to detect specific information
in customer feedback. Among the aforementioned works, only the method pro-
posed in [12] is more refined. Namely, in [12] lexical patterns are used to train
a supervised classifier, rather than directly employing patterns for information
extraction, which makes the extraction mechanism more adaptive to the various
representations of feedback. Further on, this system summarizes the extracted
feedback by means of a Topic Model technique called Latent Dirichlet Allocation
(LDA) [2]. However, while the objective is very relevant, the suggested meth-
ods require a vast amount of manual labour to create useful feedback patterns.
We argue this to be a great limitation since analysing customer feedback is an
important process that should ideally be performed in a continuous fashion. Nev-
ertheless, the study conveys a promising direction for future research in opinion
mining, and clear feedback types to focus on, which we adopt in this work.

We approach feedback detection as a multi-label classification problem based
on knowledge-base rules or patterns, in which our goal is to automatically deter-
mine if a given review is an example of given actionable feedbacks. Usually,
making a knowledge base of patterns is impractical to manage over time and
across different domains. In this light, we suggest a system that is capable of
performing pattern construction in an automated manner using genetic pro-
gramming. Keeping in mind the importance of reduction of the human control
over the system’s design, we also tackle the problem of having a small number
of labeled reviews (gold labels) using noisy labels generated based on patterns
in a distantly-supervised way [8,15]. The employed dataset and the proposed
framework implemented in Scala are available at https://github.com/mtrusca/
PatternLearning.

The remaining parts of the paper are structured as follows. Section 2 presents
a detailed overview of the proposed framework in this study. In Sect. 3 we evalu-
ate our framework through a series of experiments. Finally, in Sect. 4 we present
our conclusions and suggest future work.

2 Methods

In this research, our goal is to automatically detect actionable feedback in
reviews. More specifically, we aim to detect two specific types of feedback: defect
reports and improvement requests. We approach this task as a binary classifica-
tion problem, meaning that each review is considered a document that requires
two classifications, one for each feedback type. Using this setup it is possible to
classify some reviews as both defect report and improvement request. Our main

https://github.com/mtrusca/PatternLearning
https://github.com/mtrusca/PatternLearning
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contribution to the research problem is to automate the task of discovering and
constructing patterns. Rather than direct supervision, where labels are provided
by human annotators, we use a group of patterns to provide (noisy) labels for
each feedback type. These labels are then given as input to a linear SVM model,
often applied for text classification tasks due to its learning capability that is
independent of the dimensionality of the feature space.

Using noisy labels to guide algorithms is a technique called Distant Learning
or Distant Supervision [8,15]. Despite the fact that Distant Supervision is already
a great step towards minimizing the amount of human labour required to perform
feedback detection, the required process for manually constructing groups of
patterns per feedback type, remains rather tedious and time consuming. For
this reason, we suggest another level of automation, which is to automate the
pattern creation procedure (responsible to generate noisy labels) by means of a
learning algorithm.

To solve our problem for learning patterns, we require to select a learning
algorithm that stands out with respect to interpretability and modifiability. A
specific category of algorithms that meets these requirements are Evolution-
ary Algorithms (EAs). The most popular type of EA is the Genetic Algorithm
(GA), however we adopt a special case of GA called Genetic Programming (GP)
inspired by Darwin’s theory of evolution [3]. Genetic Programming and Genetic
Algorithms are very similar. They both evolve solutions to a problem, by com-
paring the fitness of each candidate solution in a population of potential can-
didates, over many generations. In each generation, new candidates are found
by quasi-randomly changing (mutation) or swapping parts (crossover) of other
candidates. The least “fit” candidates are removed from the population. The
primary difference between GA and GP is the representation of the candidate
solutions. In GA a candidate is represented as a vector, and in GP a candidate
is represented as a tree. As the GP representation fits better the specification of
our information extraction patterns, we adopt it in our research.

The learning approach suggested in GP, is to define an environment in which
a collection of randomly generated, simple programs (individuals) evolve through
an analogue of natural selection. Each individual represented by a tree structure
is composed from a collection of nodes. All nodes (except the first, or root node)
have one parent and any number of children. Every node belongs to one of
two types, namely functions or terminals. Function nodes are allowed to have
children nodes, which can be either functions or terminals. Terminal nodes are
not allowed to have child nodes, therefore terminal nodes are considered the
leaves of the tree. In our framework, we consider each individual to be a pattern
for classifying documents (app reviews) with a (recursive) match method.

Function nodes include Boolean operations, such as AND, OR, and NOT,
as well as Sequence and Repetition. The Sequence node can have one or more
child nodes of types function or terminal. It is also the root node of each tree.
A Repetition node enforces two or more consecutive nodes to obey the same
condition. A node of type AND has at least two children, and is useful to pattern
match for multiple features, for example to check whether a given token is both
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a specific literal and part of a syntactic category. The nodes of type OR and of
type NOT also follow the Boolean logic, where the OR nodes match as true if at
least one of the children matches, and nodes of type NOT match as true if none
of its children match for a given token. Terminal nodes are the external points
(or leaves) of the tree. They are assigned a specific value, used to pattern match
for specific tokens. Literal nodes must be exactly matching the specific word
(value) that is assigned the node. For Part-of-Speech (POS) nodes, tokens are
evaluated to match a specific Part-of-Speech tag. A Wildcard node will match
any token, irrespective of its value. Finally, an Entity Type node matches a value
from a manually constructed and populated gazetteer.

Typically gazetteers consists of sets of terms containing names of entities
such as cities, organisations, or weekdays [5]. Since at the time of performing
this research, we could not find gazetteers for our specific domain, we decided to
define our own. Our gazetteer is implemented using a plain key-value mapping,
where a key corresponds to the name of an entity type, and the value stores
a set of lexical representations of that entity type. For example, to detect the
entity type app we employ the following terms: it, app, application, Evernote
(we use a set of Evernote reviews for our experiments). Some other entity types
in our gazetteer are: user, action, object, component, device, and update. The
entity types we employ are inspired by Issue Tracking Systems (ITS), such as
Bugzilla, an open-source issue tracker created by Mozilla. Since ITS involve very
comparable types of feedback to this study, we consider the entity types in ITS
a useful starting point for constructing our gazetteers.

The first step for each genetic program, is to generate an initial population
of N individuals. In our experiments, we use the ramped-half-and-half method
[9], which is commonly used since it produces a wider range of variation in terms
of shapes and sizes of trees compared to the other popular methods like grow
and full. The ramped-half-and-half achieves more variety, by combining both the
grow and full methods, where one half of the population is generated through
the grow method, and the other half through the full method. The algorithm we
employ to generate individual trees in a recursive manner is based on the one
suggested in [7].

During the initialization, nodes are selected randomly to construct trees.
However, for the purpose of stimulating useful combinations of terminals, we
generate a pool of recommended terminal candidates. Whereas the pool contains
all entity types and the wildcard, for the case of POS and Literal terminals
we select only the most relevant nodes. More specifically, we pre-analyse the
training set for frequently occurring unigrams (as terminals) and bigrams (as
pairs of terminals) of types Literal and POS (for bigrams, four specific pair
combinations are considered: (Literal)(Literal), (POS )(Literal), (Literal)(POS ),
and (POS )(POS )). Subsequently, we remove in each sentiment class of a target
feedback type, the 100 most frequent unigrams and bigrams that occur in the
another sentiment class. Then, every time a terminal node is needed we randomly
select it from the pool of recommended terminal candidates.
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In Evolutionary learning methods, a population of individuals can evolve for
many generations. However, after a certain amount of generations, the fitness of
the best new individuals will stop increasing. In our problem, we want individual
patterns to be optimized for high precision, which means that we want more
weight on precision than recall. Hence, we employ the Fβ-measure with β = 0.3
instead of the widely used F1-measure. Further on, we employ two criteria for
termination. The first criterium is the maximum number of generations and is
checked when generating a pattern (in the pattern group). The second criterium
is checked per event type and it is triggered if the pattern does not increase the
fitness of the entire group of patterns after a maximum number of iterations. The
fitness measure for a group of patterns is determined by the F1-measure, instead
of the Fβ-measure. Our motivation for using F1 for group fitness is related to
our goal to seek patterns for as many variations of a target feedback type as
possible.

A proper procedure for selection should not find only the strongest individual
of a population, but to allow more individuals to have a chance of being selected.
A common method that addresses this requirement is Tournament Selection.
Precisely, the method allows for a constant selection pressure that determines
the extent to which fit individuals are preferred over less fit individuals. All
the selected individuals are used to produce offspring or the next generation
of individuals. The main objective in producing offspring, is to enhance the
fitness for the next generation based on three genetic operations, namely Elitism,
Crossover, and Mutation.

As discussed earlier, our goal is to learn a group of patterns that detect as
many variations of a target feedback type as possible, in our training examples.
In essence, each pattern can be interpreted as a rule, and each document has
to be categorised as either positive or negative, according to our “knowledge”
of each category, which is stored in a rule base. The set of rules learnt in our
framework is generated through a Sequential Covering Algorithm [11].

3 Experiments

In order to evaluate the approach suggested in our framework, we performed
experiments on a real-life dataset. The dataset contains 4470 reviews about
Evernote, a mobile app for the Android platform. We automatically extracted
the review dataset from the Google Play Store, through Web scraping techniques.
We selected Evernote because it is a widely used app with a large user base, that
publicly share their feedback on the Web, and therefore serves as a great example
for our examined research problem.

We have annotations for 46% of the total review dataset. We hold out 20% of
all reviews for testing purposes in all methods. Therefore, we have the remaining
26% of reviews available for training purposes. However, for the experiments that
employ distant supervision, we generate noisy labels, hence, have 80% of the full
review dataset available for training. The terms “Positive” and “Negative” refer
to the classification labels that were assigned to every review per feedback type
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Table 1. Examples of human (A) and automatically constructed (B) patterns. DR and
IR stand for Defect Report and Improvement Request, respectively. For DR patterns
“:” separates the terminal from its type.

Type Pattern Example

DR OR: The last few months of updates haven’t
changed or lessened the lag you get when
you edit notes

|-Software Bug: Entity Type

|-Software Update: Entity Type

IR SEQ: Colour coding of the notes and reminders
for repetitive tasks can fetch 5 stars|-5: Literal

|-stars: Literal

Table 2. Performance metrics for feedback type classifications in terms of precision,
recall, and F1-measure. The best results are set in bold.

Task Defect classification Improvement classification

Method Precision Recall F1-measure Precision Recall F1-measure

Standard SVM 0.39 0.59 0.47 0.78 0.54 0.64

Patterns A (manual) 0.61 0.42 0.50 0.81 0.42 0.56

Patterns B (learned) 0.91 0.39 0.54 0.79 0.51 0.62

SVM Distant Supervision A 0.24 0.67 0.36 0.39 0.48 0.43

SVM Distant Supervision B 0.41 0.59 0.49 0.46 0.44 0.45

by human annotators. On average 12.6% of our labeled set of reviews contains
one or more actionable types of feedback, in which there are 8.4% more requests
for improvement than defect reports. Finally, only 1.3% of our annotated reviews
is labeled as both a defect report and an improvement request.

We collected annotations for both feedback types through CrowdFlower
(recently renamed Figure Eight), an online data enrichment platform. The
instructed task is to label every individual review for both defect reports and
improvement requests. Every review was annotated by at least 3 annotators,
and in some cases even 5 or 7 (when it is recorded a low accuracy of the test
questions that inspect the quality of the annotator).

The employed patterns are constructed both manually and automatically.
In the Evernote dataset, we have five manual and two generated patterns for
defects, and eight manual and ten generated patterns for improvements. The
most likely reason for this contrast is the variation in distribution of feedback
types in our dataset, as a result of the fact that Evernote is a popular app, well
tested, and optimised. Furthermore, we noticed that the most effective patterns
only use function nodes of type Sequence and OR. Also, many examples of feed-
back can be recognized with a single terminal, such as the Entity Type “software
update” for defect reports or the Literal “stars” for improvement requests, which
indicates that the level of specificity does not necessarily have to be high. In that
light, patterns that include the NOT node, which requires feedback examples
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in which a very specific word is not mentioned are often not necessary. While
NOT functions can be useful to make a pattern very expressive and precise, it
becomes obsolete when that level of selectivity is not required, as in our case. A
similar line of reasoning can be applied to the AND functions. Table 1 lists two
examples of automatically constructed patterns for the two types of feedback.

To classify defect reports and improvement requests we test the following
methods:

Table 3. Running time for pattern creation per approach. The best results are set in
bold.

Approach Defect patterns Improvement patterns Total

Manual (per person) 8.5 h 10.25 h 18.75 h

Automated 3.5 h 2.4 h 5.9 h

Method 0: Standard SVM. In this method, we train an SVM classifier using
only labelled reviews for training. This method can be considered a reference for
the following methods.

Method 1: Patterns A. In this experiment, we use human patterns to per-
form supervised classifications directly (without SVMs). We employ the available
labelled data (26%) for learning patterns.

Method 2: Patterns B. This method is similar to the Method 1, except that
the human patterns are replaced with automatically constructed ones.

Method 3: SVM Distant Supervision A. In this method, we train an SVM
classifier using noisy labels generated based on the human patterns for the entire
training set.

Method 4: SVM Distant Supervision B. This method is similar to the
Method 3, except that the human patterns are replaced with automatically con-
structed ones.

Table 2 displays an overview of performance measures of all proposed meth-
ods. We can notice that the Distant Supervision methods are not far behind
the direct classification through patterns, in terms of F1-scores. Nevertheless,
given that the results are obtained with noisy labels shows the usefulness of this
approach for datasets where the annotated data is limited.

As regards the comparison between the two types of patterns, it is obvious
that the automatically generated patterns perform better than the human ones.
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In order to have a complete insight over the pattern creation process (manual
versus automated) we additionally explore the patterns’ efficiency besides their
effectiveness. Table 3 displays the running time for creating patterns both man-
ually and automatically. We can observe that it takes 70% less time to generate
the automatic patterns than the manual ones.

4 Conclusion

In this study we presented a framework for automatically learning lexico-
semantic patterns helpful for detecting specific types of feedback expressed in
conversational customer feedback (defect reports and improvement requests).
Using a custom dataset, we showed that the automatically generated patterns
perform slightly better than the manual ones and there is a 70% reduction in
construction time. Further on, we demonstrated that the distantly-supervised
SVM with noisy labels is not far behind the pattern-based classification. The
results reveals the applicability of this approach when the amount of available
labels is limited.

As future work, we would like to increase the flexibility of our patterns by
considering more complex terminal structures. Using techniques from entity-
learning we would like to explore the automatic generation of our domain-specific
gazetteers lists to increase coverage and the framework’s applicability in other
domains.
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Abstract. The Régie du Logement du Québec (RDL) is a tribunal
with exclusive jurisdiction in matters regarding rental leases. Within the
framework of the ACT (Autonomy Through Cyberjustice Technologies)
project, we processed an original collection of court decisions in French
and performed a thorough analysis to reveal biases that may influence
prediction experiments. We studied a multilabel classification task that
consists in predicting the types of verdict in order to illustrate the impor-
tance of prior data analysis. Our best model, based on the FlauBERT
language model, achieves F1 score micro averages of 93.7% and 84.9%
in Landlord v. Tenant and Tenant v. Landlord cases respectively. How-
ever, with the support of our in-depth analysis, we emphasize that these
results should be kept in perspective and that some metrics may not be
suitable for evaluating systems in sensitive domains such as housing law.

Keywords: Natural Language Processing · Court decisions · Legal
text · Text mining · Multilabel classification · French text · Housing
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1 Context

Many works related to artificial intelligence and law focus on the creation of
tools intended for legal professionals to address, say, legal information retrieval
with Natural Language Processing (NLP) [10] or knowledge management [3].
In the context of the ACT project (Autonomy Through Cyberjustice Technolo-
gies, https://www.ajcact.org/en), methods are explored in order to facilitate and
automate access to justice for laymen unfamiliar with legal procedures. For the
purpose of evaluating how far machine learning can fulfill these goals, our work
focuses on lawsuits submitted to the Régie du Logement du Québec (RDL), a
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tribunal specialized in tenant-landlord disputes. To the best of our knowledge,
no work investigated this dataset apart from [15] which only studied a tiny frac-
tion of it. One long-term goal of the ACT project is to make a system that
allows tenants to gauge their chances of winning a case against their landlord
and what outcomes they could expect from it by combining personal situations
and relevant laws.

In [2], the authors describe a classification model that can simulate such legal
reasoning. We can distinguish a first group of classification works as in [1,11,14]
that rely on relatively small datasets (usually at most ten thousand samples)
but annotated by legal experts. A second group of more recent works such as
[5,12,13] apply text mining and NLP engineering on available metadata, thus
relaxing the constraint of scarce human annotation and allowing dramatically
larger datasets (at least a hundred thousand instances). Some preprocessing
work for extracting labels or categories is shown in [12,14], which emphasizes
the importance of performing that step with care in order to design sensible and
understandable prediction tasks.

In our work, we deepened that latter point by first conducting a thorough
analysis on RDL lawsuits and then presenting one multilabel classification task.
Then, we discuss the results obtained and reflect upon how to properly evaluate
legal prediction experiments.

2 Dataset Analysis

Understanding the data, especially in a specific domain such as housing law, is
paramount to conduct meaningful experiments. The RDL collection consists of
981,112 decisions in French issued from 2001 to early 2018 by 72 judges in 29
tribunals around Quebec. Some of these documents are provided as public data
by the SOQUIJ legal documents search engine (http://citoyens.soquij.qc.ca/);
however, we obtained access to the entire corpus. Each decision mainly consists
of a body of text with three parts that always appear in the following order, as
illustrated in Fig. 1:

– fact descriptions and evidence presented by each party (here, a proof of ten-
ant’s failure to comply with payment schedule; lines 1 to 3 in Fig. 1);

– a legal reasoning section in which the judge analyses the case in the light of
the applicable laws (lines 4 to 6);

– a verdict section with the judge final decisions (e.g. defendant ordered to pay
damages to the plaintiff, rejection of the claim; lines 7 to 11).

The decisions also contain metadata (top and bottom of Fig. 1). After clean-
ing up and removing all documents with missing information and duplicates, we
obtained a total of 667,305 texts with an average length of 363 tokens.

http://citoyens.soquij.qc.ca/
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Fig. 1. RDL sample decision from SOQUIJ (available at http://t.soquij.ca/p9TYc)

2.1 Analysis of the Plaintiffs and Defendants

We extracted from the metadata of each decision over a dozen of characteristics
using NLP-engineered methods. For instance, we managed to identify the type
of each party: legal persons (juridical entities like organizations) and natural
(human and physical) persons. The latter encompasses four sub-categories: suc-
cession (a liquidator acts on behalf of a deceased person), multiple persons, single
female and single male. Overall, 89% of all cases involve landlords suing tenants
(Landlord v. Tenant scenarios or LvT) while 11% involve tenants suing landlords
(Tenant v. Landlord scenarios or TvL). In the first scenario, plaintiffs are mostly
legal persons while defendants are an absolute majority of single males as shown
in Table 1. In the TvL setting, plaintiffs and defendants are predominantly single
males.

http://t.soquij.ca/p9TYc
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Table 1. Distribution of plaintiff and defendant types (in percent) by case types

Case type Landlord v. Tenant Tenant v. Landlord

Party Plaintiff Defendant Plaintiff Defendant

Legal person 41.3 0.2 0.3 33.0

N
a
tu

r.
p
e
rs
. Single male 36.8 60.1 54.0 40.0

Single female 11.0 39.5 45.5 14.0

Multiple (any genders) 10.7 0.0 0.0 12.6

Succession 0.2 0.2 0.2 0.3

Total 100 100 100 100

Number of decisions 595,808 71,497

2.2 Analysis of the Verdicts

Extracting consistent outcomes from the judgments (i.e. lines 7 to 11 in Fig. 1)
is crucial for the feasibility and interpretability of prediction tasks. Difficulties
in making a simple representation encompassing a wide variety of rulings were
shown in [14]. One possible solution consists in identifying a “winner” between
the plaintiff and the defendant, but this binary approach is not always suitable
(e.g. the plaintiff’s claims are partly accepted and rejected by the judge). An
opposite approach consists in making labels that cover all possible outcomes,
implying a high annotation cost partly illustrated in [15], plus the risk of numer-
ous overly specific labels applicable to very few instances as in [5]. We chose an
intermediate solution by narrowing all outcomes to three binary labels:

– penalty: the defendant receives penalties (e.g. an order for the landlord to
pay damages, an eviction from the accommodation for a tenant);

– agreement: the judge enforces an agreement between both parties;
– rejection: the judge fully or partially rejects the plaintiff’s claims.

These three outcomes are not mutually exclusive and can be applied to any
case regardless of whether the plaintiff is the landlord or the tenant. We used
an approach similar to [8] for determining the labels of each case by relying on
key verbs in capital letters that happen to be good proxies of the verdict. In
the example of Fig. 1, penalty and rejection labels apply due to the verbs CON-
DAMNE and REJETTE on lines 9 and 11. Major trends are shown in Table 2
for each case type: a landlord-plaintiff succeeds in winning over the tenant in
89% of lawsuits while tenant-plaintiffs’ demands are totally or partially rejected
by the judge in 69% of lawsuits. Such biases must be considered carefully. It
might suffice to know whether the plaintiff is a landlord to get a good approx-
imation of the outcome of a lawsuit. So far, all figures found in our analysis
reveal that some care is required when developing machine learning applications
as such biases and imbalance in the dataset might be the cause of deceptively
good results in classification tasks.
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Table 2. Distribution of labels (in percent) by case types

Scenario type Landlord v. Tenant Tenant v. Landlord

Cases with agreement label 2.0% 5.4%

Cases with penalty label 89.0% 23.6%

Cases with rejection label 38.3% 68.8%

Total number of cases 595,808 71,497

3 Prediction Task and Results

3.1 Models and Features

As seen in the previous section, claims made by landlords are much more suc-
cessful than those made by tenants. Because of these biases, we decided to make
two subtasks for LvT and TvL scenarios. For each of these subtasks, we made a
60:20:20 train-validation-test split for the corresponding datasets. Our baseline
is a dummy classifier that returns a label if it occurs in more than half of the
training samples. Thus, it will always and only predict the penalty and rejection
labels in LvT and TvL respectively. Among the models used, we present the
results for logistic regression implemented through a One-versus-Rest approach
(OvR, one classifier per label). Three sets of features are used:

– the metadata alone (court location and judge in charge of the audience, pres-
ences and types of plaintiff and defendant);

– the metadata plus TF-IDF vectors (2–8-g at character level) fitted on the
first line of the decision (line 1 on Fig. 1). These vectors are later replaced by
a mean vector of FastText embeddings [4] of all words contained in the first
line. These FastText representations are trained beforehand on the first line
(window and vector sizes of 5 and 300, 10 training epochs);

– the metadata plus TF-IDF or FastText vectors (same settings as above) fitted
this time on all the text before the verdict (lines 1 to 6 on Fig. 1).

The rationale behind using different lengths of the decision is to check
whether models can predict the outcome of a case by solely using the factual
elements of a case without relying on the legal analysis, as in [16]. As stressed
in [13], elements from the legal analysis section may reveal the verdict. In the
absence of efficient means to properly isolate the fact descriptions from the legal
analysis, we used the first line of each decision as a proxy for factual elements.

For the latter two settings with different input text lengths, we also applied
the FlauBERT base cased language model [7], a variant of BERT (Bidirectional
Encoder Representations from Transformers [6]) pretrained on French corpora
that we finetuned to our input text (metadata were not used). We set the batch
size, maximum sequence length and learning rate to 32, 256 and 1e−5 respec-
tively. Training was set to 10 epochs and stopped whenever a lower loss on the
evaluation set was not achieved after 10,000 consecutive optimization steps. Our
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metrics are accuracy (the predicted labels must exactly match the true ones for
a sample to be considered as correctly classified) and micro, macro and weighted
F1 score averages. Results are shown in Table 3.

3.2 Discussion of the Results

With the mere use of metadata as features, we managed to beat the baseline
model in the LvT scenario for almost all metrics, but got little to no improvement
in TvL cases. This may be due to the fact that TvL labels distribution is less
imbalanced compared to LvT (see Table 2). When given access to the first line of
each document, all models outperform the baseline and the TF-IDF method per-
forms slightly better compared to FastText and FlauBERT across all metrics and
scenarios. One possible explanation is that the TF-IDF representation partially
preserves characters order while FastText and FlauBERT expressiveness suffer
from the shortness of the first line. When the input contains all the text before
the verdict, the performances obtained with TF-IDF vectors either stagnate or
slightly degrade. The FastText method, on the contrary, significantly improves
across all metrics, beating TF-IDF. FlauBERT outperforms FastText with dra-
matic improvements across all metrics. The fact that FastText and FlauBERT
achieve better performance across all metrics with respect to TF-IDF can also
be explained by longer text inputs that lead to richer embeddings. On the other
hand, the stagnation of TF-IDF may be due to a dramatically larger number of
n-grams as the text inputs become longer, leading to longer and sparser TF-IDF
vectors that could not be leveraged by our models. FastText and FlauBERT
performances also need to be kept in perspective as the paragraphs at the end
of the longer text input may reveal information about the verdict as mentioned
earlier from [13]. All in all, in both scenarios and with all text before verdict as
input, our best model is the FlauBERT one that achieves 93.7% and 85.2% on
micro average F1 score and accuracy in the LvT scenario, and 84.9% and 74.6%
for the TvL cases.

We must emphasize that regardless of the models and input used, because of
the labels imbalance shown in Table 2, one can easily maximize the individual F1
score of the most frequent label in each subtask (individual F1 score exceeds 94%
for penalty label in LvT and 81% for rejection label in TvL cases for any model).
As a consequence, one can achieve a relatively high micro-average F1 score that
is based on recall and precision of all labels altogether: almost all models score
above 80% and 70% in LvT and TvL scenarios, even in the first-line setting. The
same phenomenon applies to the weighted F1 score average that is also influenced
by the most frequent label (provided it can be easily predicted). As the task of a
judge consists in applying general legal rules to individual cases with their own
particularities, evaluating a classifier for legal outcomes with micro or weighted
F1 score averages may convey deceptively good results as these metrics can be
influenced by ubiquitous patterns in the data. On the other hand, accuracy and
macro F1 score seem to be less sensitive to data imbalance and may be preferred
for getting a more rigorous evaluation of predictive systems in sensitive domains
such as housing law, though accuracy may also be considered as a metric biased



Classification of Decisions from Housing Control Tribunals in Quebec 141

Table 3. Multilabel classification results for Landlord v. Tenant and Tenant v. Land-
lord scenarios in percent (for the last two features sets, the highest value of each column
is bold)

Landlord v. Tenant Tenant v. Landlord

F1 micr. F1 macr. F1 weig. Accu. F1 micr. F1 macr. F1 weig. Accu.

Dummy 77.5 31.4 64.7 56.9 69.8 27.2 57.6 58.3

Metadata only

OvR Log. reg. 84.3 50.7 82.4 65.4 69.8 35.5 63.4 57.7

Metadata (except FlauBERT) + the first line

TFIDF representation (2-8 grams at character level)

OvR Log. reg. 87.0 66.7 85.9 70.3 78.1 65.4 77.4 65.4

Mean vector of FastText embeddings (vector size 300 and window size 5)

OvR Log. reg. 85.1 54.6 83.6 66.6 72.7 48.3 69.9 59.3

FlauBERT (batch size 32, max seq length 256, learning rate 1e-5)

Transformers 83.4 60.9 80.2 64.0 74.0 58.7 73.0 60.1

Metadata (except FlauBERT) + all text before verdict

TFIDF representation (2-8 grams at character level)

OvR Log. reg. 86.9 66.8 85.9 70.3 78.1 65.1 77.3 65.2

Mean vector of FastText embeddings (vector size 300 and window size 5)

OvR Log. reg. 88.7 81.0 88.2 73.7 80.1 77.1 79.7 66.6

FlauBERT (batch size 32, max seq length 256, learning rate 1e-5)

Transformers 93.7 90.8 93.7 85.2 84.9 84.7 85.1 74.6

against the majority class when applied to an imbalanced dataset. We would not
have been aware of all these fine details without a prior thorough examination
of the dataset itself.

4 Conclusion

In this work, we built and analyzed thoroughly an original collection of court
decisions in French about landlord-tenant disputes. We were able to extract over
a dozen of characteristics for each decision and to detect biases contained in the
dataset such as landlords being much more successful plaintiffs with respect to
tenants. Such analysis was only feasible thanks to carefully engineered NLP tools
combined with background knowledge of the housing law domain. This prelimi-
nary step allowed us to suggest one multilabel classification task for predicting
legal rulings. Two distinct subtasks were designed for Landlord v. Tenant (LvT)
and Tenant v. Landlord (TvL) lawsuits. We could observe that TF-IDF based
methods perform relatively well when given the first line of each decision while
FastText and FlauBERT approaches excel when all text before verdict is given
as input. The latter achieved micro F1 score average and accuracy of 93.7% and
85.2% in LvT cases and 84.9% and 74.6% for TvL cases respectively. Thanks to
our prior in-depth study of the strong trends present in the data, we emphasized
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the risk of using micro and weighted F1 score averages which can be artificially
maximized in the presence of overly frequent labels. This remark is particularly
important in the evaluation of legal classification models as judges must apply
general legal rules to individual cases with their own particularities.

As future work, we consider pursuing our study with a regression task (pre-
dicting the amount of indemnities awarded that the judge orders the losing
defendant to pay), improving our input corpora by isolating the text sections
related to fact descriptions from those related to legal analysis, and further
investigation of CamemBERT [9] for the multilabel classification task.
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Abstract. Aspect Based Sentiment Analysis (ABSA) is the task of iden-
tifying sentiment polarity of a text given another text segment or aspect.
In ABSA, a text can have multiple sentiments depending upon each
aspect. Aspect Term Sentiment Analysis (ATSA) is a subtask of ABSA,
in which aspect terms are contained within the given sentence. Most of
the existing approaches proposed for ATSA, incorporate aspect informa-
tion through a different subnetwork thereby overlooking the advantage
of aspect terms’ presence within the sentence. In this paper, we pro-
pose a model that leverages the positional information of the aspect.
The proposed model introduces a decay mechanism based on position.
This decay function mandates the contribution of input words for ABSA.
The contribution of a word declines as farther it is positioned from the
aspect terms in the sentence. The performance is measured on two stan-
dard datasets from SemEval 2014 Task 4. In comparison with recent
architectures, the effectiveness of the proposed model is demonstrated.

Keywords: Aspect Based Sentiment Analysis · Attention · Sentiment
Analysis · Text classification

1 Introduction

Text Classification deals with the branch of Natural Language Processing (NLP)
that involves classifying a text snippet into two or more predefined categories.
Sentiment Analysis (SA) addresses the problem of text classification in the set-
ting where these predefined categories are sentiments like positive or negative
[7]. Aspect Based Sentiment Analysis (ABSA) is proposed to perform sentiment
analysis at an aspect level [2]. There are four sub-tasks in ABSA namely Aspect
Term Extraction (ATE), Aspect Term Sentiment Analysis (ATSA), Aspect Cate-
gory Detection (ACD), Aspect Category Sentiment Analysis (ACSA). In the first
sub-task (ATE), the goal is to identify all the aspect terms for a given sentence.
Aspect Term Sentiment Analysis (ATSA) is a classification problem where given
an aspect and a sentence, the sentiment has to classified into one of the prede-
fined polarities. In the ATSA task, the aspect is present within the sentence but
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can be a single word or a phrase. In this paper, we address the problem of ATSA.
Given a set of aspect categories and a set of sentences, the problem of ACD is to
classify the aspect into one of those categories. ACSA can be considered similar
to ATSA, but the aspect term may not be present in the sentence. It is much
harder to find sentiments at an aspect level compared to the overall sentence
level because the same sentence might have different sentiment polarities for dif-
ferent aspects. For example consider the sentence, “The taste of food is good but
the service is poor”. If the aspect term is food, the sentiment will be positive,
whereas if the aspect term is service, sentiment will be negative. Therefore, the
crucial challenge of ATSA is modelling the relationship between aspect terms
and its context in the sentence. Traditional methods involve feature engineering
trained with machine learning classifiers like Support Vector Machines (SVM)
[4]. However, these methods do not take into account the sequential information
and require a considerable struggle to define the best set of features. With the
advent of deep learning, neural networks are being used for the task of ABSA.
For ATSA, LSTM coupled with attention mechanism [1] have been widely used
to focus on words relevant to certain aspect. Target-Dependent Long Short-Term
Memory (TD-LSTM) uses two LSTM networks to model left and right context
words surrounding the aspect term [12]. The outputs from last hidden states of
LSTM are concatenated to find the sentiment polarity. Attention Based LSTM
(ATAE-LSTM) uses attention on the top of LSTM to concentrate on different
parts of a sentence when different aspects are taken as input [15]. Aspect Fusion
LSTM (AF-LSTM) [13] uses associative relationship between words and aspect
to perform ATSA. Gated Convolution Neural Network (GCAE) [17] employs a
gated mechanism to learn aspect information and to incorporate it into sentence
representations.

However, these models do not utilize the advantage of the presence of aspect
term in the sentence. They either employ an attention mechanism with complex
architecture to learn relevant information or train two different architectures for
learning sentence and aspect representations. In this paper, we propose a model
that utilizes the positional information of the aspect in the sentence. We propose
a parameter-less decay function based learning that leverages the importance of
words closer to the aspect. Hence, evading the need for a separate architecture
for integrating aspect information into the sentence. The proposed model is
relatively simple and achieves improved performance compared to models that
do not use position information. We experiment with the proposed model on two
datasets, restaurant and laptop from SemEval 2014.

2 Related Work

2.1 Aspect Term Sentiment Analysis

Early works of ATSA, employ lexicon based feature selection techniques like
Parts of Speech Tagging (POS), unigram features and bigram features [4]. How-
ever, these methods do not consider aspect terms and perform sentiment analysis
on the given sentence.
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Phrase Recursive Neural Network for Aspect based Sentiment Analysis
(PhraseRNN) [6] was proposed based on Recursive Neural Tensor Network [10]
primarily used for semantic compositionality. PhraseRNN uses dependency and
constituency parse trees to obtain aspect representation. An end-to-end neural
network model was introduced for jointly identifying aspect and polarity [9].
This model is trained to jointly optimize the loss of aspect and the polarity. In
the final layer, the model outputs one of the sentiment polarities along with the
aspect. [14] introduced Aspect Fusion LSTM (AF-LSTM) for performing ATSA.

3 Model

In this section, we propose the model Position Based Decay Weighted Network
(PDN). The model architecture is shown in Fig. 2. The input to the model is a
sentence S and an Aspect A contained within it. Let n represent the maximum
sentence length considered.

3.1 Word Representation

Let V be the vocabulary size considered and X ∈ R
V ×dw represent the embed-

ding matrix1, where for each word Xi is a dw dimensional word vector. Words
contained in the embedding matrix are initialized to their corresponding vec-
tors whereas words not contained are initialized to 0’s. I ∈ R

n×dw denotes the
pretrained embedding representation of a sentence where n is the maximum
sentence length.

3.2 Position Encoding

In the ATSA task, aspect A is contained in the sentence S. A can be a word
or a phrase. Let ks denote the starting index and ke denote the ending index of
the aspect term(s) in the sentence. Let i be the index of a word in the sentence.
The position encoding of words with respect to aspect are represented using the
formula

p(i) =

⎧
⎨

⎩

ks − i + 1, ks > i
1, i ∈ ks, ks+1, .., ke−1, ke

i − ke + 1, i > ke

(1)

The position encodings for the sentence “granted the space is smaller than most
it is the best service” where “space” is the aspect is shown in Fig. 2. This number
reflects the relative distance of a word from the closest aspect word. The position
embeddings from the position encodings are randomly initialized and updated
during training. Hence, P ∈ R

n×dp is the position embedding representations of
the sentence. dp denotes the number of dimensions in the position embedding.

1 https://nlp.stanford.edu/data/glove.840B.300d.zip.

https://nlp.stanford.edu/data/glove.840B.300d.zip


150 A. Madasu and V. A. Rao

3.3 Architecture

As shown in Fig. 2, PDN comprises of two sub-networks: Position Aware Atten-
tion Network (PDN) and Decay Weighting Network (DWN).

Position Aware Attention Network (PAN). An LSTM layer is trained on
I to produce hidden state representation ht ∈ R

dh for each time step t ∈ {1, n}
where dh is the number of units in the LSTM. The LSTM outputs contain
sentence level information and Position embedding contain aspect level informa-
tion. An attention subnetwork is applied on all h and P to get a scalar score α
indicating sentiment weightage of the particular time step to the overall senti-
ment. However, prior to concatenation, the position embeddings and the LSTM
outputs may have been output from disparate activations leading to different
distribution. Training on such values may bias the network towards one of the
representations. Therefore, we apply a fully connected layer separately but with
same activation function Scaled Exponential Linear Unit (SELU) [5] upon them.
Two fully connected layers follow this representation. Following are the equations
that produce α from LSTM outputs h and position embeddings P .

P ′
t = selu(Wp · Pt + bp) (2)

h′
t = selu(Wh · ht + bh) (3)

Ht = relu(Wa · [h′
tP

′
t ] + ba) (4)

et = tanh(vᵀ · Ht) (5)

αt =
exp(et)

∑n
i=1 exp(ei)

(6)

Decay Weighting Network (DWN). In current and following section, we
introduce decay functions. The decay function for scalar position encoding p(i)
is represented as the scalar d(p(i)). These functions are continuously decreasing
in the range [0,∞). The outputs from the LSTM at every time step are scaled
by the decay function’s output.

Zt = ht · d(p(t)) ∀ t ∈ {1, n} (7)

A weighted sum O is calculated on the outputs of Decay Weighted network using
the attention weights from PAN.

O = α · Z (8)

A fully connected layer is applied on O which provides an intermediate repre-
sentation Q. A softmax layer is fully connected to this layer to provide final
probabilities.
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Fig. 1. Attention sub network

Table 1. Accuracy Scores of all models. Performances of baselines are cited from [13]

Model Restaurant Laptop

Majority 65.00 53.45

NBOW 67.49 58.62

LSTM 67.94 61.75

TD-LSTM 69.73 62.38

AT-LSTM 74.37 65.83

ATAE-LSTM 70.71 60.34

DCNN 75.18 64.67

AF-LSTM 75.44 68.81

GCAE 76.07 67.27

Tangent-PDN 78.12 68.82

Inverse-PDN 78.9 70.69

Expo-PDN 78.48 69.43

It is paramount to note that the DWN does not contain any parameters
and only uses a decay function and multiplication operations. The decay func-
tion provides us with a facility to automatically weight representations closer to
aspect as higher and far away as lower, as long as the function hyperparameter is
tuned fittingly. Lesser parameters makes the network efficient and easy to train.

Decay Functions. We performed experiments with the following decay func-
tions.

Inverse Decay
Inverse decay is represented as:

d(x) =
λ

x
(9)
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Fig. 2. PDN Architecture, in the shown example, “space” is the aspect. Refer to Fig. 1
for the Attention Sub Network.

Exponential Decay
Exponential decay is represented as:

d(x) = e−λ∗x (10)

Tangent Decay

Tangent decay is represented as:

d(x) = 1 − tanh(λ ∗ x) (11)

λ is the hyper-parameter in all the cases.2

4 Experiments

4.1 Datasets

We performed experiments on two datasets, Restaurant and Laptop from
SemEval 2014 Task 4 [8]. Each data point is a triplet of sentence, aspect and
sentiment label. The statistics of the datasets are shown in the Table 2. As most
existing works reported results on three sentiment labels positive,negative,neutral
we performed experiments by removing conflict label as well.

2 In our experiments we took λ = 0.45 for Tangent-PDN, 1.1333 for Inverse-PDN and
0.3 for Expo-PDN.
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4.2 Compared Methods

We compare proposed model to the following baselines:

Neural Bag-of-Words (NBOW). NBOW is the sum of word embeddings in
the sentence [13].

LSTM. Long Short Term Memory (LSTM) is an important baseline in NLP. For
this baseline, aspect information is not used and sentiment analysis is performed
on the sentence alone. [13].

TD-LSTM. In TD-LSTM, two separate LSTM layers for modelling the preced-
ing and following contexts of the aspect is done for aspect sentiment analysis [12].

AT-LSTM. In Attention based LSTM (AT-LSTM), aspect embedding is used
as the context for attention layer, applied on the sentence [15].

ATAE-LSTM. In this model, aspect embedding is concatenated with input
sentence embedding. LSTM is applied on the top of concatenated input [15].

Table 2. Statistics of the datasets

Dataset Positive Negative Neutral

Train Test Train Test Train Test

Restaurant 2164 728 805 196 633 196

Laptop 987 341 866 128 460 169

DE-CNN. Double Embeddings Convolution Neural Network (DE-CNN)
achieved state of the art results on aspect extraction. We compare proposed
model with DE-CNN to see how well it performs against DE-CNN. We used
aspect embedding instead of domain embedding in the input layer and replaced
the final CRF layer with MaxPooling Layer. Results are reported using author’s
code3 [16].

AF-LSTM. AF-LSTM incorporates aspect information for learning attention
on the sentence using associative relationships between words and aspect [13].

GCAE. GCAE adopts gated convolution layer for learning aspect represen-
tation which is integrated into sentence representation through another gated
3 https://github.com/howardhsu/DE-CNN.

https://github.com/howardhsu/DE-CNN
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convolution layer. This model reported results for four sentiment labels. We ran
the experiment using author’s code4 and reported results for three sentiment
labels [17].

4.3 Implementation

Every word in the input sentence is converted to a 300 dimensional vector using
pretrained word embeddings. The dimension of positional embedding is set to
25 which is initialized randomly and updated during training. The hidden units
of LSTM are set to 100. The number of hidden units in the layer fully connected
to LSTM is 50 and the layer fully connected to positional embedding layer is
50. The number of hidden units in the penultimate fully connected layer is set
to 64. We apply a dropout [11] with a probability 0.5 on this layer. A batch size
20 is considered and the model is trained for 30 epochs. Adam [3] is used as the
optimizer with an initial learning rate 0.001.

5 Results and Discussion

The Results are presented in Table 1. The Baselines Majority, NBOW and LSTM
do not use aspect information for the task at all. Proposed models significantly
outperform them.

5.1 The Role of Aspect Position

The proposed model outperforms other recent and popular architectures as well,
these architectures use a separate architecture which takes the aspect input dis-
tinctly from the sentence input. In doing so they loose the positional information
of the aspect within the sentence. We hypothesize that this information is valu-
able for ATSA and our results reflect the same. Additionally since proposed
architecture does not take any additional aspect inputs apart from position, we
get a fairer comparison on the benefits of providing aspect positional information
over the aspect words themselves.

5.2 The Role of Decay Functions

Furthermore, while avoiding learning separate architectures for weightages,
decay functions act as good approximates. These functions rely on constants
alone and lack any parameters thereby expressing their efficiency. The reason
these functions work is because they consider an assumption intrinsic to the
nature of most natural languages. It is that description words or aspect modi-
fier words come close to the aspect or the entity they describe. For example in
Fig. 2, we see the sentence from the Restaurant dataset, “granted the space is
smaller than most, it is the best service you can...”. The proposed model is able
to handle this example which has distinct sentiments for the aspects “space”
and “service” due to their proximity from “smaller” and “best” respectively.
4 https://github.com/wxue004cs/GCAE.

https://github.com/wxue004cs/GCAE
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6 Conclusion

In this paper, we propose a novel model for Aspect Based Sentiment Analysis
relying on relative positions on words with respect to aspect terms. This relative
position information is realized in the proposed model through parameter-less
decay functions. These decay functions weight words according to their distance
from aspect terms by only relying on constants proving their effectiveness. Fur-
thermore, our results and comparisons with other recent architectures, which do
not use positional information of aspect terms demonstrate the strength of the
decay idea in proposed model.
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Abstract. In the sentiment attitude extraction task, the aim is to
identify «attitudes» – sentiment relations between entities mentioned
in text. In this paper, we provide a study on attention-based con-
text encoders in the sentiment attitude extraction task. For this task,
we adapt attentive context encoders of two types: (I) feature-based;
(II) self-based. Our experiments (https://github.com/nicolay-r/attitu
de-extraction-with-attention) with a corpus of Russian analytical texts
RuSentRel illustrate that the models trained with attentive encoders
outperform ones that were trained without them and achieve 1.5–5.9%
increase by F1. We also provide the analysis of attention weight distri-
butions in dependence on the term type.

Keywords: Relation extraction · Sentiment analysis · Attention-based
models

1 Introduction

Classifying relations between entities mentioned in texts remains one of the pop-
ular tasks in natural language processing (NLP). The sentiment attitude extrac-
tion task aims to seek for positive/negative relations between objects expressed
as named entities in texts [10]. Let us consider the following sentence as an
example (named entities are underlined):

“Meanwhile Moscow has repeatedly emphasized that its activity in the
Baltic Sea is a response precisely to actions of NATO and the escalation
of the hostile approach to Russia near its eastern borders”

In the example above, named entities «Russia» and «NATO» have the neg-
ative attitude towards each other with additional indication of other named
entities. The complexity of the sentence structure is one of the greatest difficul-
ties one encounters when dealing with the relation extraction task. Texts usually
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contain a lot of named entity mentions; a single opinion might comprise several
sentences.

This paper is devoted to study of models for targeted sentiment analysis
with attention. The intuition exploited in the models with attentive encoders
is that not all terms in the context are relevant for attitude indication. The
interactions of words, not just their isolated presence, may reveal the specificity
of contexts with attitudes of different polarities. The primary contribution of this
work is an application of attentive encoders based on (I) sentiment frames and
attitude participants (features); (II) context itself. We conduct the experiments
on the RuSentRel [7] collection. The results demonstrate that attentive models
with CNN-based and over LSTM-based encoders result in 1.5–5.9% by F1 over
models without attentive encoders.

2 Related Work

In previous works, various neural network approaches for targeted sentiment
analysis were proposed. In [10] the authors utilize convolutional neural networks
(CNN). Considering relation extraction as a three-scale classification task of
contexts with attitudes in it, the authors subdivide each context into outer and
inner (relative to attitude participants) to apply Piecewise-CNN (PCNN) [16].
The latter architecture utilizes a specific idea of max-pooling operation. Initially,
this is an operation, which extracts the maximal values within each convolu-
tion. However, for relation classification, it reduces information extremely rapid
and blurs significant aspects of context parts. In case of PCNN, separate max-
pooling operations are applied to outer and inner contexts. In the experiments,
the authors revealed a fast training process and a slight improvement in the
PCNN results in comparison to CNN.

In [12], the authors proposed an attention-based CNN model for semantic
relation classification [4]. The authors utilized the attention mechanism to select
the most relevant context words with respect to participants of a semantic rela-
tion. The architecture of the attention model is a multilayer perceptron (MLP),
which calculates the weight of a word in context with respect to the entity.
The resulting AttCNN model outperformed several CNN and LSTM based
approaches with 2.6–3.8% by F1-measure.

In [9], the authors experimented with attentive models in aspect-based senti-
ment analysis. The models were aimed to identify sentiment polarity of specific
targets in context, which are characteristics or parts of an entity. Both targets
and the context were treated as sequences. The authors proposed an interactive
attention network (IAN), which establishes element relevance of one sequence
with the other in two directions: targets to context, context to targets. The effec-
tiveness of IAN was demonstrated on the SemEval-2014 dataset [13] and several
biomedical datasets [1].

In [14,17], the authors experimented with self-based attention models, in
which targets became adapted automatically during the training process. Com-
paring with IAN, the presence of targets might be unclear in terms of algorithms.
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The authors considered the attention as context word quantification with respect
to abstract targets. In [14], the authors brought a similar idea also onto the sen-
tence level. The obtained hierarchical model was called as HAN.

3 Data and Lexicons

We consider sentiment analysis of Russian analytical articles collected in the
RuSentRel corpus [8]. The corpus comprises texts in the international politics
domain and contains a lot of opinions. The articles are labeled with annotations
of two types: (I) the author’s opinion on the subject matter of the article; (II) the
attitudes between the participants of the described situations. The annotation of
the latter type includes 2000 relations across 73 large analytical texts. Annotated
sentiments can be only positive or negative. Additionally, each text is provided
with annotation of mentioned named entities. Synonyms and variants of named
entities are also given, which allows not to deal with the coreference of named
entities.

In our study, we also use two Russian sentiment resources: the RuSentiLex
lexicon [7], which contains words and expressions of the Russian language with
sentiment labels and the RuSentiFrames lexicon [11], which provides several
types of sentiment attitudes for situations associated with specific Russian pred-
icates.

The RuSentiFrames1 lexicon describes sentiments and connotations
conveyed with a predicate in a verbal or nominal form [11], such as
“ ” (to condemn, to improve, to exaggerate),
etc. The structure of the frames in RuSentFrames comprises: (I) the set of
predicate-specific roles; (II) frames dimensions such as the attitude of the author
towards participants of the situation, attitudes between the participants, effects
for participants. Currently, RuSentiFrames contains frames for more than 6 thou-
sand words and expressions.

In RuSentiFrames, individual semantic roles are numbered, beginning with
zero. For a particular predicate entry, Arg0 is generally the argument exhibiting
features of a Prototypical Agent, while Arg1 is a Prototypical Patient or Theme
[2]. In the main part of the frame, the most applicable for the current study is
the polarity of Arg0 with a respect to Arg1 (A0→A1). For example, in case of
Russian verb “ ” (to approve) the sentiment polarity A0→A1 is positive.

4 Model

In this paper, the task of sentiment attitude extraction is treated as follows: given
a pair of named entities, we predict a sentiment label of a pair, which could
be positive, negative, or neutral. As the RuSentRel corpus provides opinions
with positive or negative sentiment labels only (Sect. 3), we automatically added
neutral sentiments for all pairs not mentioned in the annotation and co-occurred
in the same sentences of the collection texts. We consider a context as a text
fragment that is limited by a single sentence and includes a pair of named entities.
1 https://github.com/nicolay-r/RuSentiFrames/tree/v1.0.

https://github.com/nicolay-r/RuSentiFrames/tree/v1.0
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Fig. 1. (left) General, context-based 3-scale (positive, negative, neutral) classification
model, with details on «Attention-Based Context Encoder» block in Sect. 4.1 and 4.2;
(right) An example of a context processing into a sequence of terms; attitude partici-
pants («Russia», «Turkey») and other mentioned entities become masked; frames are
bolded and optionally colored corresponding to the sentiment value of A0→A1 polarity.

The general architecture is presented in Fig. 1 (left), where the sentiment
could be extracted from the context. To present a context, we treat the original
text as a sequence of terms [t1, . . . , tn] limited by n. Each term belongs to one
of the following classes: entities, frames, tokens, and words (if none of
the prior has not been matched). We use masked representation for attitude
participants (Eobj , Esubj) and mentioned named entities (E) to prevent models
from capturing related information.

To represent frames, we combine a frame entry with the corresponding
A0→A1 sentiment polarity value (and neutral if the latter is absent). We also
invert sentiment polarity when an entry has “ ” (not) preposition. For exam-
ple, in Fig. 1 (right) all entries are encoded with the negative polarity A0→A1:
“ ” (confrontation) has a negative polarity, and “ ”
(not necessary) has a positive polarity of entry “necessary” which is inverted due
to the “not” preposition.

The tokens group includes: punctuation marks, numbers, url-links. Each
term of words is considered in a lemmatized2 form. Figure 1 (right) provides a
context example with the corresponding representation («terms» block).

To represent the context in a model, each term is embedded with a vector of
fixed dimension. The sequence of embedded vectors X = [x1, . . . , xn] is denoted
as input embedding (xi ∈ R

m, i ∈ 1..n). Sections 4.1 and 4.2 provide an encoder
implementation in details. In particular, each encoder relies on input embedding
and generates output embedded context vector s.

2 https://tech.yandex.ru/mystem/.

https://tech.yandex.ru/mystem/
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Fig. 2. AttCNN neural network [6]

In order to determine a sentiment class by the embedded context s, we apply:
(I) the hyperbolic tangent activation function towards s and (II) transformation
through the fully connected layer :

r = Wr · tanh(s) + br Wr ∈ R
z×c, br ∈ R

c, c = 3 (1)

In Formula 1, Wr, br corresponds to hidden states; z correspond to the size
of vector s, and c is a number of classes. Finally, to obtain an output vector of
probabilities o = {ρi}ci=1, we use softmax operation:

ρi = softmax(ri) =
exp(ri)∑c
j=1 exp(rj)

(2)

4.1 Feature Attentive Context Encoders

In this section, we consider features as a significant for attitude identification
context terms, towards which we would like to quantify the relevance of each
term in the context. For a particular context, we select embedded values of the
(I) attitude participants (Eobj , Esubj) and (II) terms of the frames group and
create a set of features F = [f1, . . . , fk] limited by k.

MLP-Attention. Figure 2 illustrates a feature-attentive encoder with the
quantification approach called Multi-Layer Perceptron [6]. In formulas 3–5, we
describe the quantification process of a context embedding X with respect to a
particular feature f ∈ F . Given an i’th embedded term xi, we concatenate its
representation with f:

hi = [xi, f] hi ∈ R
2·m (3)
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The quantification of the relevance of xi with respect to f is denoted as
ui ∈ R and calculated as follows (see Fig. 2a):

ui = Wa [tanh(Wwe · hi + bwe)] + ba Wwe ∈ R
2·m×hmlp , Wa ∈ R

hmlp (4)

In Formula 4, Wwe and Wa correspond to the weight and attention matrices
respectively, and hmlp corresponds to the size of the hidden representation in the
weight matrix. To deal with normalized weights within a context, we transform
quantified values ui into probabilities αi using softmax operation (Formula 2).
We utilize Formula 5 to obtain attention-based context embedding ŝ of a context
with respect to feature f:

ŝ =
n∑

i=1

xi · αi ŝ ∈ R
m (5)

Applying Formula 5 towards each feature fj ∈ F , j ∈ 1..k results in vector
{ŝj}kj=1. We use average-pooling to transform the latter sequence into single
averaged vector sf = ŝj/[

∑k
j=1 ŝj ].

We also utilize a CNN-based encoder (Fig. 2b) to compete the context rep-
resentation scnn ∈ R

c, where c is related to convolutional filters count [10]. The
resulting context embedding vector s (size of z = m + c) is a concatenation of
sf and scnn.

IAN. As a context encoder, a Recurrent Neural Network (RNN) model allows
treating the context [t1, . . . , tn] as a sequence of terms to generate a hidden rep-
resentation, enriched with features of previously appeared terms. In comparison
with CNN, the application of rnn allows keeping a history of the whole sequence
while CNN-based encoders remain limited by the window size. The application
of RNN towards a context and certain features appeared in it – is another way
how the correlation of these both factors could be quantitatively measured [9].

Figure 3a illustrates the IAN architecture attention encoder. The input
assumes separated sequences of embedded terms X and embedded features F . To
learn the hidden term semantics for each input, we utilize the LSTM [5] recur-
rent neural network architecture, which addresses learning long-term dependen-
cies by avoiding gradient vanishing and expansion problems. The calculation ht

of t’th embedded term xt based on prior state ht−1, where the latter acts as
a parameter of auxiliary functions [5]. The application of LSTM towards the
input sequences results in [hc

1, . . . , hc
n] and [hf

1 , . . . , hf
k ], where hc

i , hf
j ∈ R

h

(i ∈ 1..n, j ∈ 1..k) and h is the size of the hidden representation. The quan-
tification of input sequences is carried out in the following directions: (I) fea-
ture representation with respect to context, and (II) context representation with
respect to features. To obtain the representation of a hidden sequence, we utilize
average-pooling. In Fig. 3a, pf and pc denote a hidden representation of features
and context respectively. Figure 3b illustrates the quantification computation of
a hidden state ht with respect to p:
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Fig. 3. Interactive Attention Network (IAN) [9]

uc
i = tanh(hc

i · Wf · pf + bf ) Wf ∈ R
h×h, bf ∈ R, i ∈ 1..n

uf
j = tanh(hf

j · Wc · pc + bc) Wc ∈ R
h×h, bc ∈ R, j ∈ 1..k

(6)

In order to deal with normalized weight vectors αf
i and αc

j , we utilize the
softmax operation for uf and uc respectively (Formula 2). The resulting context
vector s (size of z = 2 ·h) is a concatenation of weighted context sc and features
sf representations:

sc =
n∑

i=1

αc
i · hc

i sf =
k∑

j=1

αf
j · hf

j (7)

4.2 Self Attentive Context Encoders

In Sect. 4.1 the application of attention in context embedding fully relies on the
sequence of predefined features. The quantification of context terms is performed
towards each feature. In turn, the self-attentive approach assumes to quantify
a context with respect to an abstract parameter. Unlike quantification methods
in feature-attentive embedding models, here the latter is replaced with a hidden
state (parameter w, see Fig. 4b), which modified during the training process.

Figure 4a illustrates the bi-directional RNN-based self-attentive context
encoder architecture. We utilize bi-directional LSTM (BiLSTM) to obtain a
pair of sequences

−→
h and

←−
h (

−→
hi ,

←−
hi ∈ R

h). The resulting context representation
H = [h1, . . . , hn] is composed as the concatenation of bi-directional sequences
elementwise: hi =

−→
hi +

←−
hi , i ∈ 1..n. The quantification of hidden term repre-

sentation hi ∈ R
2·h with respect to w ∈ R

2·h is described in formulas 8–9 and
illustrated in Fig. 4b.

mi = tanh(hi) (8)

ui = mT
i · w (9)
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Fig. 4. Attention-based bi-directional LSTM neural network (Att-BLSTM) [17]

We apply the softmax operation towards ui to obtain vector of normalized
weights α ∈ R

n. The resulting context embedding vector s (size of z = 2 ·h) is
an activated weighted sum of each parameter of context hidden states:

s = tanh(H · α) (10)

5 Model Details

Input Embedding Details. We provide embedding details of context term
groups described in Sect. 4. For words and frames, we look up for vectors in
precomputed and publicly available model3 Mword based on news articles with
window size of 20, and vector size of 1000. Each term that is not presented in the
model we treat as a sequence of parts (n-grams) and look up for related vectors
in Mword to complete an averaged vector. For a particular part, we start with a
trigram (n = 3) and decrease n until the related n-gram is found. For masked
entities (E, Eobj , Esubj) and tokens, each element embedded with a randomly
initialized vector with size of 1000.

Each context term has been additionally expanded with the following param-
eters:

– Distance embedding [10] (vd-obj , vd-subj) – is vectorized distance in terms from
attitude participants of entry pair (Eobj and Esubj respectively) to a given
term;

– Closest to synonym distance embedding (vsd-obj , vsd-subj) is a vectorized abso-
lute distance in terms from a given term towards the nearest entity, synony-
mous to Eobj and Esubj respectively;

3 http://rusvectores.org/static/models/rusvectores2/news_mystem_skipgram_1000
_20_2015.bin.gz.

http://rusvectores.org/static/models/rusvectores2/news_mystem_skipgram_1000_20_2015.bin.gz
http://rusvectores.org/static/models/rusvectores2/news_mystem_skipgram_1000_20_2015.bin.gz
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– Part-of-speech embedding (vpos) is a vectorized tag for words (for terms of
other groups considering «unknown» tag);

– A0→A1 polarity embedding (vA0→A1) is a vectorized «positive» or «nega-
tive» value for frame entries whose description in RuSentiFrames provides
the corresponding polarity (otherwise considering «neutral» value); polarity
is inverted when an entry has “ ” (not) preposition.

Training. This process assumes hidden parameter optimization of a given
model. We utilize an algorithm described in [10]. The input is organized in
minibatches, where minibatch yields of l bags. Each bag has a set of t pairs
〈Xj , yj〉tj=1, where each pair is described by an input embedding Xj with the
related label yj ∈ R

c. The training process is iterative, and each iteration includes
the following steps:

1. Composing a minibatch of l bags of size t;
2. Performing forward propagation through the network which results in a vector

(size of q = l · t) of outputs ok ∈ R
c;

3. Computing cross entropy loss for output: Lk =
c∑

j=1

log p(yi|ok,j ; θ), k ∈ 1..q;

4. Composing cost vector {costi}li=1, costi = max
[
L(i−1)·t .. Li·t

)
to update

hidden variables set; costi is a maximal loss within i ’th bag;

Parameters Settings. The minibatch size (l) is set to 2, where contexts count
per bag t is set to 3. All the sentences were limited by 50 terms. For embedding
parameters (vd-obj , vd-subj , vsd-obj , vsd-subj , vpos, vA0→A1), we use randomly ini-
tialized vectors with size of 5. For CNN and PCNN context encoders, the size of
convolutional window and filters count (c) were set to 3 and 300 respectively. As
for parameters related to sizes of hidden states in Sect. 4: hmlp = 10, h = 128. For
feature attentive encoders, we keep frames in order of their appearance in context
and limit k by 5. We utilize the AdaDelta optimizer with parameters ρ = 0.95
and ε = 10−6 [15]. To prevent models from overfitting, we apply dropout towards
the output with keep probability set to 0.8. We use Xavier weight initialization
to setup initial values for hidden states [3].

6 Experiments

We conduct experiments with the RuSentRel4 corpus in following formats:

1. Using 3-fold cross-validation (CV), where all folds are equal in terms of the
number of sentences;

2. Using predefined train/test separation5.

4 https://github.com/nicolay-r/RuSentRel/tree/v1.1.
5 https://miem.hse.ru/clschool/results.

https://github.com/nicolay-r/RuSentRel/tree/v1.1
https://miem.hse.ru/clschool/results
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Table 1. Three class context classification results by F1 measure (RuSentRel dataset);
Columns from left to right: (I) average value in CV-3 experiment (F1avg) with results
on each split (F1icv, i ∈ 1..3); (II) results on train/test separation (F1TEST)

Model F1avg F11cv F12cv F13cv F1TEST

Att-BLSTM 0.314 0.35 0.27 0.32 0.35
Att-BLSTMz-yang 0.292 0.33 0.25 0.30 0.33
BiLSTM 0.286 0.32 0.26 0.28 0.34
IANef 0.289 0.31 0.28 0.27 0.32
IANends 0.286 0.31 0.26 0.29 0.32
LSTM 0.284 0.28 0.27 0.29 0.32
PCNNatt-ends 0.297 0.32 0.29 0.28 0.35
PCNNatt-ef 0.289 0.31 0.25 0.31 0.31
PCNN 0.285 0.29 0.27 0.30 0.32

In order to evaluate and assess attention-based models, we provide a list of
baseline models. These are independent encoders described in Sects. 4.1 and 4.2:
PCNN [10], LSTM, BiLSTM. In case of models with feature-based attentive
encoders (IAN∗, PCNN∗) we experiment with following feature sets: attitude
participants only (att-ends), and frames with attitude participants (att-ef). For
self-based attentive encoders we experiment with Att-BLSTM (Sect. 4.2) and
Att-BLSTMz-yang – is a bi-directional LSTM model with word-based attentive
encoder of HAN model [14].

Table 1 provides related results. For evaluating models in this task, we adopt
macroaveraged F1-score (F1) over documents. F1-score is considered averag-
ing of the positive and negative class. We measure F1 on train part every 10
epochs. The number of epochs was limited by 150. The training process termi-
nates when F1 on train part becomes greater than 0.85. Analyzing F1test results
it is quite difficult to demarcate attention-based models from baselines except
Att-BLSTM and PCNNatt-ends. In turn, average results by F1 in the case of
CV-3 experiments illustrate the effectiveness of attention application. The aver-
age increase in the performance of such models over related baselines is as follows:
1.4% (PCNN∗), 1.2% (IAN∗), and 5.9% (Att-BLSTM, Att-BLSTMz-yang)
by F1. The greatest increase in 9.8% by F1 is achieved by Att-BLSTM model.

7 Analysis of Attention Weights

According to Sects. 4.1 and 4.2, attentive embedding models perform the quan-
tification of terms in the context. The latter results in the probability distribution
of weights6 across the terms mentioned in a context.

6 We consider and analyze only context weights in case of IAN models.



Studying Attention Models in Sentiment Attitude Extraction Task 167

Fig. 5. Kernel density estimations (KDE) of context-level weight distributions of term
groups (from left to right: prep, frames, sentiment) across neutral (N) and sentiment
(S) context sets for models: PCNNatt-ef , IANef , Att-BLSTM; the probability range
(x-axis) scaled to [0, 0.2]; vertical lines indicate expected values of distributions

We utilize the test part of the RuSentRel dataset (Sect. 6) for analysis of
weight distribution of frames group, declared in Sect. 4, across all input con-
texts. We also introduce two extra groups utilized in the analysis by separating
the subset of words into prepositions (prep) and terms appeared in RuSentiLex
lexicon (sentiment) described in Sect. 3.

The context-level weight of a group is a weighted sum of terms which both
appear in the context and belong the corresponding term group. Figure 5 illus-
trates the weight distribution plots, where the models are organized in rows, and
the columns correspond to the term groups. Each plot combines distributions of
context-levels weights across:

– Neutral contexts – contexts, labeled as neutral;
– Sentiment contexts – contexts, labeled with positive or negative labels.

In Fig. 5 and further, the distribution of context-level weights across neu-
tral («N» in legends) and sentiment contexts («S» in legends) denoted as ρgN
and ρgS respectively. The rows in Fig. 5 correspond to the following models:
(1) PCNNatt-ef , (2) IANef , (3) Att-BLSTM. Analyzing prepositions (col-
umn 1) it is possible to see the lack of differences in quantification between
the ρprepN and ρprepS contexts in the case of the models (1) and (2). Another
situation is in case of the model (3), where related terms in sentiment contexts
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are higher quantified than in neutral ones. frames and sentiment groups are
slightly higher quantified in sentiment contexts than in neutral one in the case
of models (1) and (2), while (3) illustrates a significant discrepancy.

Overall, model Att-BLSTM stands out among others both in terms of
results (Sect. 6) and it illustrates the greatest discrepancy between ρN and ρS
across all the groups presented in the analysis (Fig. 5). We assume that the latter
is achieved due to the following factors: (I) application of bi-directional LSTM
encoder; (II) utilization of a single trainable vector (w) in the quantification
process (Fig. 4b) while the models of other approaches (AttCNN, IAN, and
Att-BLSTMz-yang) depend on fully-connected layers. Figure 6 shows examples
of those sentiment contexts in which the weight distribution is the largest among
the frames group. These examples are the case when both frame and attention
masks convey context meaning.

Fig. 6. Weight distribution visualization for model Att-BLSTM on sentiment con-
texts; for visualization purposes, weight of each term is normalized by maximum in
context

8 Conclusion

In this paper, we study the attention-based models, aimed to extract sentiment
attitudes from analytical articles. The described models should classify a con-
text with an attitude mentioned in it onto the following classes: positive, nega-
tive, neutral. We investigated two types of attention embedding approaches: (I)
feature-based, (II) self-based. We conducted experiments on Russian analytical
texts of the RuSentRel corpus and provide the analysis of the results. According
to the latter, the advantage of attention-based encoders over non-attentive was
shown by the variety in weight distribution of certain term groups between senti-
ment and non-sentiment contexts. The application of attentive context encoders
illustrates the classification improvement in 1.5–5.9% range by F1.
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Abstract. Curriculum Learning (CL) is the idea that learning on a
training set sequenced or ordered in a manner where samples range from
easy to difficult, results in an increment in performance over otherwise
random ordering. The idea parallels cognitive science’s theory of how
human brains learn, and that learning a difficult task can be made easier
by phrasing it as a sequence of easy to difficult tasks. This idea has gained
a lot of traction in machine learning and image processing for a while
and recently in Natural Language Processing (NLP). In this paper, we
apply the ideas of curriculum learning, driven by SentiWordNet in a sen-
timent analysis setting. In this setting, given a text segment, our aim is to
extract its sentiment or polarity. SentiWordNet is a lexical resource with
sentiment polarity annotations. By comparing performance with other
curriculum strategies and with no curriculum, the effectiveness of the
proposed strategy is presented. Convolutional, Recurrence and Atten-
tion based architectures are employed to assess this improvement. The
models are evaluated on standard sentiment dataset, Stanford Sentiment
Treebank.

Keywords: Curriculum Learning · Sentiment Analysis · Text
classification

1 Introduction

Researchers from Cognitive Science have established a long time ago that humans
learn better and more effectively in an incrementive learning setting [14,27].
Tasks like playing a piano or solving an equation, are learnt by humans in a
strategy where they are first provided easier variants of the main challenge, fol-
lowed by gradual variation in difficulty. This idea of incremental human learning
has been studied for machines as well, specifically in machine learning. Cur-
riculum Learning (CL) as defined by [3] introduce and formulate this concept
from Cognitive Science to a machine learning setting. They observe that on
shape recognition problem (rectangle, ellipse or triangle), training the model
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first on a synthetically created dataset with less variability in shape, generalizes
faster as compared to directly training on the target dataset. Furthermore, other
experiments by [3] demonstrate performance improvements on a perceptron clas-
sifier when incremental learning is done based on the margin in support vector
machines (SVM) and a language model task where growth in vocabulary size was
chosen as the curriculum strategy. These examples indicate that while curriculum
learning is effective, the choice of the curriculum strategy, the basis for order-
ing of samples is not clear cut and often task specific. Furthermore some recent
works like [21] have suggested that anti curriculum strategies perform better,
raising more doubts over choice of strategy. In recent years Self-Paced Learning
(SPL) [12,15] has been proposed as a reformulation of curriculum learning by
modeling the curriculum strategy and the main task in a single optimization
problem.

Sentiment Analysis (SA) is a major challenge in Natural Language Process-
ing. It involves classifying text segments into two or more polarities or senti-
ments. Prior to the success of Deep Learning (DL), text classification was dealt
using lexicon based features. However sentiment level information is realized at
more levels than just lexicon or word based. For a model to realize a negative sen-
timent for “not good”, it has to incorporate sequential information as well. Since
the advent of DL, the field has been revolutionized. Long Short Term Memory
[10,20] (LSTM), Convolutional Neural Networks (CNN) [13,19] and Attention
based architectures [32] have achieved state-of-art results in text classification
and continue to be strong baselines for text classification and by extension, Sen-
timent Analysis. Sentiment Analysis, further aids other domains of NLP such as
Opinion mining and Emoji Prediction [4].

Curriculum Learning has been explored in the domain of Computer Vision
(CV) extensively [11,16,18] and has gained traction in Natural Language Pro-
cessing (NLP) in tasks like Question Answering [25,26] and Natural Answer
Generation [17]. In Sentiment Analysis, [5] propose a strategy derived from sen-
tence length, where smaller sentences are considered easier and are provided first.
[9] provide a tree-structured curriculum based on semantic similarity between
new samples and samples already trained on. [31] suggest a curriculum based
on hand crafted semantic, linguistic, syntactic features for word representation
learning. However, these CL strategies pose the easiness or difficulty of a sam-
ple irrespective of sentiment. While their strategies are for sentiment analysis,
they do not utilize sentiment level information directly in building the order of
samples. Utilizing SentiWordNet, we can build strategies that are derived from
sentiment level knowledge.

SentiWordNet [1,8] is a highly popular word level sentiment annotation
resource. It has been used in sentiment analysis and related fields such as opin-
ion mining and emotion recognition. This resource was first created for English
and due to its success it has been extended to many other languages as well
[6,7,23,24]. This lexical resource assigns positivity, negativity and derived from
the two, an objectivity score to each WordNet synset [22]. The contributions of
the paper can be summarized as follow:
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– We propose a new curriculum strategy for sentiment analysis (SA) from Sen-
tiWordNet annotations.

– Existing curriculum strategies for sentiment analysis rank samples with a
difficulty score impertinent to the task of SA. Proposed strategy ranks samples
based on how difficult assigning them a sentiment is. Our results show such
a strategy’s effectiveness over previous work.

2 Problem Setting for Curriculum Learning

While Curriculum Learning as defined by [3] is not constrained by a strict
description, later related works [5,9,29] make distinctions between Baby Steps
curriculum and One-Pass curriculum. Since, these previous works have also
shown the dominance of Baby Steps over One-Pass, we use the former for pro-
posed SentiWordNet driven strategy. Baby Steps curriculum algorithm can be
defined as following. For every sentence si ∈ D, its sentiment is described as yi
∈ {0, 1, 2, 3, 4}1, where i ∈ {1, 2, .., n} for n data points in D. For a model fw, its
prediction based on si will be fw(si). Loss L is defined on the model prediction
and actual output as L(yi, fw(si)) and the net cost for the dataset is defined as
C(D, fw) as

∑
∀i

1
nL(yi, fw(si)). Then the task is modelled by

min
w

C(D, fw) + g(w) (1)

Where g(w) can be a regularizer. In this setting, Curriculum Learning is defined
by a Curriculum Strategy S(si). S defines an “easiness” quotient of sample si.
If the model is currently trained on D′ ⊂ D. Then sample sj ∈ D−D′ is chosen
based on S as:

sj = arg min
si∈D−D′

S(si) (2)

Sample sj is then added to the new training set or D′ = D′ + sj
2 and the

process continues until training is done on all the sentences in D. The process
starts with first training on a small subset of D, which have least S score. In
this way incremental learning is done in Baby Steps.

3 Experiments

3.1 Dataset

Following previous works in curriculum driven sentiment analysis [5,9,31] We
use the Stanford Sentiment Treebank (SST) dataset [28]3. Unlike most senti-
ment analysis datasets with binary labels, SST is for a 5-class text classification
which consists of 8544/1101/2210 samples in train, development and test set
respectively. We use this standard split with reported results averaged over 10
turns.
1 Our dataset has 5 labels.
2 Adding one sample at a time can be a very slow process, hence we add in batches.

For our experiments, we take a batch size of bs samples with lowest S to add at
once.

3 https://nlp.stanford.edu/sentiment/.

https://nlp.stanford.edu/sentiment/
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Table 1. Accuracy scores in percentage of all models on different strategies

Model SentiWordNet Curriculum
strategies sentence
length

No Curriculum

Kim CNN 41.55 40.81 40.59

LSTM 44.54 43.89 41.71

LSTM+Attention 45.27 42.98 41.66

3.2 Architectures

We test our curriculum strategies on popular recurrent and convolutional archi-
tectures used for text classification. It is imperative to note that curriculum
strategies are independent of architectures, they only decide the ordering of
samples for training. The training itself could be done with any algorithm.

Kim CNN. This baseline is based on the deep CNN architecture [13] highly
popular for text classification.

LSTM. We employ Long Short Term Memory Network (LSTM) [10] for text
classification. Softmax activation is applied on the final timestep of the LSTM
to get final output probability distributions. Previous approach [5] uses LSTM
for this task as well with sentence length as curriculum strategy.

LSTM+Attention. In this architecture we employ attention mechanism
described in [2] over the LSTM outputs to get a single context vector, on which
softmax is applied. In this baseline, attention mechanism is applied on the top of
LSTM outputs across different timesteps. Attention mechanism focuses on most
important parts of the sentence that contribute most to the sentiment, especially
like sentiment words.

3.3 Implementation Details

We used GloVe pretrained word vectors4 for input embeddings on all architec-
tures. The size of the word embeddings in this model is 300. A maximum sentence
length of 50 is considered for all architectures. Number of filters taken in the CNN
model is 50 with filter size as 3, 4, 5. We take number of units in the LSTM to be
168, following previous work [30] for empirical setup. For the LSTM + Attention
model, we take number of units in the attention sub network to be 10. Cate-
gorical crossentropy as the loss function and Adam with learning rate of 0.01 as
optimizer is used. The batch size bs defined in curriculum learning framework is

4 https://nlp.stanford.edu/data/glove.840B.300d.zip.

https://nlp.stanford.edu/data/glove.840B.300d.zip
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900 for Sentence Length Strategy in LSTM and LSTM+Attention, and 750 for
CNN. For SentiWordNet strategy, it is 1100 for LSTM and LSTM+Attention,
and 1400 for CNN.

3.4 Curriculum Strategies

In this section we present the proposed SentiWordNet driven strategy followed
by a common strategy based on sentence length.

SentiWordNet Driven Strategy. We first train an auxiliary feed forward
model Aux for sentiment analysis on the same dataset utilizing only SentiWord-
Net features. This allows us to find out which training samples are actually
difficult. Following are the features we use for the auxiliary model:

– Sentence Length l: For a given sentence, this feature is just the number of
words after tokenization.

– Net Positivity Score P : For a given sentence, this is the sum of all positivity
scores of individual words.

– Net Negativity Score N : For a given sentence, this is the sum of all negativity
scores of individual words.

– Net Objectivity Score O: For a given sentence, this is the sum of all objectivity
scores of individual words.5. This feature is meant to show how difficult it is
to tell the sentiment of a sentence.

– Abs. Difference Score: This score is the absolute difference between Net Pos-
itivity and Net Negativity Scores or AD = |P −N |. This feature is meant to
reflect overall sentiment of the sentence.

– Scaled Positivity: Since the Net Positivity may increase with number of words,
we also provide the scaled down version of the feature or P

l .
– Scaled Negativity: For the same reason as above, we also provide N

l .
– Scaled Objectivity: Objectivity scaled down with sentence length or O

l .
– Scaled Abs Difference: Abs. Difference D scaled down with sentence length

or AD
l .

Since all the features lie in very different ranges, before passing for training to
the architectures they are normalized between −1 and 1 first with mean 0. Also
important to note is that, the SentiWordNet scores are for a synset and not for
a word. In essence, a word may have multiple scores. In such cases, positivity,
negativity and objectivity scores are averaged for that word. We use a simple
feed forward network to train this auxiliary model with final layer as a softmax
layer6. We get an accuracy of just 25.34 on this model, significantly lesser than
performances we see by LSTM and CNN in No Curriculum setting as seen in
Table 1. But the performance doesn’t actually matter. From this model, we learn

5 Note that for an individual word, The Objectivity score is just 1 - Negativity Score
- Positivity Score.

6 The number of layer units are as follows: [8, 100, 50, 5].
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what samples are the most difficult to classify and what are the easiest. For all
8544 training samples of D, we define the curriculum score as follows:

S(si) =
c∑

j

(Aux(si)j − yji )
2 (3)

where Aux(si)j is the prediction of auxiliary model Aux on sentence si, j is the
iterator over the number of classes c = 5. In essence, we find the mean squared
error between the prediction and the sentence’s true labels. If S(si) is high, it
implies the sentence is hard to classify and if less, then the sentence is easy.
Because the features were trained on an auxiliary model from just SentiWord-
Net features, we get an easiness-difficulty score purely from the perspective of
sentiment analysis.

Sentence Length. This simple strategy tells that, architectures especially like
LSTM find it difficult to classify sentences which are longer in length. And
hence, longer sentences are difficult and should be ordered later. Conversely
shorter sentence lengths are easier and should be trained first. This strategy is
very common and has not only been used in sentiment analysis [5]7 but also in
dependency parsing [29]. Which is why it becomes a strong baseline especially
to evaluate the importance of SentiWordNet driven strategy.

4 Results

We report our results in Table 1. As evident from the table, we see that pro-
posed SentiWordNet based strategy beats Sentence Length driven and No Cur-
riculum always. However, the difference between them is quite less for the CNN
model. This must be because, CNN for this dataset is worse of all other models
without curriculum, this architecture finds it difficult to properly classify, let
alone fully exploit curriculum strategies for better generalization. Furthermore,
another reason behind effectiveness of Sentence Length strategy for LSTM and
LSTM+Attention is that, considering the LSTM’s structure which observes one
word at a time, its only natural that longer sequences will be hard to remember,
hence Sentence Length ordering acts as a good curriculum basis. This idea has
also been referenced by previous works such as [5]. Since Attention mechanism
observes all time steps of the LSTM, the difficulty in longer sentence lengths
diminishes and hence the improvement in performance with Sentence Length
strategy is lesser as compared to LSTM. Sentence Length driven Strategy, while
performing better in LSTM and LSTM+Attention model, is still less than Sen-
tiWordNet, this is because sentence length strategy defines difficulty and easi-
ness in a more global setting, not specific to sentiment analysis. However, with
SentiWordNet we define a strategy which characterizes the core of curriculum

7 [5] have done CL on SST as well, however our numbers do not match because they
use the phrase dataset which is much larger.
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learning in sentiment analysis, namely the strategy for ranking samples based
solely on how difficult or easy it is to classify the sample into predefined senti-
ment categories.

5 Conclusion

In this paper, we define a SentiWordNet driven strategy for curriculum learning
on sentiment analysis task. The proposed approach’s performance is evident
on multiple architectures, namely recurrent, convolution and attention based
proving the robustness of the strategy. This approach also shows the effectiveness
of simple lexicon based annotations such as SentiWordNet and how they can be
used to further sentiment analysis. Future works could include strategies that
consecutively enrich SentiWordNet as well and also those that can refine the
resource by pointing out anomalies in the annotation.
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Abstract. Users play a critical role in the creation and propagation of
fake news online by consuming and sharing articles with inaccurate infor-
mation either intentionally or unintentionally. Fake news are written in
a way to confuse readers and therefore understanding which articles con-
tain fabricated information is very challenging for non-experts. Given the
difficulty of the task, several fact checking websites have been developed
to raise awareness about which articles contain fabricated information.
As a result of those platforms, several users are interested to share posts
that cite evidence with the aim to refute fake news and warn other users.
These users are known as fact checkers. However, there are users who
tend to share false information, who can be characterised as potential
fake news spreaders. In this paper, we propose the CheckerOrSpreader
model that can classify a user as a potential fact checker or a poten-
tial fake news spreader. Our model is based on a Convolutional Neural
Network (CNN) and combines word embeddings with features that repre-
sent users’ personality traits and linguistic patterns used in their tweets.
Experimental results show that leveraging linguistic patterns and per-
sonality traits can improve the performance in differentiating between
checkers and spreaders.

Keywords: Fact checkers detection · Personality traits · Linguistic
patterns

1 Introduction

Although fake news, rumours and conspiracy theories exist for a long time, the
unprecedented growth of social media has created a prosper environment for
their propagation. Fake news are propagated rapidly in social media and indeed
faster than real news [29]. Inaccurate and fabricated information can negatively
influence users’ opinions on different aspects, ranging from which political party
to vote to doubting about the safety of vaccination. For example, research has
c© Springer Nature Switzerland AG 2020
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shown how medical misinformation can result to false treatment advice [17],
whereas in the political domain, several researchers have underlined the influence
of fake news on elections and referendums [2,5].

Users play a critical role in all the different phases of the fake news cycle, from
their creation to their propagation. However, users are dealing with an incredible
huge amount of information everyday coming from different sources. Therefore,
parsing this information and understanding if it is correct and accurate is almost
impossible for the users who are non-experts. On the other side, experts such
as journalists have the appropriate background to find relevant information and
judge the credibility of the different articles and sources. In an attempt to raise
awareness and inform users about pieces of news that contain fake information,
several platforms (e.g., snopes1, politifact2, leadstories3) have been developed.
These platforms employ journalists or other domain experts who thoroughly
examine the claims and the information presented in the articles before they
label them based on their credibility.

The advent of the fact checking platforms have resulted in a new type of social
media users who have showed interest in halting the propagation of fake news.
Users who consume and share news from social media can be roughly classified
in the following two categories; (i) users that tend to believe some of the fake
news and who further share them intentionally or unintentionally, characterised
as potential fake news spreaders, and (ii) users who want to raise awareness
and tend to share posts informing that these articles are fake, characterised as
potential fact checkers4.

Even the detection of fake news has received a lot of research attention, the
role of the users is still under-explored. The differentiation between checkers and
spreaders is an important task and can further help in the detection of fake
news5. This information can be further used by responsible recommendation
systems to suggest to users that tend to share fake news, news articles from
reliable sources in order to raise their awareness. Also, these systems should be
regularly updated regarding the information they have for the users given that
users can learn to better identify fake news.

We believe that checkers are likely to have a set of different characteristics
compared to spreaders. For example, it is possible that checkers use different
linguistic patterns when they share posts and have different personality traits
compared to spreaders. We use the posts (i.e., tweets) of the users to extract a
range of linguistic patterns and to infer their personality traits. We use Linguistic
Inquiry and Word Count (LIWC) [18] to extract psychometric and linguistic style
patterns of the posts and a vectorial semantics approach proposed by Neuman
and Cohen [16] to infer the personality trait of the users.

1 https://www.snopes.com.
2 https://www.politifact.com/.
3 https://leadstories.com/.
4 For brevity we will refer to the users that have the tendency to share fake news as
spreaders and to those that check the factuality of articles as checkers.

5 Here we should note that in this paper we focus only in the classification at a user
level and we leave the exploration of the role of users at a post level as a future work.

https://www.snopes.com
https://www.politifact.com/
https://leadstories.com/
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The contributions of this paper can be summarised as follows:

– We create a collection that contains sets of tweets that are published by two
different groups of social media users; users that tend to share fact check
tweets (checkers) and those that tend to share fake news (spreaders).

– We extract different linguistic patterns and infer personality traits from the
tweets posted by users to study their impact on classifying a user as a checker
or spreader.

– We propose CheckerOrSpreader, a model based on a CNN network and hand-
crafted features that refer to the linguistic patterns and personality traits, and
which aims to classify a user as a potential checker or spreader.

The rest of the paper is organised as follows. Section 2 discusses related work
on fake news detection. In Sect. 3 we present the collection and the process we
followed to create it. Next we present the CheckerOrSpreader model in Sect. 4.
Section 5 presents the evaluation process and the evaluation performance of
the approach. Finally, Sect. 6 discusses the limitations and the ethical concerns
regarding our study followed by the conclusions and future work in Sect. 7.

2 Related Work

The detection of fake news has attracted a lot of research attention. Among
other problems, researchers have tried to address bot detection [22], rumour
detection [21] and fact checking [7]. Many of the proposed works have explored
a wide range of linguistic patterns to detect fake news such as the number of
pronouns, swear words or punctuation marks. Rashkin et al. [23] compared the
language of real news with that of satire, hoaxes, and propaganda based on
features they extracted with the LIWC software [18]. Emotions and sentiment
have been shown to play an important role in various classification tasks [6,9]. In
case of fake news, Vosoughi et al. [29] showed that they trigger different emotions
than real news. In addition, Ghanem et al. [8] explored the impact of emotions
in the detection of the different types of fake news, whereas Giachanou et al. [10]
analysed the effect of emotions in credibility detection.

Users are involved in various steps in the life cycle of fake news, from creating
or changing information to sharing them online. The tendency of some users
to believe fake news depends on a range of different factors, such as network
properties, analytical thinking or cognitive skills [20]. For example, Shu et al. [26]
analysed different features, such as registration time and found that users that
share fake news have more recent accounts than users who share real news. Vo
and Lee [28] analysed the linguistic characteristics (e.g., use of tenses, number
of pronouns) of fact checking tweets and proposed a deep learning framework to
generate responses with fact checking intention.

The personality of the users is also likely to have an impact on the tendency
of some users to believe fake news. A traditional way to measure the personality
traits is via explicit questionnaires that persons are asked to fill. A number of
researchers have employed those questionnaires and tried to find the relation
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between personality traits and the use of social media [3,25] or information
seeking behavior [12].

With all the advancements in Natural Language Processing, several studies
have claimed that personality traits can also be inferred from the text gener-
ated by the user. In particular, several studies have addressed the problem of
personality detection as a classification or a regression task based on text and
conversations generated by the users [1,24]. In the present work, we use the posts
that are written by users to extract linguistic patterns based on LIWC [18] and
to infer their personality traits based a vectorial semantics approach proposed by
Neuman and Cohen [16]. Differently from previous works, we explore the impact
of those characteristics on classifying a user as a potential fake news spreader
and fact checker based on the posts that he/she published.

3 Collection

There are different collections built in the field of fake news [27,28,30]. However,
the majority of the previous datasets focus on the classification of the article as
fake or not [27,30]. Vo and Lee [28] focus on fact checking but they collect fact
check tweets and not previous tweets posted by the users. To the best of our
knowledge, there is no collection that we can use for the task of differentiating
users as checkers and spreaders. Therefore, we decided to build our own collec-
tion6. To build the collection, we first collect articles that have been debunked
as fake from the Lead Stories website7. Crawling articles from fact check web-
sites is the most popular way to collect articles since they are already labeled by
experts. This approach has been already used by other researchers in order to
create collections [27]. In total, we collected 915 titles of articles that have been
labeled as fake by experts. Then, we removed stopwords from the headlines and
we used the processed headlines to search for relevant tweets. Figure 1 shows the
pipeline that we used to create the collection.

To extract the tweets we use Twitter API. In total we collected 18,670 tweets
that refer to the articles from Lead Stories. For some of the articles we managed
to collect a high number of tweets, whereas other articles were not discussed a
lot in Twitter. Table 1 shows examples of the articles for which we collected the
highest and lowest number of tweets. From this table, we observe that the most
popular article was about a medical topic and for which we collected 1,448 tweets.
In addition, Fig. 2 shows the number of collected tweets per article. We observe
that the frequencies follow a heavy-tailed distribution since a lot of tweets were
posted for few articles and very few tweets for a lot of articles.

The tweets that we collected can be classified in two categories. The first cat-
egory contains tweets that debunk the original article by claiming its falseness
(fact check tweet), and usually citing one of the fact checking websites (snopes,
politifact or leadstories). The second category contains tweets that re-post the
article (spreading tweet) implying its truthfulness. To categorise the tweets into
6 The collection and the code will be available upon acceptance.
7 https://leadstories.com/.

https://leadstories.com/


Discriminating Between Fake News Spreaders and Fact Checkers 185

Fig. 1. Pipeline for the creation of the collection.

Table 1. Titles of the articles with the highest and lowest number of tweets.

Titles of articles with the highest
number of tweets

Titles of articles with the lowest number
of tweets

1. Doctors Who Discovered Cancer
Enzymes In Vaccines NOT All Found
Murdered

1. Make-A-Wish Did NOT Send
Terminally Ill Spider-Man To Healthy
Kid

2. Sugar Is NOT 8 Times More
Addictive Than Cocaine

2. Man Did NOT Sue Radio Station For
Playing Despacito 800 Times A Day

3. George H.W. Bush Did NOT Die at 93 3. Man-Eating Shark NOT Spotted In
Ohio River

4. NO Alien Invasion This Is NOT Real 4. FBI DID NOT Classify President
Obama As A Domestic Terrorist

5. First Bee Has NOT *Just* Been
Added to Endangered Species List

5. Will Smith IS NOT Leaving America
With His Family Never To Come Back

fact check and spreading tweets, we follow a semi-automated process. First, we
manually identify specific patterns that are followed in the fact check tweets.
According to those rules, if a tweet contains any of the terms {hoax, fake, false,
fact check, snopes, politifact leadstories, lead stories} is a fact check tweet, oth-
erwise it is a spreading tweet.

Figure 3 shows some examples of articles debunked as fake together with fact
check and spreading tweets. We notice that in the fact check tweets we have
terms such as fake, false and fact check, whereas in the spreading tweets we have
re-posts of the specific article. Then, we manually checked a sample of the data
to check if there are any wrong annotations. We manually checked 500 tweets
and we did not find any cases of misclassification.

After the annotation of the tweets, we annotate the authors of the tweets as
checkers or spreaders based on the number of fact check and spreading tweets
they posted. In particular, if a user has both fact check and spreading tweets,
then we consider that this user belongs to the category for which he/she has the
larger number of tweets.
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Fig. 2. Frequency distribution regarding of the number of tweets per article.

Finally, we collect the timeline tweets that the authors have posted to create
our collection. In total, our collection contains tweets posted by 2,357 users, of
which 454 are checkers and 1,903 spreaders.

4 CheckerOrSpreader

In this section, we present the CheckerOrSpreader system that aims to differ-
entiate between checkers and spreaders. CheckerOrSpreader is based on a Con-
volutional Neural Network (CNN). The architecture of the CheckerOrSpreader
system is depicted in Fig. 4.

CheckerOrSpreader consists of two different components, the word embed-
dings and the user’s psycho-linguistic component. The embeddings component
is based on the tweets that users have posted on their timeline. The psycho-
linguistic component represents the psychometric and linguistic style patterns
and the personality traits that were derived from the textual content of the
posts.

To extract the linguistic patterns and the personality traits we use the fol-
lowing approaches:

– Linguistic patterns: For the linguistic patterns, we employ LIWC [18] that
is a software for mapping text to 73 psychologically-meaningful linguistic
categories8. In particular, we extract pronouns (I, we, you, she/he, they),
personal concerns (work, leisure, home, money, religion, death), time focus
(past, present, future), cognitive processes (causation, discrepancy, tentative,
certainty), informal language (swear, assent, nonfluencies, fillers), and affec-
tive processes (anxiety).

– Personality scores: The Five-Factor Model (FFM) [13], also called the Big
Five, constitutes the most popular methodology used in automatic person-
ality research [15]. In essence, it defines five basic factors or dimensions of
personality. These factors are:

8 For a comprehensive list of LIWC categories see: http://hdl.handle.net/2152/31333.

http://hdl.handle.net/2152/31333
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Fig. 3. Examples of fact check and spreading tweets.

• openness to experience (unconventional, insightful, imaginative)
• conscientiousness (organised, self-disciplined, ordered)
• agreeableness (cooperative, friendly, empathetic)
• extraversion (cheerful, sociable, assertive)
• neuroticism (anxious, sad, insecure)

Each of the five factors presents a positive and a complementary negative
dimension. For instance, the complementary aspect to neuroticism is defined
as emotional stability. Each individual can have a combination of these dimen-
sions at a time. To obtain the personality scores, we followed the approach
developed by Neuman and Cohen [16]. They proposed the construction of a
set of vectors using a small group of adjectives, which according to theoretical
and/or empirical knowledge, encode the essence of personality traits and per-
sonality disorders. Using a context-free word embedding they measured the
semantic similarity between these vectors and the text written by different
individuals. The similarity scores derived, allowed to quantify the degree in
which a particular personality trait or disorder was evident in the text.

Fig. 4. Architecture of the CheckerOrSpreader model.
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Table 2. Parameter optimisation for the different tested systems.

Filters sizes # of filters Activation Optimiser Epochs

LSTM 64 (lstm units) tanh rmsprop 12

CNN 3,4 16 relu adadelta 10

CNN+LIWC 3,4 32 relu adadelta 15

CNN+personality 3,5 16 relu adam 8

CheckerOrSpreader 4,5 32 relu adam 13

5 Experiments

In this section we describe the experimental settings, the evaluation process and
the results of our experiments.

5.1 Experimental Settings

For our experiments, we use 25% of our corpus of users for validation, 15% for
test and the rest for the training. We initialize our embedding layer with the
300-dimensional pre-trained GloVe embeddings [19]. We allow the used embed-
dings to be tuned during the training process to fit more our training data. It’s
worth to mention that at the beginning of our experiments, we tested another
version of our system by replacing the CNN with an Long Short-Term Memory
(LSTM) network. The overall results showed that the CNN performs better for
the particular task.

To find the best parameters of the different approaches on the validation set,
we use the hyperopt library9. Table 2 shows the optimisation parameters for each
approach.

5.2 Evaluation

For the evaluation, we use macro-F1 score. We use the following baselines to
compare our results:

– SVM+BoW is based on Support Vector Machine (SVM) classifier trained on
bag of words using Term Frequency - Inverse Document Frequency (Tf-Idf)
weighting scheme.

– Logistic Regression trained on the different linguistic and personality scores
features. In particular, we tried sentiment, emotion, LIWC and personality
traits. For emotions we use NRC emotions lexicon [14] and we extracted anger,
anticipation, disgust, fear, joy, sadness, surprise, and trust. We use the same
lexicon to estimate the positive and negative sentiment in users’ tweets.

9 https://github.com/hyperopt/hyperopt.

https://github.com/hyperopt/hyperopt
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– Universal Sentence Encoder (USE) [4]: For the USE baseline, we represent
the final concatenated documents (tweets) using USE embeddings10.

– LSTM : is based on a LSTM network with Glove pre-trained word embeddings
for word representation.

– CNN : is a CNN with Glove pre-trained word embeddings for word represen-
tation.

5.3 Results

Table 3 shows the results of our experiments. We observe that CNN performs bet-
ter than LSTM when they are trained only using word embeddings. In particular,
CNN outperforms LSTM by 20.41%. Also, we observe that Logistic Regression
achieves a low performance when it is trained with the different psycho-linguistic
features. The best performance regarding Logistic Regression is achieved with
the linguistic features extracted with LIWC.

Table 3. Performance of the different systems on the fact checkers detection task.

F1-score

SVM+BoW 0.48

USE 0.53

LR+emotion 0.45

LR+sentiment 0.44

LR+LIWC 0.50

LR+personality 0.44

LSTM 0.44

CNN 0.54

CNN+LIWC 0.48

CNN+personality 0.57

CheckerOrSpreader 0.59

From Table 3 we also observe that combining CNN with the personality traits
leads to a higher performance compared to combining CNN with the LIWC
features. In particular, CNN+personality outperforms CNN+LIWC by 17.14%.
This is an interesting observation that shows the importance of considering per-
sonality traits of users for their classification in checkers and spreaders.

Also, the results show that CheckerOrSpreader (CNN+personality+LIWC)
achieves the best performance. In particular, CheckerOrSpreader manages to
improve the performance by 8.85% compared to the CNN baseline and by 3.45%
compared to the CNN+personality version.

10 https://tfhub.dev/google/universal-sentence-encoder-large/3.

https://tfhub.dev/google/universal-sentence-encoder-large/3
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6 Limitations and Ethical Concerns

Even if our study can provide valuable insights regarding the profile of spreaders
and their automated detection, there are some limitations and ethical concerns.
One limitation of our study is the use of an automated tool to infer the person-
ality traits of the users based on the tweets that they have posted. Even if this
tool has been shown to achieve good prediction performance, it is still prone to
errors similar to all the automated tools. That means that some of the predictions
regarding the personality traits that were inferred from the tweets might not be
completely accurate. However, it is not possible to evaluate the performance of
this tool on our collection since we do not have ground truth data regarding the
users’ personality traits. An alternative way to obtain information regarding the
personality traits would be to contact these users and ask them to fill one of the
standard questionnaires (e.g., IPIP questionnaire [11]) that have been evaluated
based on several psychological studies and tend to have more precise results.
However, the feasibility of this approach depends on the willingness of the users
to fill the questionnaire.

Our study has also some ethical concerns. We should mention that the aim of
a system that can differentiate between potential checkers and spreaders should
be used by no means to stigmatise the users that have shared in the past fake
news. On the contrary, such a tool should be used only for the benefit of the
users. For example, it could be used as a supportive tool to prevent propagation
of fake news and to raise awareness to users. We also want to highlight that a
system that differentiates users to potential spreaders and checkers requires to
consider ethics at all steps.

This study has also some ethical concerns regarding the collection and the
release of the data. First, we plan to make this collection available only for
research purposes. To protect the privacy of users, we plan to publish the data
anonymized. Also, we plan to use neutral annotation labels regarding the two
classes (i.e., 0 and 1 instead of checker and spreader) since we do not want to
stigmatise specific users. Future researchers that want to use the collection will
not have access to the information of which class each label refers to. Finally,
we will not make available the labels at a post level since this information can
reveal the information regarding the annotation labels at a user level.

7 Conclusions

In this paper, we focused on the problem of differentiating between users that
tend to share fake news (spreaders) and those that tend to check the factuality of
articles (checkers). To this end, we first collect articles that have been manually
annotated from experts as fake or fact and then we detect the users on Twit-
ter that have posts about the annotated articles. In addition, we propose the
CheckerOrSpreader model that is based on a CNN network. CheckerOrSpreader
incorporates the linguistics patterns and the personality traits of the users that
are inferred from users’ posts to decide if a user is a potential spreader or checker.
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Experimental results showed that linguistic patterns and the inferred personality
traits are very useful for the task.

In future, we plan to investigate how the linguistic and personality informa-
tion that is extracted from users’ posts can be incorporated into the systems
that detect fake news.
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Ocosingo-Altamirano, 29950 Ocosingo, Mexico

Abstract. The area of Computational Creativity has received much
attention in recent years. In this paper, within this framework, we pro-
pose a model for the generation of literary sentences in Spanish, which is
based on statistical algorithms, shallow parsing and the automatic detec-
tion of personality features of characters of well known literary texts. We
present encouraging results of the analysis of sentences generated by our
methods obtained with human inspection.
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1 Introduction

Automatic Text Generation (ATG) is a task that has been widely studied
by researchers in the area of Natural Language Processing (NLP) [13,20–23].
Results from several investigations have presented very encouraging results that
have allowed the establishment of progressively more challenging objectives in
this field. Currently, the scope of ATG is being expanded and there is much recent
work that aims at generating text related to a specific domain [8,10,18]. In this
research, algorithms have been developed, oriented to such diverse purposes as
creating chat-bots for customer service in commercial applications, automatic
generation of summaries for academic support, or developing generators of lit-
erary poetry, short stories, novels, plays and essays [3,17,25].

The creation of a literary text is particularly interesting and challenging,
when compared to other types of ATG, as these texts are not universally and
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perpetually perceived. Furthermore, this perception can also vary depending
on the reader’s mood. It can thus can be assumed that literary perception is
subjective and from this perspective, it is difficult to ensure that text generated
by an algorithm will be perceived as literature. To reduce this possible ambiguity
regarding literary perception, we consider that literature is regarded as text that
employs a vocabulary which may be largely different from that used in common
language and that it employs various writing styles, such as rhymes, anaphora,
etc. and figures of speech, in order to obtain an artistic, complex, possibly elegant
and emotional text [11]. This understanding gives us a guide for the development
of our model whereby literary sentences can be generated.

We present here a model for the generation of literary text (GLT) in Spanish
which is guided by psychological characteristics of the personality of characters
in literature. The model is based on the assumption that these psychological
traits determine a person’s emotions and speech. We thus generate literary sen-
tences based upon a situation or context, and also on psychological traits. It is
then possible to perform an analysis of the personality of a character through
the author’s writing, considering parts of speech such as verbs, adjectives, con-
junctions, and the spinning of words or concepts, as well as other characteristics.

In Sect. 2, we present a review of the main literature that has addressed top-
ics related to ATG, with focus on those that proposed methods and algorithms
integrated into this work. We describe the corpus used to train our models in
Sect. 3. Section 4 describes in detail the methodology followed for the develop-
ment of our model. In Sect. 5, we show some experiments, as well as the results
of human evaluations of the generated sentences. Finally, in Sect. 6 we present
our conclusions.

2 Related Work

The task of ATG has been widely addressed by the research community in
recent years. In [21], Szymanski and Ciota presented a model based on Markov
sequences for the stochastic generation of text, where the intention is to generate
grammatically correct text, although without considering a context or mean-
ing. Shridaha et al. [20] present an algorithm to automatically generate descrip-
tive summary comments for Java methods. Given the signature and body of a
method, their generator identifies the content for the summary and generates
natural language text that summarizes the method’s overall actions.

Work with an artistic, literary approach has also been developed for GLT.
The works of Riedl and Young [17] and Clark, Ji and Smith [3] propose stochastic
models, based on contextual analysis, for the generation of fictional narratives
(stories). Zhang and Lapata [25] use neural networks and Oliveira [12,13] uses
the technique of canned text for generating poems. Some research has achieved
the difficult task of generating large texts, overcoming the barrier of phrases and
paragraphs, such as the MEXICA project [15].

Personality analysis is a complicated task that can be studied from different
perspectives (see [19,24] and references therein). Recent research has investi-
gated the relation between the characteristics of literary text and personality,
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which can be understood as the complex of the behavioural, temperamental,
emotional and mental attributes that characterise a unique individual [6,7]. In
[7], a type of personality is detected from the analysis of a text, using an artificial
neural network (ANN), which classifies text into one of five personality classes
considered by the authors (Extroversion, Neuroticism, Agreeableness, Conscien-
tiousness, Openness). Some characteristics that are considered by the authors
are writing styles and relationships between pairs of words.

3 Corpus

We have built two corpora in Spanish consisting of the main works of Johann
Wolfgang von Goethe and Edgar Allan Poe, called cGoethe and cPoe, respec-
tively. These corpora are analyzed and used to extract information about the
vocabulary used by these authors. We later chose an important work for each
author where the emotions and feelings, i.e. psychological traits, of main char-
acters are easily perceived by readers. For Goethe, we selected the novel The
Sorrows of Young Werther [5] and for Poe, we selected the story The Cask of
Amontillado [16], both in their Spanish version. The two corpora generated from
these literary works were used to extract sentences, that were later used as a
basis for the generation of new sentences, as we describe in Sect. 4.1. We also use
the corpora 5KL described in [11] for the final phase of the sentence generation
procedure described in 4.2.

To build the cGoethe and cPoe corpora, we processed each constituent lit-
erary work (originally found in heterogeneous formats), creating a single docu-
ment for each corpus, encoded in utf8. This processing consisted of automatically
segmenting the phrases into regular expressions, using a program developed in
PERL 5.0, to obtain one sentence per line in each corpus.

From the segmented phrases in cGoethe and cPoe, we selected only those
that belong to the works The Sorrows of Young Werther (set 1) and The Cask of
Amontillado (set 2). From sets 1 and 2, we manually extracted phrases that we
considered to be very literary, to form two new corpora, cWerther and cCask,
respectively. In this step, we chose phrases with complex vocabulary, a directly
expressed message and some literary styles like rhymes, anaphoras, etc. Table 1
shows basic statistical information of the cGoethe and cPoe corpora. Table 2,
shows similar information for cWerther and cCask. Table 3 shows statistical
information of the 5KL corpus. The 5KL corpus contains approximately 4 000
literary works, some originally written in Spanish and the rest in their trans-
lations to Spanish, from various authors and different genres, and is extremely
useful, as it consists of an enormous vocabulary, that forms a highly representa-
tive set to train our Word2vec based model, described in Sect. 4.

4 Model

We now describe our proposed model for the generation of literary phrases in
Spanish, which is an extension of Model 3 presented in [11]. The model consists
of two phases described as follows. In the first phase, the Partially Empty
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Table 1. Corpora formed by main works of each author. K represents one thousand
and M represents one million.

Sentences Tokens Characters

cPoe 5 787 70 K 430 K

Average for sentence – 12 74

cGoethe 19 519 340 K 2 M

Average for sentence – 17 103

Table 2. Corpora of literary phrases of one selected work.

Sentences Tokens Characters

cCask 141 1 856 11 469

Average for sentence – 13 81

cWerther 134 1 635 9 321

Average for sentence – 12 69

Grammatical Structures (PGSs), each composed by elements constituted either
by parts of speech (POS) tags or function words1, are generated. A PGS is
constructed, through a morphosyntactic analysis made with FreeLing2, for each
phrase of the corpora cWerther and cCask, described in the Sect. 3. The POS
tags of these PGSs are replaced by words during the second phase.

FreeLing [14] is a commonly used tool for morphosyntactic analysis, which
receives as input a string of text and returns a POS tag as output, for each word
in the string. The POS tag indicates the type of word (verb, noun, adjective,
adverb, etc.), and also information about inflections, i.e., gender, conjugation and
number. For example, for the word “Investigador” FreeLing generates the POS
tag [NCMS000]. The first letter indicates a Noun, the second a Common noun,
M stands for Male gender and the fourth gives number information (Singular).
The last 3 characters give information about semantics, named entities, etc. We
will use only the first 4 symbols of the POS tags.

Table 3. Corpus 5KL, composed of 4 839 literary works.

Sentences Tokens Characters

5KL 9 M 149 M 893 M

Average for sentence 2.4 K 37.3 K 223 K

1 Function words (or functors) are words that have little or ambiguous meaning and
express grammatical relationships among other words within a sentence, or specify
the attitude or mood of the speaker, such as prepositions, pronouns, auxiliary verbs,
or conjunctions.

2 FreeLing can be downloaded from: http://nlp.lsi.upc.edu/freeling.

http://nlp.lsi.upc.edu/freeling
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In the second phase, each POS tag in the PGSs are replaced by a corre-
sponding word, using a semantic approach algorithm based on an ANN model
(Word2vec3). Corpus 5KL, described in Sect. 3, was used for training Word2vec,
as well as the following parameters: only words with more than 5 occurrences in
5KL were considered, the size of the context window is 10, the dimensions of
the vector representations were tested within a range of 50 to 100, being 60 the
dimension with the best results. The Word2vec model we have used is the con-
tinuous skip-gram model (Skip-gram), which receives a word (Query) as input
and, as output, returns a set of words (embeddings) semantically related to the
Query. The process for the generation of sentences is described in what follows.

4.1 Phase I: PGS Generation

For the generation of each PGS, we use methods guided by fixed morphosyntactic
structures, called Template-based Generation or canned text . In [10], it is argued
that the use of these techniques saves time in syntactic analysis and allows one
to concentrate directly on the vocabulary. The canned text technique has also
been used in several works, with specific purposes, such as in [4,8], where the
authors developed models for the generation of simple dialogues and phrases.

We use canned text to generate text based on templates obtained from cCask
and cWerther. These corpora contain flexible grammatical structures that can
be manipulated to create new phrases. The templates in a corpus can be selected
randomly or through heuristics, according to a predefined objective. The process
starts with the random selection of an original phrase fo ∈ corpus of length
N = |fo|. A template PGS is built from the words of fo, where content words,
verbs (v), nouns (n) or adjectives (a), are replaced by their respective POS tags
and function words are retained. fo is analyzed with FreeLing and words with
“values” in {v, n, a} are replaced by their respective POS tags. These content
words provide most of the information in any text, regardless of their length or
genre [2]. Our hypothesis is that by changing only content words, we simulate
the generation of phrases by homo-syntax: different semantics, same structure.
The output of this process is a PGS with function words that give grammatical
support and POS tags that will be replaced, in order to change the meaning of
the sentence. Phase I is illustrated in Fig. 1, where full boxes represent function
words and empty boxes represent POS tags.

4.2 Phase II: Semantic Analysis and Substitution of POS Tags

In this phase, the POS tags of the PGS generated in Phase I are replaced.
Tags corresponding to nouns are replaced with a vocabulary close to the context
defined by the user (the query), while verbs and adjectives are replaced with a
vocabulary more similar in meaning to the original terms of fo. The idea is to
preserve the style and emotional-psychological content, that the author intended
to associate with the characters that he is portraying in his work.

3 Word2vec is a group of related ANN models, used to produce word embeddings [1].
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Fig. 1. Canned text model for generating a PGS.

Corpus 5KL is pre-processed to standardize text formatting, eliminating
characters that are not important for semantic analysis such as punctuation
and numbers. This stage prepares the Word2vec training data that uses a vector
representation of 5KL. We use Gensim4, a Python implementation of Word2vec.
A query Q, provided by the user, is given as input to this algorithm, and its
output is a set of words (embeddings) associated with a context defined by Q.
In other words, Word2vec receives a term Q and returns a lexicon L(Q) =
(Q1, Q2, ..., Qm), that represents a set of m = 10 words semantically close to Q.
We chose this value of m because we found that if we increase the number of
words obtained by Word2vec, they start to lose their relation to Q. Formally, we
represnt a mapping by Word2vec as Q → L(Q).

Corpora cGoethe or cPoe, previously analyzed using FreeLing to obtain
PGSs, had a POS tag associated to each content word. Now, with FreeLing, each
POS tag is used to create a set of words, with the same grammatical information
(identical POS tags). An Association Table (AT) is generated as a result of this
process. The AT consists of entries of the type: POSk → list of words vk,i, with
same grammatical information, formally POSk → Vk = {vk,1, vk,2, ..., vk,i, ...}.
To generate a new phrase, each tag POSk ∈ PGS, is replaced by a word selected
from the lexicon Vk, given by AT.

To choose a word in Vk to replace POSk, we use the following algorithm. A
vector is constructed for each of the three words defined as:

– o: is the kth word in the phrase fo, corresponding to tag POSk;
– Q: word defining the query provided by the user;
– w: candidate word that could replace POSk, w ∈ Vk.

4 Available in: https://pypi.org/project/gensim/.

https://pypi.org/project/gensim/
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For each word o, Q and w, 10 closest words, oi, Qi and wi, i = 1, ..., 10, are
obtained with Word2vec. These 30 words are concatenated and represented by
a vector U with dimension 30. The dimension was set to 30, as a compromise
between lexical diversity and processing time. The vector U can be written as

U = (o1, ..., o10, Q11, ..., Q20, w21, ..., w30) = (u1, u2, ..., u30) . (1)

Words o, Q and w generate three numerical vectors of 30 dimensions respectively,
o → X = (x1, ..., x30), Q → Q = (q1, ..., q30), and w → W = (w1, ..., w30), where
the elements xj of X are obtained by taking the distance xj = dist(o, uj) ∈ [0, 1],
between o and each uj ∈ U , provided by Word2vec. Obviously, o will be closer
to the 10 first uj than to the remaining ones. A similar process is used to obtain
the elements of Q and W from Q and w, respectively. Cosine similarities are
then calculated between Q and W , and X and W as

θ = cos(Q,W ) =
Q · W
|Q||W | , 0 ≤ θ,≤ 1 , (2)

β = cos(X,W ) =
X · W
|X||W | , 0 ≤ β,≤ 1 . (3)

This process is repeated r times, once for each word w = vk,i in Vk, and
similarities θi and βi, i = 1, ..., r, are obtained for each vk,i, as well as the

averages 〈θ〉 =
∑

θi/r and 〈β〉 =
∑

βi/r. The normalized ratio
(

〈θ〉
θi

)
indicates

how large the similarity θi is with respect to the average 〈θ〉 that is, how close
is the candidate word w = vk,i to the query Q. The ratio

(
βi

〈β〉
)

indicates how
reduced the similarity βi is to the average 〈β〉, that is, how far away the candidate
word w is from word o of fo. A score Sni is obtained for each pair (θi, βi) as

Sni =
( 〈θ〉

θi

)

·
(

βi

〈β〉
)

. (4)

The higher the value of Sni, the better the candidate, w = vk,i, complies to the
goal of approaching Q and moving away from the semantics of fo. This goal aims
to obtain the candidate vk,i closer to Q, although still considering the context of
fo. We use candidates with large values of Sni to replace the nouns. To replace
verbs and adjectives, we want the candidate w = vk,i closer to fo, so we choose
among candidates with large Svai, given by

Svai =
(

θi

〈θ〉
)

·
( 〈β〉

βi

)

. (5)

Finally, we sort the values of Sni (nouns) or Svai (verbs and adjectives) in
decreasing order and choose, at random, from the highest three values, the can-
didate vk,i that will replace the POSk tag. The result is a newly generated phrase
f(Q,N) that does not exist in the corpora, but maintains the psychological mood
(emotional content) of fo. The model is shown in Fig. 2.
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Fig. 2. Model for semantic approximation based on geometrical interpretation.

5 Evaluation and Results

A manual evaluation protocol has been designed to measure some characteris-
tics of the phrases generated by our model. For baseline comparison, we used the
model with the best results observed in experiments described in [11]. Although
the baseline evaluation was done with a different scale for the evaluation param-
eters than in the current case, the comparison we present here helps us to under-
stand the human evaluators’ perception of the generated sentences.

Sentences have been generated using the corpora 5KL, cGoethe, cPoe,
cWerther and cCask, as explained in Sect. 4. The queries employed for gener-
ating the sentences in Spanish are Q ∈ {ODIO, AMOR, SOL, LUNA} (in English
{HATE, LOVE, SUN, MOON}). We show some examples of sentences generated in
Spanish in our experiments, manually translated to English.

Sentences Generated Using cCask, cPoe and 5KL

1. f(LOVE,12) = But I do not think anyone has ever promised against good will.
2. f(HATE,11) = A beautiful affection and an unbearable admiration took hold of me.
3. f(SUN,9) = So much does this darkness say, my noble horizon!
4. f(MOON,9) = My light is unhappy, and I wish for you.

Sentences Generated Using cWerther, cGoethe and 5KL

1. f(LOVE,11) = Keeping my desire, I decided to try the feeling of pleasure.
2. f(HATE,7) = I set about breaking down my distrust.
3. f(SUN,17) = He shouted, and the moon fell away with a sun that I did not try to

believe.
4. f(MOON,12) = Three colors of the main shadow were still bred in this moon.
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The experiment we performed consisted of generating 20 sentences for each
author’s corpora and the 5KL corpus. For each author, 5 phrases were generated
with each of the four queries Q ∈ {LOVE, HATE, SUN,MOON}. Five people were
asked to read carefully and evaluate the total of 40 sentences. All evaluators are
university graduates and native Spanish speakers. They were asked to score each
sentence on a scale of [0 − 4], where 0 = very bad, 1 = bad, 2 = acceptable, 3 =
good and 4 = very good. The following criteria were used in the evaluations.

– Grammar: spelling, conjugations and agreement between gender and
number;

– Coherence: legibility, perception of a general idea;
– Context: relation between the sentence and the query.

We also asked the evaluators to indicate if, according to their own criteria,
they considered the sentences as literary. Finally, the evaluators were to indicate
which emotion they associate to each sentence (0 = Fear, 1 = Sadness, 2 = Hope,
3 = Love, and 4 = Happiness). We compared our results with the evaluation
made in [11] as a baseline. The evaluated criteria are the same in that and in
this work. However, the evaluation scale in [11] is in a range of [0 − 2] (0 =
bad, 1 = acceptable, 2 = very good). Another difference is that, for the current
evaluation, we have calculated the mode instead of the arithmetic mean, since
it is more feasible for the analysis of data evaluated in the Likert scale.

In Fig. 3a, it can be seen that the Grammar criterion obtained good results,
with a general perception of very good. This is similar to the average of 0.77
obtained in the evaluation of the model proposed in [11]. The Coherence was
rated as bad, against the arithmetic mean of 0.60 obtained in [11]. In spite of
being an unfavourable result, we can infer that the evaluators were expecting
coherent and logical phrases. Logic is a characteristic that is not always per-
ceived in literature and we inferred, noting that many readers considered the
sentences as not being literary (Fig. 3b). The evaluators perceived as acceptable
the relation between the sentences and the Context given by the query. This
score is similar with the average of 0.53 obtained in [11]. Although one might
consider that this rate should be improved, it is important to note that our goal
in the current work is not only to approach the context, but to stay close enough
to the original sentence, in order to simulate the author’s style and to reproduce
the psychological trait of the characters in the literary work.

In Fig. 3b, we observe that 67% of the sentences were perceived as literary,
although this is a very subjective opinion. This helps us understand that, despite
the low rate obtained for Coherence, the evaluators do perceive distinctive
elements of literature in the generated sentences. We also asked the evaluators to
indicate the emotion they perceived in each sentence. We could thus measure to
what extent the generated sentences maintain the author’s style and the emotions
that he wished to transmit. In Fig. 4a, we observe that hope, happiness and
sadness were the most perceived emotions in phrases generated with cCask
and cPoe. Of these, we can highlight Sadness which is characteristic of much
of Poe’s works. Although Hapiness is not typical in Poe’s works, we may have
an explanation for this perception of the readers. If we analyze The Cask of
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(a) Mode calculated from the evaluation
made for the sentence generation model.

(b) Perception of literary nature of sen-
tences.

Fig. 3. Evaluation of our GLT model.

Amontillado, we observe that its main character, Fortunato, was characterized as
a happy and carefree man until his murder, perhaps because of his drunkenness.
The dialogues of Fortunato may have influenced the selection of the vocabulary
for the generation of the sentences and the perceptions of the evaluators. In
Fig. 4b, we can observe that sentences generated with cWerther and cGoethe
transmit mainly sadness, hope and love, which are psychological traits easily
perceived when reading The Sorrows of Young Werther.

(a) Perceived emotions in sentences gener-
ated with Allan Poe’s corpora

(b) Perceived emotions in sentences gen-
erated with Goethe’s corpora

Fig. 4. Comparison between the emotions perceived in sentences.

6 Conclusions and Future Work

We have proposed a model for the generation of literary sentences, that is influ-
enced by two important elements: a context, given by a word input by the user,
and a writing mood and style, defined by the training corpora used by our mod-
els. The corpora cGoethe and cPoe, used to generate the association table in
Phase II, capture the general mood and style of the two authors. The canned
text technique applied to corpora cCask and cWerther, and the similarity
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measures and scores given by Eqs. (2), (3), (4) and (5), used to generate the
final phrases of our generator, reflect the psychological traits and emotions of
the characters in the corresponding works. The results are encouraging, as the
model generates grammatically correct sentences. The phrases also associate well
with the established context, and perceived emotions correspond, in good part,
to the emotions transmitted in the literature involved. In the case of The Cask
of Amontillado, the perceived emotions seem not to resemble the author’s main
moods. This may be due to the fact that, in this short story, the dialogues of
the main character are happy and carefree, the tragic murder occurring only in
the end. When characters in a literary text have different psychological traits,
the semantic analysis of the generated phrases may show heterogeneous emo-
tional characteristics. Experiments with characters showing more homogeneous
psychological traits, such as the melancholic, suicidal tendencies of Werther in
The Sorrows of Young Werther, more easily detect emotions (as sadness and
love) associated with a dominant psychological trend portrayed by the author.

Although there was a poor evaluation for the Coherence criterion, it is
possible to argue that coherence is not a dominant feature of literature in general,
and most of the generated sentences were perceived as literary. The model is thus
capable of generating grammatically correct sentences, with a generally clear
context, that transmits well the emotion and psychological traits portrayed by
the content and style of an author. In future work, we consider extending the
length of the generated text by joining several generated sentences together. The
introduction of rhyme can be extremely interesting in this sense, when used to
produce several sentences to constitute a paragraph or a stanza [9]. We also plan
to use and train our model to analyse and generate text in other languages.
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number 661101 and by the Laboratoire Informatique d’Avignon (LIA) of Avignon
Université (France).
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México (2015)

16. Poe, E.A.: El barril de amontillado. BoD E-Short (2015)
17. Riedl, M.O., Young, R.M.: Story planning as exploratory creativity: techniques for

expanding the narrative search space. New Gener. Comput. 24(3), 303–323 (2006).
https://doi.org/10.1007/BF03037337

18. Sharples, M.: How We Write: Writing as Creative Design. Routledge, London
(1996)

19. Siddiqui, M., Wedemann, R.S., Jensen, H.J.: Avalanches and generalized memory
associativity in a network model for conscious and unconscious mental functioning.
Phys. A: Stat. Mech. Appl. 490, 127–138 (2018)

20. Sridhara, G., Hill, E., Muppaneni, D., Pollock, L., Vijay-Shanker, K.: Towards
automatically generating summary comments for java methods. In: IEEE/ACM
International Conference on Automated Software Engineering, pp. 43–52. ACM,
Antwerp (2010)

21. Szymanski, G., Ciota, Z.: Hidden markov models suitable for text generation. In:
Mastorakis, N., Kluev, V., Koruga, D. (eds.) WSEAS, pp. 3081–3084. WSEAS -
Press, Athens (2002)

22. Torres-Moreno, J.: Beyond stemming and lemmatization: Ultra-stemming to
improve automatic text summarization. arXiv abs/1209.3126 (2012)

23. Torres-Moreno, J.M.: Automatic Text Summarization. ISTE Wiley, Hoboken
(2014)

24. Wedemann, R.S., Plastino, A.R.: F́ısica estad́ıstica, redes neuronales y freud.
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Abstract. In this paper, we use movies and series subtitles and applied
text mining and Natural Language Processing methods to evaluate emo-
tions in videos. Three different word lexicons were used and one of the
outcomes of this research is the generation of a secondary dataset with
more than 3658 records which can be used for other data analysis and
data mining research. We used our secondary dataset to find and display
correlations between different emotions on the videos and the correla-
tion between emotions on the movies and users’ scores on IMDb using
the Pearson correlation method and found some statistically significant
correlations.

Keywords: Emotional analysis of movies · Text mining

1 Introduction

Contextual analysis of videos (in this paper, this will encompass movies and TV
series) is very important for media companies as it helps them define standard
measures and a better understanding of the huge number of video contents with-
out watching them. It also allows them to predict viewers interest, classify and
cluster millions of videos based on their contents for different age groups and
smart recommendation systems.

Research in emotional analysis and clustering of movies is traditionally based
on users’ interests and profiles, general characteristics of the movies such as
country of production, genre, production year, language and duration or based
on linking the emotions and sentiments on users reviews on social media. In this
paper we are adopting a completely different approach for emotional analysis of
movies by using textual analysis based on their subtitles. The dataset used in
this study is freely available and downloaded from Opensubtitles website 1. To
our knowledge, this is the first study on emotional analysis on movies that is
based on textual contents. The methodology used in this research is composed
of two phases.
1 Opensubtitles.org

c© Springer Nature Switzerland AG 2020
E. Métais et al. (Eds.): NLDB 2020, LNCS 12089, pp. 205–212, 2020.
https://doi.org/10.1007/978-3-030-51310-8_19
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In the first phase, after data preparation and cleansing we performed senti-
ment analysis on more than 3650 subtitle files with three different lexicons and
calculated the percentage of words with different emotions (trust, joy, fear, posi-
tive, etc.) on every SubRip Subtitle file. A SubRip file is the file associated with
the subtitle (with the .srt extension). The structure of a subtitle file contains “the
section of subtitles number”, “The time the subtitle is displayed begins”, “The
time the subtitle is displayed ends”, and the “Subtitle”. This phase also includes
movies’ scoring based on their adult contents (violence and sexual content) that
can be used as a source for age and parental ratings and guidance.

In the second phase, scores normalisation is performed. The emotional scores
are normalised to values between 0 and 100 and these are assigned to every
video. Although the emotional rating of the videos is useful for data analysis on
its own, the outcome of this scoring is also used as a new dataset with more than
3650 items and 34 features. This new dataset will be used for other data mining
applications such as recommendation systems and predicting viewers interest
and score to movies. This last aspect is not covered in this paper.

The remaining of this paper is organised as follows. In Sect. 2 we review some
related works. The data cleansing and preparation phase is described in Sect. 3.
The emotions analysis is performed in Sect. 4 with the lexicons used in this study
and their developments described in Sect. 5. The correlations between emotions
and the IMDb scores analysis is given in Sect. 6. Finally, Sect. 7 discusses the
results of this research, draw some conclusions and provides some insights into
future works.

2 Literature Review

Plutchick [5] developed his emotions model based on eight human emotions
including acceptance, surprise, sadness, anger, joy, fear, anticipation and disgust.
He also defined some emotions as compounds of two other emotions (for example
love is defined as a compound of joy and trust) and he also defined levels of
intensity for each of the eight emotions. His model became the most popular
for displaying human emotions. Plutchik’s wheel of emotions is utilized in many
researches in psychology and interdisciplinary fields such as NLP.

Alsheikh, Shaalan and Meziane [1] used the polarity, intensity and combina-
tional concepts in Plutchik’s wheel of emotions with text mining and sentiment
analysis methods to evaluate trust as an emotion between sellers and buyers in
the Customer to Customer marketplace. They have used text mining methods
to find correlations between emotions on the hosts’ description of their facilities
(accommodation in this case as they have used Airbnb as a case study) and
negative sentiments by guests through their reviews. They have also used the
combinational concepts of emotions based on Plutchick and Ekman emotional
model for calculating trust.

Cambria, Livingstone, and Hussain [2] proposed a new model for human
emotions which they named “The Hourglass of Emotions”. Their model is a
reinterpretation of the Plutchik’s wheel of emotions and is specifically designed
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for applications such as sentiment analysis, social data mining and NLP. They
used polarity and intensity levels of emotions in Plutchik’s wheel of emotions and
defined 4 main emotions (instead of the 8 emotions in the Plutchik’s model).

Topal and Ozsoyoglu [7] proposed a model for emotional analysis and classifi-
cation of movies based on the viewers reviews on the IMDb website arguing that
there is a close link between users’ reviews on IMDb and emotions on the movies.
In addition, they have also found correlations between high level of emotionality
in movies and high scores (7 or more) to movies by IMDb users. In their research,
Topal and Ozsoyoglu [7] used the Hour Glass of Emotions [2] to find emotional
scores for each movie based on the reviews and used the K-means algorithm for
clustering movies based on their emotional scores according to users’ reviews on
IMDb. A recommendation system based on the movies emotional score by their
method and users’ emotional preferences was then proposed.

Li, Liao and Qin [3] stated that most of the works on clustering and rec-
ommendations systems for movies are based on users’ profiles and interests in
movies and/or based on users’ social media interactions. However, this approach
is not so accurate as it is not based on movies contents, features and character-
istics but are focused on users. They proposed clustering movies based on their
characteristics such as year and country of production, director, movie type,
language, publishing company, casts and duration. They used Jaccard distance
for calculating the similarities between movies. Although they have used movies
characteristics for clustering, they have combined the results of clustering with
users ratings for improving their movie recommendation system [3].

3 Data Understanding and Preparation

In the original dataset, there was a large number of subtitle files in different lan-
guages. About 3650 of them have been selected as our sample where 119 are for
movies (mostly from top 200 IMDb movies) and the rest are for video series. Two
layers of data cleansing were performed on the subtitle files to prepare them for
text mining and analysis. The first layer is removing special characters, numbers
and extra spaces. In the second layer stop words were removed. In addition, all
the letters in all words are converted to lower case and then converted to their
root forms (stemming). The output of the data cleansing and preparation phase
is a single text file where the tab separator character is used to separate the con-
tents of the different files. Since text mining was performed on a large number of
text files and the performance is also important for us, this method of buffering
all the files can also help to increase our code performance and execution speed.

Furthermore, we performed an analysis on the number of words and their
grammatical roles (part of speech tagging) before and after data cleansing.
Although the number of words with all grammatical roles has decreased; as
expected, the biggest change occurred among numbers and verbs which have
fallen from more than 5.8 million and 3.6 million to 36 and 26,324 respectively.
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4 Emotional Analysis

The output of the data cleansing phase is used as the input for emotional analy-
sis. Our method for emotional analysis is similar to the most common methods
used for sentiment analysis and is based on Term Frequency (TF) such the work
of Rafferty for emotional analysis of the Harry Potter’s books [6]. However, our
work has additional complexities since it has been defined for emotional analysis
on videos (instead of books) and some additional features such as the calcula-
tion of ‘in-between’ emotions, enhancements in data cleansing and normalising
the results for a better visualisation and preparation for machine learning tasks.
We used three lexicons namely, NRC, AFINN and Ero (these lexicons will be
described in Sect. 5) with thousands of words associated to different emotions
and we have counted the number of words with each emotion on movies to find
the ratio of words with each emotion on every movie (or episode). E(m, e) is the
percentage of emotion e in movie m and is calculated using Eq. 1 where Numm,e

represents the number of words with emotion e (ex. joy) in movie m (ex. Titanic)
and Wm represent the number of all words in movie m.

E(m, e) =
numm,e

Wm
∗ 100 (1)

We have also calculated the total percentage of emotionality in movies by
counting the number of all the words in each movie which are also in our NRC
Emotion Lexicon. We called this value Emotional Expression EE(m, e) and is
calculated using Eq. 2, where Numm is the number of words in movie M which
are also in the NRC lexicon and Wm is the number of all words in movie m.

EE(m, e) =
Numm

Wm
∗ 100 (2)

In addition, the difference between positivity and negativity for each movie
m or episode is calculated using Eq. 3.

E(Pos − Neg,m) =
Numpos,m − Numneg,m

Wm
∗ 100 (3)

The values for 8 in-between emotions which are not in our lexicons were
calculated, but they are combinations of other emotions based on Plutchik’s
wheel of emotions. Calculating the in-between emotions was performed using two
methods. The first method is based on the average value of the related emotions.
For instance, from the psychological point of view and based on Plutchik’s wheel
of emotions, love is the combination of joy and trust and its value in movie m is
the average of these two emotions as given in Eq. 4, where Pjoy,m and Ptrust,m

are the percentages of joy and trust in movie m respectively.

L(i) =
Pjoy,i + Ptrust,i

2
(4)

The second method is based on expanding the NRC Emotion Lexicon accord-
ing to Plutchik’s wheel of emotions (this will be described in Sect. 5). Finally, we
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Fig. 1. Emotions in Titanic. Fig. 2. Emotions in Fargo (all episodes).

have normalised emotional percentage results in order to have a standard score
from 0 to 100 for all emotions in our dataset. The outcome of this part of the
research is the production of two datasets (one normalised and the other not) in
the form of two CSV files with 34 columns. After converting the unstructured
text data of the initial sample dataset to a structured dataset, we analysed the
results for finding the statistical characteristics of the new dataset. Radar charts
in Figs. 1 and 2 show the results of emotional analysis for Titanic and Fargo (all
episodes) respectively.

5 Lexicons Developments

NRC Lexicon is used as the main Lexicon in this research. The original NRC
lexicon [4] consisted of 14,183 rows (words) and 10 columns (8 emotions and
2 sentiments) which is available in over 40 languages and show the association
between each word and each emotion in a 0 and 1 matrix where 1 represents
the existence of an association and 0 the non-existence. In this research we used
the English version of NRC lexicon [4]. The NRC Lexicon consists of the follow-
ing columns: Trust, Joy, Anticipation, Anger, Disgust, Sadness, Surprise, Fear,
Positive and Negative. We expanded the NRC lexicon based on the Plutchik’s
wheel of emotions. We considered that some emotions like Love, Submission,
Optimism or Awe are in fact combination of two other emotions. Figure 3 shows
the frequency of association of words with each emotion in the expanded NRC
lexicon.

AFINN is the second used lexicon [8] and includes 1477 ratings from −5
(extremely negative) to +5 (extremely positive). We have only used the com-
bination of very negative words in AFINN dataset with −4 and −5 scores for
detecting offensive words which may also be associated with sex and/or violence
[8]. For simplicity and better understanding, in this research we refer to this
secondary lexicon as AFINNVN (AFINN Very Negative). Using this method
was our first attempt for scoring movies and series based on adult contents (vio-
lence, sex, drugs) which can help us in defining a parental score and finding some
interesting correlations and increasing our accuracy for clustering the movies and
series.
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Fig. 3. Frequency of association of words with each emotion in NRC lexicon and
expanded NRC lexicon

Although using very negative words in AFINN helped us to detect some
offensive, violence and sex related words, it was not enough for detecting many
of the sex related words in the movies and after searching, it seems that there
is no available and open source lexicon for detecting such words and contents.
Hence, there was a need to develop such a lexicon that we named Ero. Ero
is constructed from 1422 words which are mostly copied from the “Dirty Sex
Dictionary” by filtering bold words on the mentioned HTML page. However,
some preparations and modification were needed as many of the words on the
list have commonly non-sexual meanings. This lexicon significantly enhanced our
work for scoring adult contents.

After finding the amount and percentage of emotions and normalising the
results, the secondary dataset has been prepared for further analysis. One of the
interesting analysis was finding correlations between emotions in movies and the
scores given by the users as provided by the IMDb website. While the range of
scores in our sample dataset was between 4.8 and 9.5, we normalised the scores to
the range 0 to 100 as the emotions were scored in the range 0–100. Based on the
size of our dataset and since our data is normalised, we used Pearson method in R
for finding the correlations between the two variables X and Y as given in Eq. 5.

rX,Y =
∑n

i=1(Xi − X)(Yi − Y )
√∑n

i=1(Xi − X)2
√∑n

i=1(Yi − Y )2
(5)

6 Correlation Between Emotions and IMDb Scores

The correlogram shown in Fig. 4 visualises the correlations between emotions
(excluding in-between emotions), sentiments (positive and negative) and users’
scores to movies on the IMDb database using the Pearson correlation method.
As expected, all the emotions have considerable correlation with either negative
or positive sentiments and there is a negative correlation between negative and
positive sentiments. However, it is interesting to note that correlations between
negative and positive sentiments are not very high (+0.2). On the other hand,
we can see that there is a high correlation (+0.6) between usage of offensive
words (AFINNVN) and sexual words (Ero). The main reason could be common
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usage of sexual words as offensive words. One of the interesting correlations is
the very high correlation (+0.7) between anger and fear (probably since anger
can cause fear). The only emotion with positive correlation with both positive
(0.3) and negative (0.1) sentiments is surprise as surprising happen in both pos-
itive and negative ways. In addition, based on the Pearson correlation results
(Fig. 4), we can see that positive sentiment and joy, trust and anticipation emo-
tions have negative correlation with Emotional expression which is the ratio of
emotional words to all words in a movie or episode. It was completely against
our expectations since words with positive sentiment and joy, trust and antici-
pation emotions will be counted as emotional expression. Based on these results
we can conclude that an increase in each of the positive sentiments of joy, trust
or anticipation emotions usually will lead to decreasing other emotions.

Fig. 4. Correlations Heatmap. Blue colour indicates negative correlations, red indicate
positive correlations and white indicate not having correlations (Color figure online)

Computing correlations between users’ scores in IMDb and sentiments and
emotions on movies is of great interest. Indeed, it can help in predicting users’
scores and can help media companies to invest in movies which can be more
interesting and attractive to users and also can help them to increase the qual-
ity of their movies and series based on users emotional interests. Generally, in
statistics using two alpha p-values for accepting Pearson correlation results as
statistically significant; Alpha <0.01 and alpha<0.05 are two common alpha p-
values used in statistical studies. According to the results shown in Fig. 4 we can
clearly see that there are lots of considerable and statistically significant corre-
lations between emotions on the movies and users’ scores on IMDb. Although
there are cases where there is no statistically significant correlation between some
emotions and users score on IMDb, most of the emotions have statistically sig-
nificant correlation with users scores on IMDb and most of the correlations are
statistically significant at p-value alpha level<0.01. Most effective parameter in
users’ scores to movies is ‘Emotional Expression’ on movies with +0.22 Pearson
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correlation which is also statistically significant at the level of alpha<0.01. It
means that in general movies with rich words and higher level of emotionality
are more likely to be interesting to viewers and get higher score in IMDb. How-
ever, this conclusion is not true for all emotions as some emotions have negative
Pearson correlation with users’ scores on IMDb and it is more likely to nega-
tively affect users’ scores to movies. Consequently, for more accurate analysis we
should consider each emotion separately.

Some emotions such as joy, love and anticipation have negative correlation
with users’ scores and it is more likely to affect users score to movies in a negative
way but on the other hand most of the emotions such as anger, fear and contempt
have positive effect on users score and satisfaction. Furthermore, we can see that
words in AFINNVN and Ero have positive correlation with users’ scores on
IMDb and their correlation is statistically significant at the alpha level<0.01.
Although many of the correlations are statistically significant according to their
p-value, Pearson correlation coefficient with values between −0.3 and 0.3 usually
indicate a weak correlation.

7 Discussions, Conclusions and Future Works

We have performed the emotional analysis on a relatively large data set with
more than 3650 subtitle files and the results of this analysis created a secondary
dataset which can be used for further research and analysis. We are particu-
larly aiming at using the results of this research to improve on recommendation
systems.
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Abstract. Word representation models have been successfully applied
in many natural language processing tasks, including sentiment analy-
sis. However, these models do not always work effectively in some social
media contexts. When considering the use of Arabic in microblogs like
Twitter, it is important to note that a variety of different linguistic
domains are involved. This is mainly because social media users employ
various dialects in their communications. While training word-level mod-
els with such informal text can lead to words being captured that have
the same meanings, these models cannot capture all words that can be
encountered in the real world due to out-of-vocabulary (OOV) words.
The inability to identify words is one of the main limitations of this word-
level model. In contrast, character-level embeddings can work effectively
with this problem through their ability to learn the vectors of character n-
grams or parts of words. We take advantage of both character- and word-
level models to discover more effective methods to represent Arabic affect
words in tweets. We evaluate our embeddings by incorporating them into
a supervised learning framework for a range of affect tasks. Our mod-
els outperform the state-of-the-art Arabic pre-trained word embeddings
in these tasks. Moreover, they offer improved state-of-the-art results for
the task of Arabic emotion intensity, outperforming the top-performing
systems that employ a combination of deep neural networks and several
other features.

Keywords: Word-level embeddings · Character-level embeddings ·
Arabic affect tweets

1 Introduction

People use language not only to express their sentiments and emotions, but also
to show how intense these feelings may be. We use the term ‘affect’ to refer
to different emotion-related categories, ranging from the sentiment classification
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(positive to negative) to finer grained sentiment strength (e.g. high positive to
low positive) and emotional intensity (e.g. high anger to low anger). Detecting
affect in text is challenging, especially in the context of social media, such as
Twitter, owing to difficulties involving the limited number and informal nature
of words used, with the latter including slang and symbols. However, this task
becomes even more challenging when considering morphology-rich languages,
such as Arabic [4]. Social media users employ various dialects and sub-dialects in
their communications. In contrast to the use of Modern Standard Arabic (MSA),
the form of dialectical Arabic words used varies widely, and there is a general
lack of rules and standards. Therefore, the need for effective resources and tools
to better understand and treat these various linguistic forms is important when
targeting Arabic affect in tweets.

Word embedding is one of the most important methods that have been
applied recently to many natural language processing tasks [9,14,19,28]. Word
embedding uses dense vectors to represent words projecting into a continuous
vector space, thus reducing the number of dimensions [20]. However, these models
do not always work effectively in Arabic tweet contexts. While training word-
level models with such informal text can lead to the capture of words with the
same meanings, it has been shown in testing that these models are unable to
recognise other forms of the same words encountered in the real world. These
unknown words are called out-of-vocabulary (OOV) words, and this is one of the
main limitations of the word-level model. In contrast, character-level embeddings
can work effectively in resolving the problem of OOV words through their abil-
ity to learn the vectors of character n-grams or parts of words. However, this
sensitivity of character-level embedding leads the model to encode all variants of
a word’s morphology that are closer to each other in the embedded space than
those with semantic similarity. Table 1 shows two examples of dialectical affect
words mtnrfz1 (uptight) and mrwq (relaxed), where the similarity of
the words is mostly based on morphology at the character level and semantics
at the word level.

In this paper, we take advantage of both character-level and word-level mod-
els to discover more effective means of representing Arabic affect in tweets, which
we call affect Character and Word Embeddings (ACWE). We first trained both
levels of models on a massive number of tweets, which were collected carefully
to ensure that there was significant variation of affect and Arabic dialects in the
words. We then employed a novel method that concatenates both levels of mod-
els to represent each word morphologically and semantically. We evaluate the
effectiveness of our ACWE model by applying it only as a feature under a super-
vised learning, using the benchmark datasets of SemEval-2018 task 1 (Affect
in Tweets) [21]. Our method advances a state-of-the-art approach to the task
of discerning Arabic emotional intensity, outperforming the top-performing sys-
tems. In addition, our method achieves better results compared to other Arabic
pre-trained word embeddings. ACWE has been released to be used in pre-trained

1 We used Buckwalter transliteration [10].
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Table 1. Most similar words of different affect words using character and word level
embeddings.

Example of a negative query term:
mtnrfz (uptigh)

Example of a positive query term:
mrwq (relaxed)

Character-level model Word-level model Character-level model Word-level model
mtnrfz

(uptight-feminine)

mESb

(angry)

wmrwq

(and relaxed)

mSHSH

(mindful)
mtnrfzyn

(uptight-plural)

mtwtr

(tense)

mrwqh

(relaxed-feminine)

wmrwq

(and relaxed)
ntnrfz

(uptight-present verb)

mtDAyq

(annoyed)

wmrwqh

(and relaxed-feminine)

fAyq

(awake)
bytnrfz

(uptight-future verb)

mnfs

(furious)

rAyq

(relaxed)

mfll

(restful)
ttnrfz

(uptight- feminine verb)

mDgwT

(enraged )

rAyqh

(relaxed-feminine)

mstAns

(happy)

word embeddings for applications and research relying on Arabic sentiment and
emotion analysis2.

2 Related Works

Most work on Arabic word embeddings has relied on word-level models [3,6,
27], and to a lesser degree, character-level models have been employed [5]. To
our knowledge, there is no existing work that aims to combine both levels to
generate word representations specifically for sentiment or emotion analysis. One
of the largest open-source word embeddings is AraVec [27], which consists of six
different word embedding models for the Arabic language. Here, the researchers
derived the training data from three separate sources: Wikipedia, Twitter and
Common Crawl webpages crawl data; they employed two word-level models to
learn word representations for general NLP tasks.

More recently, [3] proposed the largest word-level embeddings by using 250M
Arabic tweets. Although the models are trained on many words, they cannot
realise other forms of the same words that can be seen in the real world due
to the limitations of such word-level models. Furthermore, it has been observed
that the effectiveness of word embeddings is more likely to be task-dependent
[25], and it is highly influenced by the richness of related words to the target
task [11].

Much research has been undertaken on Arabic sentiment analysis, but
research has focussed on other affect aspects such as emotion analysis or inten-
sity remains limited [21]. Most of the existing work on affect in Arabic is based
on the SemEval-2018 competition, Affect in Tweet. Most of the top-performing
2 https://github.com/aialharbi/ACWE.

https://github.com/aialharbi/ACWE
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systems proposed for this shared task employed deep learning approaches, such
as CNN, LSTM and Bi-LSTM [1,2,16]. The majority of these systems employed
AraVec as a feature besides other input features, Arabic sentiment and emotion
lexicons [7,22,24].

3 Methodology

In this work, we aim to generate an effective distributed word representation
model for Arabic affect in tweets. The data collection method and the different
models of word embeddings used are detailed in the subsections below.

3.1 Data Collection

One of the main factors in improving the quality of word embeddings is associ-
ated with the training dataset size and its richness. We collected a large number
of tweets (10M) containing various affect-associated words of different Arabic
dialects. To ensure the tweets contained a variety of affect-associated words, we
first used English NRC lexicons [23] to select a number of words (63 words)3 from
different emotional expressions and intensity levels. Then, the selected words
were translated into Arabic using the online translation application Reverso
Context4. We also used Reverso to find synonyms of these translated words to
extend our list of terms from 63 to 228 words. At this stage, our list of terms
contained MSA affect words, which was an expected result of this means of
English-Arabic translation.

To ensure the tweets reflected a variety of dialects, we used our MSA terms
list to find synonyms in Arabic dialects from two online dictionaries (Atlas Allha-
jaat5 and Mo3jam6). This expanded our list of terms by 217 different dialectical
affect words. In addition, it should be noted that emojis could be employed,
given that, according to [17], they function as a universal language. Therefore,
we selected the 30 most frequently used emojis from different sentiment scores
obtained from [17] and added them to our list of terms. Finally, we assumed
that tweets from specific Arabic-speaking countries would more likely be asso-
ciated with the dialects of these locations. Therefore, we collected tweets that
included all the identified terms (about 500 terms) using the Twitter Search API
by specifying the geolocations of different Arab countries.

3.2 Data Preprocessing

The data that we extracted from Twitter typically contained a range of content
that could be considered useless for our task, such as hashtags, website links and
3 These are words that directly convey meanings of sentiment or emotion, such as
anger or rage. They are not words that indirectly convey sentiment, such as dead or
tears.

4 http://context.reverso.net.
5 http://atlasallhajaat.com.
6 http://en.mo3jam.com.

http://context.reverso.net
http://atlasallhajaat.com
http://en.mo3jam.com
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mentions. It was important that such noisy content be removed before training
our learning models to reduce both the noise and vector space size [18,26]. We
followed the procedure laid out by several research works [3,15], which involved
the following steps:

– Normalisation of letters: Letters that appeared in different forms in the
original tweets were rendered into a single form. For example, the ‘hamza’ on
characters { , } was replaced with { } , while the ‘t marbouta’ { } was replaced

with { }.
– Hashtags: Hashtags are used to draw attention to words or phrases that

are trending. For example, #anger, #happy. While it is common to remove
the hash symbols and words, we only removed the hash symbols and kept
the words. Users sometimes express their emotions using these hashtags, so
it was considered useful to retain them.

– Cleaning: All unknown symbols and other characters were eliminated.
For example, other language letters, diacritics, punctuation and URLs were
removed. However, emojis were not removed, and like the words, each emoji
was represented by a vector.

3.3 Embedding Models

After retrieving and pre-processing a massive number of tweets that are rich in
Arabic affect-related words, we used this to generate a language model. Word
embeddings are learned representations of text, with words of similar meanings
represented in similar ways. An essential element of this methodology is the
concept of employing dense distributed representations for every word. Here,
each word is encoded to a real-valued vector with a few hundred dimensions.
Given a large corpus, there are different models and levels available for learning
word embeddings. We first employed the Word2Vec model [20] for word-level
embeddings and FastText model [8] for character-level embeddings. Hence, we
leveraged these two pre-trained embeddings as an input feature after combining
them with a novel concatenation approach. These main steps are detailed in the
following subsections.

Word-Level Embeddings (WE). To learn individual words with their
embeddings from our collected data, we used the Word2Vec algorithm [20].
Word2Vec is based on a pair of learning techniques: the Continuous Bag-of-
Words (CBOW) and Skip-Gram (SG) models. The CBOW model effectively
averages the vectors of all the words in a given context. The model is trained
by predicting the current word based on the projected average of the surround-
ing context. The continuous SG model is similar, but instead of predicting the
current word based on context, it predicts the surrounding words based on the
current one. Words within a certain distance before and after the current word
are predicted with the network optimised for these predictions. We used both
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models (CBOW and SG) to generate affect word embeddings by training the
models on a massive number of tweets that we retrieved. We used the Gensim
Library7 to implement the Word2Vec models. We assumed that each tweet was a
sentence, so the input of the word-level model was a list of pre-processed tweets
that were tokenised into words on whitespace. The main parameters that we
used were (200) for size, (5) for the window context and (3) to ignore words
with a total frequency lower than three.

Character-Level Embeddings (CE). To learn morphological features found
in each word, we used a character n-grams model (FastText) [8]. FastText differs
from Word2Vec in its ability to learn the vectors of character n-grams or parts
of words. This feature enables the model to capture words that have similar
meanings but different morphological word formations. We used the Gensim
Library8 to implement the FastText model. We assumed that each tweet was a
sentence, so the input of the character-level model was a list of characters for
each tweet. We used the same main parameters that we employed for Word2Vec.
In addition, to control the lengths of character n-grams, we used 3 and 6 for
parameters (min n) and (max n), respectively.

Affect Character and Word Embeddings (ACWE). As explained in the
introduction, while CE seems to encode all variants of a word’s morphology
closer in the embedded space, WE seems to give more importance to semantic
similarity. To take advantage of both models, we propose ACWE, a novel app-
roach that aims to concatenate these two pre-trained embeddings; hence, it can
be used as an input feature for a range of sentiment and emotion tasks.

Given a tweet ti that has a sequence of words {w1, w2, ..., wn}, our goal is
to morphologically and semantically represent each word in each tweet wi ∈ ti
as an n-dimensional continuous vector. To achieve this goal, we assumed that
each word wi ∈ ti is represented semantically by WE(wi) and morphologically
by CE(wi), where WE(wi) is the word embedding of wi, while CE(wi) is the
character embedding of wi. The ACWE(wi) method is used to concatenate
both embeddings, and it can be obtained in three different cases. The first case
is a direct concatenation of CE(wi) and WE(wi), and it arises if wi can be
found in both embeddings. However, if wi cannot be found in WE 9, we assume
this is due to variants in the given word’s morphology. Consequently, instead
of using a vector of zeros for unseen wi, it will be replaced by another word’s
morphology that can be realised by WE. Alternative words can be obtained
using most similar(wi), which aims to find the most similar word based on the
cosine similarity of the wi vector and the vectors for each word in CE. Finally, if
wi cannot be determined using CE and WE, it will be represented by a vector
of zeros.

7 http://radimrehurek.com/gensim/models/word2vec.html.
8 http://radimrehurek.com/gensim/models/fasttext.html.
9 As explained in the introduction, WE cannot process OOV words.

http://radimrehurek.com/gensim/models/word2vec.html
http://radimrehurek.com/gensim/models/fasttext.html
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ACWE(wi) =

⎧
⎪⎨

⎪⎩

CE(wi)
⊕

WE(wi), if wi ∈ (CE |V | ,WE |V |)
CE(wi)

⊕
WE(most similar(wi)), if wi /∈ (WE |V |)

zeros of(CE + WE) dimensions otherwise
(1)

4 Experiments

To validate the effectiveness of our embeddings, we incorporated them into a
supervised learning framework for a range of affect-sensitive tasks. We compared
our models against available state-of-the-art pre-trained Arabic word embed-
dings. We also compared our method with top systems targeting these different
tasks.

4.1 Datasets

We evaluated our model using different affect tasks in the SemEval 2018 task
1 (Affect in Tweets) datasets [21]. We selected these datasets because of the
variety of affect tasks and Arabic dialects. These tasks can be categorised as
follows:

– Emotion Intensity Task: When given an emotion and a tweet, compute
the emotional intensity (EI) that most accurately represents the emotion
experienced by the publisher using a real-value score as follows: 1) The EI-
regression (EI-reg) task scores range from 0 to 1, from least to most emotion;
and 2) the EI-ordinal classification (EI-oc) Task scores range from 0 to 3,
where 0 refers to an unrelated emotion.

– Sentiment or Valence Intensity Task: When given a tweet, predict the
valence (V) that most effectively represents the tweeter’s mental state using
a real-value score as follows: 1) the V-reg task scores range from 0 to 1, from
most negative to most positive; and 2) The V-oc task scores range from −3
(very negative) to +3 (very positive).

Table 2. Number of tweets in the SemEval 2018 Task 1 (Affect in Tweets) datasets.

Task Emotion Train Dev Test Total

EI-reg/EI-oc Anger 877 150 373 1,400

Fear 882 146 372 1,400

Joy 728 224 448 1,400

Sadness 889 141 370 1,400

V-reg/V-oc Valence intensity 932 730 1,800 1,800
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4.2 Pre-trained Word Embeddings

To evaluate the effectiveness of our models, we compared them with Arabic pre-
trained word embeddings in the following models: Ara2Vec [27], Mazajak [3]
and Altwyan [6]. To the best of our knowledge, these embeddings are the most
commonly available resources released to the research community as free to use.
Table 3 presents a summary of important information about each of these models
with their sizes and pre-trained corpora (Table 2).

Table 3. Different pre-trained Arabic word embeddings used for experimental evalu-
ation.

Model No. of words Corpus Size

Ara2Vec 4,347,845 General - Twitter 77M Tweets

Mazajak 1,476,715 Sentiment - Twitter 250M Tweets

Altwaian 159,175 Sentiment - Twitter 190M words

Our WE 626,212 Affect - Twitter 100B tokens

Our CE 441,025 Affect - Twitter 3B tweets

4.3 Model Training

We pre-processed the datasets using the pre-processing techniques described in
Sect. 3.2. To predict a real-value score for each task, we employed the XGBoost
learning model [12] and used one of the aforementioned pre-trained word embed-
dings as an input feature. The XGBoost learning model is frequently employed
for different problems because it performs extremely well on a wide range of
significant challenges. The tool is both extremely versatile and flexible, and it
can address different classification and regression problems [12]. This is an algo-
rithm of decision trees in which new trees correct errors of those trees which are
already part of the model. Trees are added to the model until no further changes
can be made. We input tweet vector representations obtained from an average
of real-value word vectors for every word with matching vector representations
derived from pre-trained embeddings.

4.4 Results

The results of our experiments were evaluated using Pearson’s correlation coeffi-
cient, which calculates a bivariate linear correlation between two given variables.
In our experiments, this comprised the correlation between the score predicted
by our systems and the score given by the test data. We used this evaluation
metric because it is the official metric for all the relevant tasks. Our results and
findings are discussed in the following subsections.



Combining Character and Word Embeddings 221

Comparison with State-of-the-Art Pre-trained Arabic Word Embed-
dings: We compared five pre-trained word embeddings (see Table 3), including
three open-source models and both of our generated models. In addition, we
compared these models with the ACWE method. The information presented in
Table 4 shows the effectiveness of each model in the supervised framework of
performing affect-sensitive tasks. The Pearson correlation coefficient for our CE
significantly outperformed the other models. We consider that the main rea-
son for this was associated with OOV problems. Although these models were
trained using a massive corpus, we found that word-level embeddings could not
realise more than 700 words from each dataset. Moreover, the ACWE method
improved the results by 1.3% to 5% across all datasets. This indicates the effec-
tiveness of the proposed method and the importance of leveraging character-level
and word-level embeddings in Arabic words in the context of social networks and
microblogs.

Table 4. Pearson correlation coefficient results for our models and State-of-the-art
pre-trained Arabic Word Embeddings

Model EI-reg EI-oc V-reg V-oc

Anger Fear Joy Sad Avg. Anger Fear Joy Sad Avg.

Ara2Vec 55.6 53.6 68.8 64.1 60.5 47.2 52.6 60.4 59.4 54.9 77.3 72.3

Mazajak 55.5 57.6 68.3 62.3 60.9 45.0 51.2 64.6 53.0 53.4 72.0 68.0

Altwyan 29.7 33.3 44.9 49.7 41.5 27.2 31.2 42.5 48.9 37.5 51.5 53.5

Our generated Arabic word Embeddings

WE 53.9 52.9 65.3 60.7 58.7 47.9 51.1 62.8 55.6 54.4 75.6 70.2

CE 60.1 59.5 70.4 65.8 64.3 51.1 53.1 64.7 60.6 57.6 78.3 73.1

ACWE 63.8 62.2 75,8 68.6 67.6 54.3 57.2 67.5 60.9 60.0 81.8 76.7

Comparison Against Top Systems Analysing Affect in Tweets: Most of
the top-performing systems proposed for this shared task employed deep learning
approaches, such as CNN, LSTM and Bi-LSTM. The majority of these systems
used AraVec as a feature alongside other input features, such as the sentiment
and emotional lexicons found in the Arabic language. We used our embeddings
as the input feature for XGBoost, a machine learning classifier/regressor. As
shown in Table 5, we achieved competitive results: We outperformed the top
system in the EI-oc task by 1.3% and ranked second in the remaining tasks.
Our goal was not to fully address affect tasks but rather to demonstrate that,
by using a well-generated word embedding model, we could obtain competitive
results. We will investigate other features and employ deep learning methods to
improve the results in future works.
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Table 5. Pearson correlation coefficient results for our ACWE and top systems across
all tasks.

Task 1st best 2nd best Our ACWE

Ei-reg 68.5 66.7 67.6

EI-oc 58.7 57.4 60.0

V-reg 82.8 81.6 81.8

V-oc 80.9 75.2 76.7

5 Conclusion

In this paper, we generated word and character embeddings to analyse affect in
Arabic social media networks and microblogs. We also proposed a novel method
that combines different levels of word embeddings to represent the morphology
and semantics for each word in a given task. We evaluated the models by incor-
porating them into a supervised learning framework for a range of affect-sensitive
tasks. Our models outperformed state-of-the-art pre-trained Arabic word embed-
dings on these tasks.

In future works, we will apply more sophisticated algorithms to improve the
quality of our embeddings. Especially, we would like to employ contextualised
word embeddings, such as BERT [13]. We would also like to investigate more
deep learning algorithms to fully target affect tasks.
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11. Çano, E., Morisio, M.: Quality of word embeddings on sentiment analysis tasks.
In: Frasincar, F., Ittoo, A., Nguyen, L.M., Métais, E. (eds.) NLDB 2017. LNCS,
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Abstract. Explainability of deep learning models has become increas-
ingly important as neural-based approaches are now prevalent in natu-
ral language processing. Explainability is particularly important when
dealing with a sensitive domain application such as clinical psychology.
This paper focuses on the quantitative assessment of user-level atten-
tion mechanism in the task of detecting signs of anorexia in social media
users from their posts. The assessment is done through monitoring the
performance measures of a neural classifier, with and without user-level
attention, when only a limited number of highly-weighted posts are pro-
vided. Results show that the weights assigned by the user-level attention
strongly correlate with the amount of information that posts provide in
showing if their author is at risk of anorexia or not, and hence can be
used to explain the decision of the neural classifier.

Keywords: Explainability · Deep learning · Attention mechanism ·
Anorexia · Social media

1 Introduction

Social media is a rich source of information for the assessment of mental health,
as its users often feel they can express their thoughts and emotions more freely,
and describe their everyday lives [12]. This is why the use of natural language
processing (NLP) techniques to extract information about the mental health of
social media users has become an important research question in the last few
years [18,27].

One of the main challenges of developing tools for the automatic detection of
mental health issues from social media is providing justification for the decisions.
Mental health issues are still often stigmatised and labelling a user as a victim of
a mental health illness without a proper justification is not socially responsible.
As a result, to be applicable in a real-life setting, automatic systems should not
only be accurate, but their decisions need to be explained.

In the past decade, deep learning algorithms have become the state of the art
in many NLP applications. By automatically learning the representation of useful
c© Springer Nature Switzerland AG 2020
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linguistic features for the tasks they are performing, deep learning approaches
have lead to impressive improvements in most NLP tasks [4,7]. This also applies
to the domain of NLP for mental health assessment, where recent deep learn-
ing models have led to state-of-the-art results in the field [19,21,22]. However,
despite achieving high performance, one of the most important drawbacks of
these models is their black box nature, where the reasoning behind their decision
is difficult to interpret and explain to the end users. This constitutes a serious
setback to their adoption by health professionals [10].

The focus of this paper is to assess the usefulness of user-level attention
mechanism [22] as a means to help explain neural classifiers in mental health.
Although the experiments were performed on the detection of anorexia in social
media, the methdology is not domain-dependent, hence can be applied to other
tasks involved in the detection of mental health issues of social media users,
based on their online posts.

The paper is organized as follows: Sect. 2 explains the two levels where the
attention mechanism can be used (i.e. intra-document and inter-document), and
describes the related work in validating explainability using attention mecha-
nism. Section 3 explains our experiments to validate the interpretability of user-
level attention, whose results are then presented in Sect. 4. Section 5 provides
additional observations in terms of how the attention mechanism has worked.
Finally, Sect. 6 concludes the paper and provides future directions for the current
work.

2 Related Work

Attention mechanism [1] has become an essential part of many deep learning
architectures used in NLP, as it allows the model to learn which segments of text
should be focused on to arrive at a more accurate decision. In text classification
applications, such as the detection of mental health issues, attention mechanisms
can be applied both at the intra and the inter-document levels [20].

At the intra-document level, the attention mechanism learns to find informa-
tive segments of each document, and assigns higher weights to these segments
when creating a representation of the whole document. The success of the intra-
document attention mechanism has made it an essential part of transformers
[25], which are now the building block of several powerful NLP models, such as
BERT [5].

On the other hand, the inter-document attention mechanism tries to identify
entire documents that are more informative from a collection, and assign higher
weights to these when computing the representation of the whole collection. The
inter-document attention mechanism is generally used when the classification
pertains to the entire collection, as opposed to individual documents. Previous
work in NLP for clinical psychology has typically used this type of attention
mechanism to create a representation of social media users: a collection of online
posts from each user is fed to the model and the inter-document attention (also
referred to as user-level attention) creates a representation of the user through
a weighted average of the representations of their online posts, with the most
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informative posts are assigned higher weights. While Mohammadi et al. [21] and
Matero et al. [19] have used inter-document attention for the task of suicide risk
assessment, Maupome et al. [20] and Mohammadi et al. [22] have utilized it for
the detection of depression and anorexia, respectively.

To explicitly provide explainability in deep NLP models, several methods
have been proposed. Wang et al. [26], Lee et al. [11], Lin et al. [13], and Ghaeini
et al. [6] have used attention visualization based on attention heat maps. These
heat maps graphically show which parts of the texts have been given higher or
lower attention weights.

In NLP for clinical psychology, the data is usually sensitive and standard
attention visualization are not ideal. Hence, other methods have been developed
to show the validity of the attention explainability. For example, Ive et al. [8] pro-
vided paraphrased sentences from the dataset, alongside their assigned attention
weights.

Jain and Wallace [9] and Serrano and Smith [24] proposed quantitative
approaches to validate the explainability of intra-document attention mecha-
nism. While Jain and Wallace’s method was focused on randomly shuffling, and
also generating adversarial attention weights [9], Serrano and Smith analyzed
attention explainability by zeroing out the attention weights.

In this paper, we propose a quantitative approach, specifically focused on the
user-level (inter-document) attention mechanism in a binary classification task
of detection of a specific mental health issue, anorexia.

3 Experiments

Our approach is based on monitoring the performance measures of a neural
classifier, with and without user-level attention, when only a limited number of
highly-weighted posts are provided.

The neural classifier used is the CNN-ELMo model from Mohammadi et al.
[22]. This model was chosen because it achieved comparable results to the best
performing model at the recent eRisk shared task [17,22], and is based on an
end-to-end architecture, which makes the reasoning behind its decision more
easily explainable.

The trained model was first run on the testing data, and for each user, her/his
posts were ranked from the highest attention weights to the lowest. We then ran
the following two experiments:

1) We tested the model by feeding it only the n top-weighted posts by each
user. We gradually increased values of n from 1 to 1000, and monitored the
performance of the system as n changes. The purpose of this experiment was
to compare the performance of the model when all the posts are available,
with when only the top-ranking posts (based on the attention weights) are
available to the system.

2) We replaced the user-level attention with a simple average pooling and re-ran
experiment 1. The aim of this experiment was to evaluate the contribution of
the user-level attention by ablating it from the model.
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3.1 Model Architecture

The architecture of the CNN-ELMo model is shown in Fig. 1. For each user,
her/his posts are first tokenized and then fed to an embedder, to extract a dense
representation for each token. For the embedder, the original 1024d version of
ELMo [23], pretrained on the 1 Billion Word Language Model Benchmark [2]
was used.

For each post, 300 unigram and 50 bigram convolution filters were applied
on the token embeddings. The output of the convolution filters were then fed to
a Concatenated Rectified Linear Unit (CReLU), and max pooling was applied
to the output of the CReLUs. The output of the two max pooling layers were
then concatenated and used as the representation for each post.

The final user representation of a user was calculated by averaging (experi-
ment 2) or weighted averaging (experiment 1) the representations of the available
posts by that user. In order to calculate the weights, a single fully connected layer
was applied to the representation of each post, mapping the post representation
to a scalar. A softmax activation function was then applied over the scalars,
which resulted in the weights corresponding to each post.

The last layer of the model was comprised of a single fully-connected layer,
mapping the user representation to a vector of size two. Finally, by applying
a softmax activation function over this vector, the probability for each user
belonging to the anorexic/non-anorexic class was calculated.

3.2 Dataset

The dataset used is from the first sub-task of the eRisk 2019 shared task [17],
whose focus is the early risk detection of anorexia. The dataset consists of a
collection of posts from the Reddit social media, and is annotated at the user-
level, indicating whether a user is anorexic or not. For this work, we have focused
on the detection of anorexia, without considering the earliness of the detection
as the shared task does.

Table 1 shows statistics of the training, validation, and testing datasets. As
the table shows, the data contains posts from 152 users for training, 320 users
for validation, and 815 users for testing, with an average of 300 to 400 posts per
user.

As indicated in Losada et al. [17], the dataset was collected following the
extraction and annotation method, proposed by Coppersmith et al. [3]. The
anorexic users were self-identified by explicitly stating being diagnosed with
anorexia on Reddit, while the non-anorexic users were randomly crawled from
the same social media. From the set of anorexic users, these specific posts which
discussed being diagnosed with anorexia were removed from the dataset.

4 Results

The results from the experiments are shown graphically in Fig. 2, and selected
results are provided in Table 2.
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Fig. 1. The architecture of the model used for the experiment. In the ablated model,
the Attention is replaced by the Average Pooling (shown in the dotted box).

As the solid lines in Fig. 2 show, by increasing the maximum number of
available posts per user, the performance of the model with user-level atten-
tion (experiment 1) generally improves in terms of accuracy, precision, and F1,
while the recall drops. It can also be observed that, the changes in performance
measures decreases as the number of available posts increases, and the perfor-
mance gradually converges to the final ones when all the posts are available (see
Table 2). We believe that the gradual improvement in the precision and drop in
recall is because, in general, the posts that have been highly weighted by the
user-level attention mechanism, include signals that the user is anorexic (rather
than signals that the user is not).

The dotted lines in Fig. 2a show that, by increasing the maximum number of
available posts from 1 to 10, the performance of model with the user-level average
pooling (experiment 2) also improves in terms of accuracy, precision, and F1,
but deteriorates in terms of recall. This shows that, the first 10 highly-weighted
posts included information necessary for the system to make a prediction about
the user. This has even led the model with average pooling to have a higher F1
score than the model with user-level attention, as the former has a tendency to
get less biased towards specific posts.
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Table 1. Statistics of the dataset.

Dataset # of users # of posts per user

Anorexic Non-anorexic Min Max Ave Med

Train 20 132 9 1999 558 330

Validation 41 279 9 1999 527 318

Test 73 742 10 2000 700 478

Table 2 and Fig. 2b show that, the F1 and the accuracy of the model with the
user-level average pooling starts to drop from 30 and 60 posts, respectively. As a
result, the model with user-level attention overtakes the one with average pooling
in terms of F1 and accuracy, after more than 30 and 50 posts are available,
respectively. This shows the higher capability of the model with the user-level
attention over the other in handling the higher number of posts.

Figure 2 also shows that increasing the maximum number of available posts
leads to a rapid drop in the recall of the model with user-level average pooling.
This shows that, the higher the number of available posts to the model with
average pooling, the more this model loses the capability on observing the pat-
terns that are useful in detecting anorexia. This can also support the hypothesis
that the user-level attention mechanism generally assigns higher weights to the
posts that are more signalling of anorexia.

Table 2. Performance of the system (in percentage) in terms of the maximum number
of highly-weighted posts from each user. The columns labelled as with Avg Pool refer to
the model in which the user-level attention mechanism is ablated. The last row refers
to the case when all the posts from each user are provided to the system.

Max # of posts/user With attention (experiment 1) With avg pool (experiment 2)

A P R F1 A P R F1

1 65.15 19.60 93.15 32.38 65.15 19.60 93.15 32.38

2 69.57 21.86 93.15 35.42 72.39 23.43 91.78 37.33

5 79.88 29.96 93.15 45.33 83.19 32.61 82.19 46.69

10 84.29 34.97 87.67 50.00 88.83 43.08 76.71 55.17

20 88.59 43.06 84.93 57.14 91.90 54.02 64.38 58.75

30 90.18 47.29 83.56 60.40 93.74 67.74 57.53 62.22

40 92.27 54.46 83.56 65.95 93.50 69.23 49.31 57.60

50 93.13 58.09 83.56 68.54 93.37 71.11 43.84 54.24

60 93.74 61.00 83.56 70.52 93.50 75.00 41.10 53.10

70 94.23 63.54 83.56 72.19 93.01 72.22 35.62 47.71

80 94.48 64.89 83.56 73.05 92.76 71.87 31.51 43.81

90 94.85 67.03 83.56 74.39 92.76 75.00 28.77 41.58

100 95.21 69.32 83.56 75.78 92.64 74.07 27.40 40.00

200 96.07 76.62 80.82 78.67 92.76 88.89 21.92 35.16

500 96.32 80.28 78.08 79.17 92.27 91.67 15.07 25.88

1000 96.69 83.82 78.08 80.85 91.90 88.88 10.96 19.51

2000 (all) 96.93 86.36 78.08 82.01 91.90 88.89 10.96 19.51
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(a) Top 10 posts
in steps of 1

(b) Top 100 posts
in steps of 10

(c) Top 1000 post
in steps of 100

Fig. 2. Performance of the system in terms of the maximum number of highly-weighted
posts from each user. The solid lines correspond to the model with user-level attention
(experiment 1), while the dotted lines correspond to the model with user-level average
pooling (experiment 2).

5 Discussion

In order to further analyze the behavior of the user-level attention mechanism,
the highest weights assigned by the attention mechanism were studied across
users. In addition, we also calculated the average of the n-th highest weights
assigned to the posts by the users, with n ranging from 1 to 10. We compared
these values for two types of users: labelled by the model as anorexic (i.e. true-
positive and false positive users) and labelled by the model as non-anorexic (i.e.
true-negative and false-negative users). As Table 3 shows, on average, the atten-
tion mechanism has assigned 6.96 higher weights to the most highly weighted
posts in users detected as anorexic, compared to users detected as non-anorexic.
The value of this ratio drops in the lower-ranked posts. This seems to indicate
that, generally when the attention mechanism assigns a high weight to a post, the
system is more likely to label its author as positive. It is similar to when humans
observe a piece of evidence, and tend to heavily base their decision upon it.
This also seems to support the hypothesis that the attention mechanism assigns
weights based mostly on how signalling their authors were anorexic, as opposed
to signalling not having anorexia.

As opposed to Jain and Wallace [9] and Serrano and Smith [24], who reported
that attention is not a means to explainability, our findings are generally in favor
of explainability in the user-level attention mechanism. This may be due to the
following two reasons:

1. The approach by Jain and Wallace [9] was only focused explainability of
attention mechanism, when applied on the output of a recurrent encoder.
We argue that, in such a case, each sample (contextual word representation,
in their case) already has part of the information from the other samples in
the context. As a result, finding the source of information is difficult in such
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Table 3. Average weights assigned by the user-level attention mechanism to the nth

highest weighted posts for users detected by the system as anorexic (Wp) or non-
anorexic (Wn)

Rank Wp Wn Wp/Wn

1st 0.388 0.056 6.96

2nd 0.124 0.034 3.66

3rd 0.067 0.026 2.62

4th 0.047 0.021 2.18

5th 0.035 0.019 1.86

6th 0.029 0.017 1.70

7th 0.024 0.015 1.59

8th 0.019 0.014 1.31

9th 0.016 0.013 1.23

10th 0.015 0.012 1.20

a case. Serrano and Smith [24] also with using attention over non-encoded
samples, and they showed that the level of explainability in this case is sig-
nificantly higher than when the input to the attention is encoded (using an
RNN or CNN). However, they mainly focused their report on the cases where
the attention input is encoded. Our work was fully focused on non-encoded
attention inputs.

2. The difference in the nature of the task we are performing is generally differ-
ent from Jain and Wallace [9] and Serrano and Smith [24], as our approach
focuses on the user-level (inter-document) attention mechanism, while their
experiments were focused on intra-document attention. In a task involving the
detection of a mental health problem, such as anorexia, the number relevant
and informative posts is quite rare [14–17], while even in a similar task, there
may be several ways of inferring information from a particular document.

Finally, in order to achieve stronger evidence that an inter-document atten-
tion is explainable, we believe that our approach would benefit from being used in
conjunction with the experiments proposed by Jain and Wallace [9] and Serrano
and Smith [24], as their experiments can also be applied to the inter-document
attention mechanism.

6 Conclusion

In this work, we proposed a quantitative approach to validate the explainability
of the user-level attention mechanism for the task of the detection of anorexia
in social media users based on their online posts. Our results show that, the
user-level attention mechanism has assigned higher weights to the posts from a
user based on how much they were signalling the user is at risk of anorexia.
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Two directions for the future work can be proposed: As indicated in
Sect. 5, the first direction is to complement the current experiments with the
ones proposed by Jain and Wallace [9] and Serrano and Smith [24], in order to
see if the findings from the current experiments are in line with theirs. The sec-
ond direction is to expand the current set of experiments to other mental health
binary classification tasks (such as detection of depression, PTSD, or suicide
risk), and later to multi-class or multi-label classification tasks in the field of
NLP for clinical psychology.
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20. Maupomé, D., Queudot, M., Meurs, M.J.: Inter and intra document attention for
depression risk assessment. In: Proceedings of the 2019 Canadian Conference on
Artificial Intelligence, Canadian AI 2019, Kingston, Canada, pp. 333–341, May
2019

21. Mohammadi, E., Amini, H., Kosseim, L.: CLaC at CLPsych 2019: fusion of neural
features and predicted class probabilities for suicide risk assessment based on online
posts. In: Proceedings of the Sixth Workshop on Computational Linguistics and
Clinical Psychology (CLPsych 2019), Minneapolis, Minnesota, USA, pp. 34–38.
Association for Computational Linguistics, June 2019

22. Mohammadi, E., Amini, H., Kosseim, L.: Quick and (maybe not so) easy detection
of anorexia in social media posts. In: Working Notes of CLEF 2018 - Conference
and Labs of the Evaluation Forum, Lugano, Switzerland, September 2019

http://arxiv.org/abs/1909.00384
https://doi.org/10.1007/978-3-319-44564-9_3
https://doi.org/10.1007/978-3-319-65813-1_30
https://doi.org/10.1007/978-3-319-65813-1_30


Towards Explainability in the Detection of Anorexia in Social Media 235

23. Peters, M., et al.: Deep contextualized word representations. In: Proceedings of
the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (NAACL-HLT 2018), New
Orleans, Louisiana, USA, pp. 2227–2237. Association for Computational Linguis-
tics, June 2018

24. Serrano, S., Smith, N.A.: Is attention interpretable? In: Proceedings of 57th Annual
Meeting of the Association for Computational Linguistics (ACL 2019), Florence,
Italy, vol. abs/1906.03731. Association for Computational Linguistics, July 2019

25. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems (NIPS 2017), Long Beach, California, USA, vol. 30, pp. 5998–
6008, January 2017

26. Wang, Y., Huang, M., Zhu, X., Zhao, L.: Attention-based LSTM for aspect-level
sentiment classification. In: Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP 2016), Austin, Texas, USA, pp.
606–615. Association for Computational Linguistics, November 2016
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Abstract. With the increasing popularity of personal assistant systems,
it is crucial to build a chatbot that can communicate with humans and
assist them to complete different tasks. A fundamental problem that any
chatbots need to address is how to rank candidate responses based on pre-
vious utterances in a multi-turn conversation. A previous utterance could
be either a past input from the user or a past response from the chat-
bot. Intuitively, a correct response needs to match well with both past
responses and past inputs, but in a different way. Moreover, the match-
ing process should depend on not only the content of the utterances but
also domain knowledge. Although various models have been proposed
for response matching, few of them studied how to adapt the matching
mechanism to utterance types and domain knowledge. To address this
limitation, this paper proposes an adaptive response matching network
(ARM) to better model the matching relationship in multi-turn conver-
sations. Specifically, the ARM model has separate response matching
encoders to adapt to different matching patterns required by different
utterance types. It also has a knowledge embedding component to inject
domain-specific knowledge in the matching process. Experiments over
two public data sets show that the proposed ARM model can significantly
outperform the state of the art methods with much fewer parameters.

Keywords: Response selection · Multi-turn chatbot · Response
ranking

1 Introduction

With the prevalence of intelligent personal assistant systems, it becomes increas-
ingly important to build an effective chatbot that can communicate with humans
fluently and help them fulfill different tasks. Moreover, chatbots also play an
important role in many other applications such as customer support and tutor-
ing systems [1,10,11].

One of the key components of any chatbots is the underlying response match-
ing model, whose goal is to identify the most appropriate response from a pool
c© Springer Nature Switzerland AG 2020
E. Métais et al. (Eds.): NLDB 2020, LNCS 12089, pp. 239–251, 2020.
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of candidates given past conversations. The past conversations include both user
inputs and the system’s previous responses. As illustrated in Fig. 1, a user is hav-
ing a multi-turn conversations with the system (e.g., chatbot). Given the current
input “something is slowing me down bad” as well as the past utterances, the sys-
tem is expected to identify the most appropriate candidate response, i.e., “what
is the process name with the highest cpu usage?”, among all the candidates.

Fig. 1. An example conversation

An optimal response matching model needs to address the following three
challenges. (1) It needs to capture a matching relationship that goes beyond
simple lexical or semantic similarities. As shown in the Fig. 1, the current input
and its correct response do not share any similar words, so the models that are
only based on word similarity would not work well for this problem [5,6,17,19].
(2) It should be able to capture different matching relationships for different
utterance types. Past utterances include two types of information: past inputs
from the user, and past responses from the system. Intuitively, given a candidate
response, its desirable matching relationship with past inputs should be different
from that with past responses. For example, the correct response needs to address
the questions or concerns described in the current input, while it needs to avoid
repeating the same information as those mentioned in the past responses. (3)
It can utilize domain knowledge to understand the specific meanings of some
utterances. For example, “htop” is a process monitoring application for Linux.
Without understanding the meaning of this command, it would be difficult for
the system to figure out that htop is related to the cpu usage.

Most existing studies on multi-turn response selection [8,16–18,20] mainly
focused on the first challenge (i.e., modeling the matching relationships that go
beyond semantic similarity), but little attention has been paid to address the
last two.
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In this paper, we propose an adaptive response matching network (ARM) to
address all three challenges. Specifically, a novel response matching encoder is
proposed to model the response matching relationship between each utterance
and response pair. For each utterance-response pair, instead of computing the
matching score based on word or segment level, the encoder computes a response
matching matrix through transfer matrices and the multi-attention mechanism.
To adapt to the different utterance types, separate encoders are trained: one
encoder is used to capture the relationship between current response and the
past responses, while the other is used to model the relationship between the
current response and the past input. Finally, a knowledge embedding layer is
added to the model, and such a layer enables the model to leverage domain
knowledge during the response matching process. To validate the proposed ARM
model, we conduct experiments over two public data sets. Experimental results
and further analysis demonstrate the proposed ARM model is able to achieve
superior performance in terms of both effectiveness and efficiency when compared
with the state of the art methods.

2 Related Work

Given the past conversations, a chatbot can either automatically generate
responses [7,12,15], or retrieve the most appropriate response from a pool of
candidates [8,17,19,20]. This paper focuses on the retrieval-based models for
multi-turn response selection, and we now briefly review the related work in this
area.

Early studies concatenated all of the past utterances together and computed
the matching score between the merged utterance and each candidate response
[5,6,8]. Specifically, the Dual-encoder model [8] used two LSTMs to generate
the embeddings for the utterances and candidate response respectively to com-
pute the matching score. The deep relevance matching model (DRMM) [5] and
the ARC-II model [6] were proposed for ad-hoc retrieval tasks, but they were
also applied to the response selection problem when past conversations were used
as queries and candidate responses were used as documents.

One limitation of these models is that they concatenated all the previous
utterances before embedding. Sequential matching network (SMN) [17] was pro-
posed to address this limitation. It treated each utterance separately, computed
the word-level and segment-level similarity for each response-utterance pair, and
used a CNN to distill matching features. Deep matching network (DMN) [19]
also treated each past utterance separately. It extracted relevant question-answer
posts from the collection and utilize the pseudo relevance feedback methods to
expand candidate responses with the extracted Q/A pairs. These methods are
mainly based on the word semantic similarity scores [2,17]. However, semantic
similarity is not sufficient to capture the relationship between a past utterance
and a candidate response as shown in Fig. 1.

More recently, inspired by the Transformer structure [14], the attention mech-
anism has been applied to find better semantic representations of the utterances.
Deep attention model (DAM) [20] proposed self-attention and cross-attention
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to construct semantic representations at different granularity, and the multi-
representation fusion network (MRFN) [13] has further applied multiple repre-
sentation strategies for utterances and fused them in the final step to compute
the matching scores.

All these previous studies mainly tackled the first challenge discussed in
Sect. 1, and focused on developing models to capture the matching relationship
between the past utterances and candidate responses. Few of them studied how
to adapt the matching model to different types of utterances and how to incor-
porate the domain knowledge in a more general way, which is the focus of our
paper.

3 Adaptive Response Matching Network

3.1 Problem Formulation

The problem of multi-turn response selection can be described as follows. Assume
we have a training data set D = {(ui, ri, li)}Ni=1, where ui = {pi,1, qi,2, ..., pi,ni

}
denotes a conversation consisting of multiple utterances. Each utterance could be
either a previous input (pi,j) or a previous response (qi,j). ri denotes a candidate
response for ui, and li ∈ {0, 1} indicates whether ri is the correct response
for ui. The task is to learn a model f based on D, which can compute the
response matching score between any response r and utterance u. Given a new
utterance, the learned model f will rank a list of candidate responses based on
their matching scores, and the one with the highest score will be selected as the
final response.

In this paper, we will also study how to incorporate the domain knowledge
in the training process. Specifically, we assume that the knowledge base can be
denoted as follows: K = {(ci, gi)}Mi=1, where ci is a domain-specific keyword,
and gi is the corresponding description of that keyword. Take the conversations
shown in Fig. 1 as an example, ci could represent the command htop and gi
would be the description of that command. Both D and K will be used to learn
the model f .

3.2 Overview of the ARM Model

The key challenge in multi-turn response selection model lies in how to model
the matching relationship between a candidate response and the past utterances.
Almost all of the recent studies followed a three-step procedure: representa-
tion, matching and accumulation [2,17]. The first step is to represent candidate
responses and utterances in various ways that can capture their semantic mean-
ings. The second step is to compute the matching scores between the utterances
and the candidate response based on these representations. And the last step is
to accumulate all the scores into the final one.

Our proposed adaptive response matching network model (ARM) also follows
the above three-step procedure, with major differences in the first two steps.
Figure 2 shows the overall architecture of the ARM model. Compared with the
existing studies, ARM aims to develop a matching mechanism that can adapt
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Fig. 2. Overview of the adaptive response matching network (ARM)

to the domain knowledge (in the representation step) and different types of
utterances (in the matching step).

In the ARM model, the representation module first converts each utterance
into a segment-level vector representation using word embedding and GRU, and
then enhances the vector representation with domain knowledge using knowledge
embedding layer. After that, the matching module utilizes the representations of
the utterance vectors and the response vectors to calculate the response matching
score, and extracts features to feed into the accumulation module. More specif-
ically, multiple transfer matrices are trained to transfer hidden states vectors
into different representations spaces, and the combination of response matching
matrix from each representation space is used to compute the matching score in
the response matching encoder. The segments in an utterance that are impor-
tant for recognizing appropriate response will have higher matching scores. The
areas with higher scores in the final relevance matrix will be extracted by CNN
network. Finally, the accumulation module generates the final matching score
based on the matching vectors provided by the matching module.

3.3 Adaptive Response Matching Encoder

A past utterance could be either an input from the user or a response from
the system. Both utterance types are useful to select the matching candidate
response, but in a different way. An input often describes a request or a prob-
lem encountered by a user, so the correct candidate response is expected to be
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the solution to the inputs. On the contrary, a candidate response is expected to
be a follow-up or clarification of previous responses. Let us take a look at the
example illustrated in Fig. 1 again. The correct response, i.e., “the process name
with the highest cpu usage”, is expected to be the solution to the request related
to “something is slowing me down”. On the other hand, it is a follow-up ques-
tion to the previous response, i.e,. “do you have any task manager installed?”
Clearly, it is necessary to ensure the matching model be adaptive to different
utterance types. In other words, when selecting a response for the given utter-
ances, different matching mechanisms need to be used for past inputs and past
responses.

Although a few models have been proposed to solve the problem of multi-turn
response selection [2,13,17,20], none of them studied how to directly adapt the
matching mechanisms to different utterance types. Instead, they mainly focused
on exploring various complicated representations of the utterances with the hope
that these representations can better capture the semantic meanings of the utter-
ances. Although the more complex representations can lead to better effective-
ness, they often require more computational resources and longer time to train
and test.

In the ARM model, we propose adaptive response matching encoders to
learn different matching patterns according to the utterance types. The basic
idea of ARM encoders is to start with some basic semantic representations of
the utterances/responses, and then learn new matching representations for each
matching type. The new matching representations are expected to better capture
the response matching relationship for each utterance type. We now describe the
encoders in detail, and the important notations are summarized in Table 1.

Starting with Basic Representations: Following the previous study [17], we
represent both responses (r) and utterances (either p for a previous user input or
q for a previous response) using segment-level representation. Specifically, we first
apply Word2Vec [9] algorithm to generate the word embedding e ∈ R

d for each
word, where d is the number of dimensions in the word embedding. The model
looks up a pre-trained word embedding table to convert p = [wp,1, wp,2, ..., wp,np

]
into P = [ep,1, ep,2, ..., ep,np

], where wp,i is the i-th word and ep,i is the corre-
sponding word embedding vector, and np is the length of p. Similarly, we can
represent q as Q = [eq,1, eq,2, ..., eq,nq

] and r as R = [er,1, er,2, ..., er,nr
] where

eq,i, er,i ∈ R
d, are the embeddings of the i-th word of q and r, and nq and nr are

the length of q and r. To extract the contextual information in each utterance,
we feed P , Q and R into GRU network [3] and use the generated hidden states
Hp, Hq and Hr as basic representations of the responses and utterances.

Learning New Matching Representations: Given the basic representations
of a previous utterance and a response (e.g., Hp and Hr), two transfer matrices
(i.e., Wp and Wr) are learned to transfer the basic representations to the new ones
(i.e., RMp and RMr) that can better capture the response matching relationship.
Formally, the new representations (i.e,. relevance matrix) of the utterance and
the response can be computed using
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Table 1. Explanations of key notations.

Notation Explanation

p a past input

q a past response

u an utterance, could be either p or q

r a candidate response

wi a word

ei the word embedding vector of word wi

hi the hidden state vector generated by GRU for word wi

hk
i the basic knowledge embedding vector of wi

hnew
i the new knowledge embedding vector of wi after the gating mechanism

H hidden state matrix of a utterance or response (based on hi or hnew
i )

W transfer matrix in the adaptive response matching encoder

RM relevance matrix in the adaptive response matching encoder

M single-head response matching matrix

M ′ final response matching matrix in multi-head encoder

W s,W g learning parameters for the knowledge embedding layer

RMp = HpWp, RMr = HrWr

where Wp,Wr ∈ R
h×m, h is the number of dimensions in hidden states, and m

is the number of dimensions in the response matching encoder. Wp and Wr are
transfer matrices and will be learned from the training data. The initial weights
of these matrices are randomly initialized with different values, and the training
data contain the labels indicating whether a utterance is a input or a response.

Computing Matching Scores: With the newly learned matching represen-
tations of a utterance and a candidate response, we can compute a response
matching matrix as follows.

M = softmax(
RMpRMr

T

√
m

).

Specifically, M [i, j] represents the response matching score of the i-th hidden
state from Hp and the j-th hidden state from Hr. The i-th hidden state from the
utterance (i.e., hp,i) is first transferred to a vector in a new representation space
(i.e., RMpi) through the transfer matrix (i.e., Wp). Similarly, the j-th hidden
state from the response (i.e., hr,j) is converted to another vector in the new
representation space (i.e., RMrj) through Wr. The response matching score of

these two new vectors is then computed using Mi,j = softmax(RMpi·RMT
rj√

m
).
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Fig. 3. Details of adaptive response matching encoders

Improvement via Multi-head Mechanism: In order to capture different
representations that could be useful for response matching, we apply the multi-
head attention mechanism [14] to the response matching encoder. The structure
of multi-head encoder is shown in Fig. 4. We learn different transfer matrices
to transfer the hidden states vectors into different representation spaces, and
combine the matrices from each representation space to get the final matrix
M ′. Specifically, we stack matrices M1,M2, ...,Mx into one matrix and multiply
it with a transfer matrix Wt to get the final response matching matrix M ′,
where the elements of Wt are learning parameters. Wt learns how to combine
information from multiple channels into the final response matching matrix. In
the final response matching matrix M ′, elements with higher values mean the
corresponding word pairs have higher semantic matching scores. This multi-head
mechanism can expand the model’s ability to focus on different positions, and it
is able to capture more diverse response matching patterns through the multiple
representation spaces (Fig. 3).

3.4 Knowledge Embedding Layer

An optimal response matching model also needs to adapt to the domain-specific
knowledge. As explained in Fig. 1, if we have domain-specific knowledge about
“htop”, we might be able to better match the candidate responses. Assume the
available knowledge base can be represented as pairs of domain-specific concepts
and their descriptions (i.e., (ci, gi)), we now discuss how our model adapt to
domain knowledge.

A straightforward way to incorporate knowledge base is to replace the
domain-specific words with their definitions or descriptions in the correspond-
ing hidden states. However, words are ambiguous, and not every occurrence of a
domain-specific word refers to the same meaning. For example, the word “install”
is a command in the Ubuntu system. But if a user asks “how to install the task
manager”, the word “install” in this utterance should not be replaced by the
description of the command because it did not refer to the command. To tackle
this problem, we propose to apply gating mechanisms to decide when and how
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to fuse knowledge into utterance representations in the knowledge embedding
layer [4].

For each word wi that occurs in either the utterances or the response, if
it is one of the domain-specific word (ci), we would extract its corresponding
description from the knowledge base (i.e., gi), feed gi into a GRU unit, and the
generated hidden state is used as knowledge embedding, which is denoted as hk

i .
After that, we can apply gating mechanism to fuse knowledge embedding hk

i into
word representation hi to generate the new representation hnew

i :

hnew
i = bhi + (1 − b) tanhW s[hi;hk

i ;hi − hk
i ]

b = sigmoid(W g[hi;hk
i ;hi − hk

i ])

where W s and W g are learning parameters, and [v1, v2, v3] means to stack
the three vectors into a matrix.

With the gating mechanism, the new word representation hnew
i has selectively

adapt to the domain knowledge based on the context information. For each
dimension in the vector hi, the gating mechanism decides whether to keep the
original value or replace it with the value from knowledge embedding. Without
the gating mechanism, the model would replace values in all dimensions with
those from knowledge embedding, which might not be always the best solution.
The new representation hnew

i is then used to replace hi in the hidden state matrix
Hp, Hq and Hr, i.e., the input of the adaptive response matching encoders.

3.5 Summary

The ARM model can be regarded as an extension of the SMN model [17] with a
couple of notable differences. First, the model uses adaptive response matching
encoders to learn different matching patterns according to the utterance type,
and the captured matching relationship is able to go beyond the simple semantic
similarity. Second, the model adds a knowledge embedding layer (in the repre-
sentation module) to provide a general way to incorporate domain knowledge.
These two differences enable the ARM model better capture the response match-
ing relationship, and explain why the ARM model is more effective than the state
of the art models.

DMN [19] is the only existing study that tried to utilize knowledge base. It
extracted question-answer pairs from the collection as knowledge, and then uti-
lized the pseudo relevance feedback methods to expand candidate responses with
the extracted knowledge. On the contrary, the ARM model presents a more gen-
eral and robust way of incorporating domain-specific knowledge. In particular,
the representation of the knowledge base is more general. The knowledge can
come from either collection itself or external domain-specific resources. More-
over, the gating mechanism in the embedding layer makes it possible to selec-
tively apply the domain knowledge based on the context information, which can
improve the robustness of the model.

Another major advantage of ARM model lies in its efficiency. When design-
ing the model, we intentionally use the basic semantic representations (i.e.,
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word/knowledge embedding and GRU outputs) and let the transfer matrices
to learn useful matching relationships for each utterance type. Such a learning
process is more targeted than learning a general yet more complicated repre-
sentation that could be useful to match all kinds of utterance types [13,20]. As
shown in Sect. 4.2, our model uses much fewer parameters than the state of the
art models, yet it is able to achieve better performance.

4 Experiments

4.1 Experiment Setup

Data Sets: We evaluate the performance of the proposed model on the two
publicly available data sets from the DSTC7 Response Selection Challenge1. (1)
The first data set is the Ubuntu dialogue corpus, which contains conversations
about solving an Ubuntu user’s posted problem. The domain knowledge includes
the commands and their corresponding function descriptions. The training set
contains 1 million conversations, the development set and the test set each con-
tains 0.5 million conversations. (2) The second data set is the student-advisor
data set. In each conversation, the advisor will guide the student to pick courses.
The external knowledge is about the courses such as their descriptions and areas.
The training set contains 0.5 million conversations, development set and test set
each contains 50,000 conversations.

Evaluation Measures: Following the previous studies [8,17], the primary eval-
uation measures are R100@k, which is the recall at position k in 100 candidates.
k is set to 1, 5, 10. Since there is only one correct response for each conversation,
the precision at position k always equal to the recall at position k divided by k.
Thus, only the values of recall are reported.

Table 2. Performance comparison. * means statistically significant difference over the
best baseline with p < 0.05 under student’s t-test.

Ubuntu data set Student-advisor data set

Model R100@1 R100@5 R100@10 R100@1 R100@5 R100@10

Dual-encoder 18.3% 34.35% 47.15% 11.35% 19.08% 33.2%

DRMM 21.25% 37.83% 52.48% 15.41% 24.92% 36.75%

ARC-II 20.31% 36.53% 49.42% 14.85% 23.42% 37.25%

SMN 34.14% 59.13% 71.52% 19.57% 28.2% 52.39%

DMN 33.91% 58.9% 70.86% 19.6% 38.23% 51.64%

DAM 35.37% 61.18% 72.29% 21.13% 40.57% 55.32%

MRFN 36.13% 63.45% 77.85% 20.35% 38.92% 54.28%

ARM 39.93%* 67.21%* 78.95%* 23.74%* 41.83%* 58.5%*

1 https://github.com/IBM/dstc7-noesis.

https://github.com/IBM/dstc7-noesis
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Fig. 4. Response matching matrix in ARM (left) vs. similarity matrix in SMN (right)

Table 3. Ablation analysis results

Ubuntu data set Student-advisor data set

Model R100@1 R100@5 R100@10 R100@1 R100@5 R100@10

ARM-K 36.74% 63.93% 75.12% 22.38% 38.96% 55.82%

ARM-S 38.35% 65.05% 75.32% 23.27% 40.15% 55.26%

ARM 39.93%* 67.21%* 78.95%* 23.74%* 41.83%* 58.5%*

Parameter Settings: In our model, dropout layer was added to the CNN
network, and the dropout rate is set to 0.5. Zero padding was applied to make
the size of interaction matrix same for all utterance-response pairs. The size of
interaction matrix after padding is 50 × 50. We also set the maximum length of
utterance and response as 50 words. The learning rate was set as 0.0005, and
experiments show that larger learning rate would lead to a significant decrease
in performance. We applied Word2Vec algorithm to train the word embedding
matrix, and the number of word embedding dimensions is 200. All these hyper-
parameters are chosen to be consistent with the previous study [17].

4.2 Performance Comparison

We compare the performance of the proposed ARM model with several state of
the art baseline methods over both data sets. In particular, the baseline models
include the following seven state of the art response matching models: Dual-
encoder [8], DRMM [5], ARC-II [6], SMN [17], DMN [19], DAM [20] and MRFN
[13], which were briefly reviewed in Sect. 2. The implementations of the base-
line models were obtained either through the code published by the authors or
MatchZoo2 on the Github.

The results of performance comparison are summarized in Table 2. It is clear
that our proposed ARM model outperforms all the strong baseline models sig-
nificantly on both data sets, which indicates the effectiveness of the ARM model
in addressing the limitations we discussed before. We conduct additional exper-
iments to better understand the proposed model.

The proposed ARM model is an extension of the SMN model [17] with the
addition of two important components: adaptive response encoders and the
2 https://github.com/NTMC-Community/MatchZoo.

https://github.com/NTMC-Community/MatchZoo
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knowledge embedding layer. To better understand the effectiveness of these
additions, we conduct additional experiments by disabling each of these new
additions, and the results are shown in Table 3. ARM-S is the variation of
ARM model, where we disable the separate encoders and use the same response
encoders for different utterance types. ARM-K is the variation of ARM, where
we disable the knowledge embedding layer. When we compare the two varia-
tions with the ARM model, it is clear that both type-adapted encoders and the
knowledge embedding layer are useful to improve the performance. Another key
difference between ARM and SMN model is how to model the response matching
relationships. SMN mainly relies on the semantic similarity, while the proposed
response matching encoder can capture other semantic matching relationship.
The difference can be easily seen through an example shown in Fig. 4. The darker
color means a higher score. It is clear that the ARM model can correctly cap-
ture the matching relationship between {slowing, me, down} from the input and
{process, name, with, the, cpu, usage} from the correct response, while the SMN
cannot.

Furthermore, ARM is shown to be more effective than the recently pro-
posed DAM and MRFN models according to Table 2. In fact, it is also more
efficient. Similar to DAM and MRFN, ARM aims to capture the matching rela-
tionship that goes beyond simple semantic similarity. Instead of learning general
yet more complicated representations for all utterances, ARM is more focused
and it explicitly adapts to different matching patterns caused by different utter-
ance types. As a result, ARM is more efficient and requires much fewer param-
eters than DAM and MRFN. With the same hyper-parameter values (e.g., the
number of dimensions in Word2Vec vectors), the numbers of parameters used
in the ARM, DAM and MRFN models are 30 millions, 74 millions, and 91 mil-
lions respectively. Fewer parameters means significant improvement in terms of
efficiency.

5 Conclusions and Future Work

In this paper, we propose an adaptive response matching network for multi-
turn chatbot response selection. Existing models focused on modeling different
relationships using multiple representation strategies, while the ARM utilizes
adaptive response matching encoders in the matching module to directly model
different matching relationships for different types of utterances. Moreover, ARM
has a knowledge embedding layer, which can adapt to external domain knowledge
in a general way. Empirical results over two data sets show that the proposed
model outperforms various state-of-the-art models in terms of both effectiveness
and efficiency. In the future, we plan to study how to incorporate unstructured
domain knowledge to further improve performance.
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research.
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Abstract. In this paper, we focus on the problem of question retrieval
in community Question Answering (cQA) which aims to retrieve from the
community archives the previous questions that are semantically equiv-
alent to the new queries. The major challenges in this crucial task are
the shortness of the questions as well as the word mismatch problem
as users can formulate the same query using different wording. While
numerous attempts have been made to address this problem, most exist-
ing methods relied on supervised models which significantly depend on
large training data sets and manual feature engineering. Such methods
are mostly constrained by their specificities that put aside the word order
and ignore syntactic and semantic relationships. In this work, we rely on
Neural Networks (NNs) which can learn rich dense representations of
text data and enable the prediction of the textual similarity between the
community questions. We propose a deep learning approach based on a
Siamese architecture with LSTM networks, augmented with an attention
mechanism. We test different similarity measures to predict the semantic
similarity between the community questions. Experiments conducted on
real cQA data sets in English and Arabic show that the performance of
question retrieval is improved as compared to other competitive methods.

Keywords: Community Question Answering · Question retrieval ·
Siamese LSTM · Attention mechanism

1 Introduction

Community Question Answering (cQA) sites such as Yahoo! Answers1, Stack-
overflow2, Quora3, WikiAnswers4, and Google Ejabat5 give people the ability
1 http://answers.yahoo.com/.
2 http://stackoverflow.com/.
3 https://fr.quora.com/.
4 https://wiki.answers.com/.
5 https://ejaaba.com/.
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to post their various questions and get them answered by other users. Inter-
estingly, users can directly obtain short and precise answers rather than a list
of potentially relevant documents. Community sites are exponentially growing
over time, building up very huge archives of previous questions and their answers.
However, multiple questions with the same meaning can make information seek-
ers spend more time searching for the best answer to their question. Therefore,
retrieving similar questions could greatly improve the QA system and benefit the
community. Detecting similar previous questions that best match a new user’s
query is a crucial and challenging task in cQA, known as Question Retrieval
(QR). Using the existing answers to similar previous questions could dodge the
lag time incurred by waiting for new answers, thus enhancing user satisfaction.
Owing to its importance, the question retrieval task has received wide atten-
tion over the last decade [14,17,18]. One critical challenge for this task is the
word mismatch between the new posted questions and the existing ones in the
archives as similar questions can be formulated using different, but related words.
For instance, the questions How can we relieve stress naturally? and What are
some home remedies to help reduce feelings of anxiety? have nearly the same
meaning but include different words and then may be regarded as dissimilar.
This constitutes a barrier to traditional Information Retrieval (IR) and Natu-
ral Language Processing (NLP) models since users can phrase the same query
using different wording. Furthermore, community questions are mostly short,
have different lengths, and usually have sparse representations with little word
overlap. Although numerous attempts have been made to tackle this problem,
most existing methods rely on the bag of-words (BOWs) representations which
are constrained by their specificities that put aside the word order and ignore
semantic and syntactic relationships. Recent advances in question retrieval have
been achieved using Neural Networks (NNs) [5,6,8,12] which provide powerful
tools for modeling language, processing sequential data and predict the text
similarity.

In this paper, we propose an approach based on NNs to detect the seman-
tic similarity between the questions. The deep learning approach is based on a
Siamese architecture with LSTM networks, augmented with an attention mech-
anism. We tested different similarity measures to compare the final hidden states
of the LSTM layers.

2 Related Work

The question retrieval task has been intensively studied over the past decade.
Early works were based on the vector space model referred to as VSM to calculate
the cosine similarity between a query and archived questions [2]. However, the
major limitation of VSM is that it favors short questions, while cQA services
can handle a wide variety of questions not limited to factöıd questions. Language
Models (LM)s [3] have been also used to model queries as sequences of terms
instead of sets of terms. LMs estimate the relative likelihood for each possible
successor term taking into account relative positions of terms. Nevertheless, such
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models might not be effective when there are only few common words between
the questions. Further methods exploited the available category information of
questions such as in [2]. Wang et al. [15] used a parser to build syntactic trees
of questions, and rank them based on the similarity between their syntactic
trees. Nonetheless, such an approach requires large training data and existing
parsers are still not well-trained to parse informally written questions. Recent
works focused on the representation learning for questions, relying on the Word
Embedding model for learning distributed representations of words in a low-
dimensional vector space. Along with the popularization of word embeddings
and its capacity to produce distributed representations of words, advanced NN
architectures such as Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN) and LSTM have proven effectiveness in extracting higher-level
features from constituting word embeddings. For instance, Dos Santos et al.
[5] employed CNN and bag-of-words (BOW) representations of the questions
to calculate the similarity scores. Within the same context, Mohtarami et al. [8]
developed a bag-of-vectors approach and used CNN and attention-based LSTMs
to capture the semantic similarity between the community questions and rank
them accordingly. LSTM model was also used in [12], where the weights learned
by the attention mechanism were exploited for selecting important segments
and enhancing syntactic tree-kernel models. More recently, the question retrieval
task was modeled as a binary classification problem in [6] using a combination
of LSTM and a contrastive loss function to effectively memorize the long term
dependencies. In our work, we use a Siamese adaptation of LSTM [9] for pairs
of variable-length sentences named Siamese LSTM. It is worth noting that work
on cQA has been mostly carried out for other languages than Arabic mainly due
to a lack of resources. Recent works in Arabic mainly rely on word embeddings
and parse trees to analyze the context and syntactic structure of the questions
[1,7,8,13].

3 Description of the Proposed ASLSTM Approach

In order to improve the QR task, we propose an attentive Siamese LSTM app-
roach for question retrieval, referred to as ASLSTM to detect the semantically
similar questions in cQA. The approach is composed of three main modules
namely, question preprocessing, word embedding learning and attentive Siamese
LSTM. The basic principle underlying the ASLSTM approach is to map every
question word token into a fix-sized vector. The word vectors of the questions
are therefore fed to the Siamese LSTM with the aim of representing them in the
final hidden states encoding semantic meaning of the questions. An attention
mechanism is integrated in the Siamese architecture to determine which words
should give more attention on than other words over the question. Community
questions are then ranked by means of the Manhattan similarity function based
on the vector representation of each question. A previous posted question is con-
sidered to be semantically equivalent to a queried question if their corresponding
LSTM representations lie close to each other according to the Manhattan simi-
larity measure. The historical question with the highest Manhattan score will be
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returned as the most similar question to the new posted one. The components
of ASLSTM and the dataset used are described below.

3.1 Dataset

We used the dataset released in [19] for the QR evaluation. The questions of the
community collection were harvested from all categories in the Yahoo! Answers
platform, and were randomly splitted into the test and search sets while main-
taining their distributions in all categories. The community questions in the
collection are in various structures, different lengths and belonging to diverse
categories e.g., Health, Sports, Computers and Internet, Diet and Fitness, Pets,
Travel, Business and Finance, Entertainment and Music etc. Table 1 gives some
statistics on the experimental data set.

Table 1. Description of the data set

Number of questions in the search set 1,123,034

Number of queries in the test set 252

Number of relevant questions in the test set 1,624

Number of questions in the dev set 83

Number of relevant questions in the dev set 644

Questions’ lengths (number of words) [1;20]

For our experiments in Arabic, we translated the same English collection
using Google Translation with a careful manual verification, as there is no large
Arabic dataset available for the question retrieval task. Note that the Arabic
collection includes exactly the same number of questions as the English set.

3.2 Question Preprocessing

Pre-processing is important to make the question collections cleaner and eas-
ier to process. The question preprocessing module aims to filter the community
questions and extract the useful terms in order to represent them in a formal
way. It comprises text cleaning, tokenization, stopwords removal and stemming.
Punctuation marks, non letters, diacritics, and special characters are removed.
English letters are lowercased while dates are normalized to the token date and
numerical digits are normalized to the token num. For the Arabic question col-
lection, in addition to the aforementioned tasks, orthographic normalization was
applied, including Tachkil removal, Tatweel removal, and letter normalization.
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3.3 Word Embedding Learning

Word embeddings are low-dimensional vector representations of words, learned
by harnessing large amounts of text corpora using shallow neural networks. In
the word embedding learning module, we map every word into a fix-sized vector
using Word2Vec pretrained on an external corpus. For English word embedding
training, we resorted to the publicly available word2vec vectors6, with dimen-
sionality of 300, that were trained on 100 billion words from Google News.

For the experiments in Arabic, we used the Yahoo!Webscope dataset7, trans-
lated into Arabic including 1,256,173 questions with 2,512,034 distinct words.
The Continuous Bag-of-Words (CBOW) model was used, as it has proven
through experiments to be more efficient and outperform Skip gram on our
dataset [10]. The training parameters of the CBOW model on the Arabic collec-
tion were set after several tests as follows:

– Size=300: feature vector dimension. We tested different values in the range
[50, 500] but did not get significant difference in terms of precision.

– Sample=1e-4: down sampling ratio for the redundant words in the corpus.
– Negative samples=25: number of noise words
– min-count=1: we set the minimum number of words to 1 to make sure we do

not throw away anything.
– Context window=5: fixed window size.

3.4 Attentive Siamese LSTM

3.5 Siamese LSTM

The overall aim of Siamese LSTM is to compare a pair of sentences to decide
whether or not they are semantically equivalent. Siamese LSTM uses the Siamese
network [9] architecture which is known to have identical sub-networks LSTMleft
and LSTMright that are passed vector representations of two sentences and
return a hidden state encoding semantic meaning of the sentences. These hidden
states are then compared using a similarity metric to return a similarity score.

In our work, Siamese LSTM was adapted to the context of question retrieval,
that is to say, the sentence pairs become pairs of questions. LSTM learns a
mapping from the space of variable length sequences din and encode the input
sequences into a fixed dimension hidden state representation drep. More con-
cretely, each question is represented as a word vector sequence and fed into the
LSTM, which updates, at each sequence-index, its hidden state. The final state
of LSTM for each question is a vector of d dimensions, which holds the inherent
context of the question. Unlike vanilla RNN language models which predict next
words, the given network rather compares pairs of sequences. A major feature
of the Siamese architecture is the shared weights across the sub-networks, which
reduce not only the number of parameters but also the tendency of overfitting.
6 https://code.google.com/p/word2vec/.
7 The Yahoo! Webscope dataset Yahoo answers comprehensive questions and answers

version 1.0.2, available at “http://research.yahoo.com/Academic Relations”.

https://code.google.com/p/word2vec/
http://research.yahoo.com/Academic_Relations
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To measure the similarity between the two question vectors, we tested sev-
eral similarity measures and finally adapted the Manhattan one with which we
acquired the best outcome as will be seen later in the next section.

The Manhattan similarity between the last hidden states of a sequence pairs
h(left) and h(right) is computed as follows:

y = exp(− ‖ h(left) − h(right) ‖1) (1)

For Siamese LSTM training, we employed the publicly available Quora Ques-
tion Pairs dataset8. The given collection encompasses 400,000 samples of ques-
tion duplicate pairs, where each sample has a pair of questions along with ground
truth about their corresponding similarity (1: similar, 0: dissimilar). During
LSTM training, we applied the Adadelta method for weights optimization to
automatically decrease the learning rate. Gradient clipping was also used with a
threshold value of 1.25 to avoid the exploding gradient problem [11]. The LSTM
layers’ size was set to 50 and the embedding layer’s size to 300. We employed the
back propagation and small batches of size equals 64, to reduce the cross-entropy
loss and we resorted to the Mean Square Error (MSE) as a common regression
loss function for prediction. We trained the model for several epochs to observe
how the results varied with the epochs. We found out that the accuracy changed
with the variation of the number of epochs but stabilized after epoch 25. The
given parameters were set based on several empirical tests; each parameter was
tuned separately on a development set to pick out the best one. Note that we
used the same LSTM configuration for both languages.

3.6 Attention Mechanism

Attention mechanism with neural networks have recently achieved tremendous
success in several NLP tasks [4,12]. We assume that every word in a question
contributes to the meaning of the whole question but the words do not have equal
influential information. Thus, we should assign a probability to every word to
determine how influential it is to the entire question.

The general architecture of the Siamese LSTM model augmented with an
attention layer is illustrated in Fig. 1, where the different constituent layers are
shown from the input (question words) to the output (similarity score). Siamese
LSTM model employs only the last hidden states of a sequence pair e.g., h

(a)
5

and h
(b)
4 , which may ignore some information. To remedy this problem, in the

attention layer, we used all hidden states H = {h1, h2, ..., hL}, where hi is the
hidden state of the LSTM at time step i summarizing all the information of
the question up to xi and L denotes the length of the question. Note that α(a)

and α(b) denote the weights of LSTMa and LSTMb, respectively. Basically,
the attention mechanism measures the importance of a word through a context
vector. It computes a weight αi for each word annotation hi according to its
importance. The final question representation r is the weighted sum of all the
word annotations using the attention weights, computed by Eq. 4.
8 www.kaggle.com/quora/question-pairs-dataset.

www.kaggle.com/quora/question-pairs-dataset
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Fig. 1. An illustration of attentive Siamese LSTM model

In the attention layer, a context vector uh is introduced, which is randomly
initialized and can be viewed as a fixed query, that allows to identify the infor-
mative words.

ei = tanh(Whhi + bh), ei ∈ [−1, 1] (2)

αi =
exp(eTi uh)

∑T
i=1 exp(eTt uh)

,
T∑

i=1

αi = 1 (3)

r =
T∑

i=1

αihi, r ∈ R2L (4)

where Wh, bh, and uh are the learnable parameters, Wh is a weight matrix and bh
is a bias vector used to project each context vector into a common dimensional
space and L is the size of each LSTM.

4 Experimental Evaluation

4.1 Evaluation Metrics

For the automatic evaluation, we used the following metrics: Mean Average
Precision (MAP), Precision@n (P@n) and Recall as they are the most used ones
for assessing the performance of the QR task. MAP assumes that the user is
interested in finding many relevant questions for each query and then rewards
methods that not only return relevant questions early, but also get good ranking
of the results. Precision@n gives an idea about the classifier’s ability of not
labeling a positive sample as a negative one. It returns the proportion of the
top-n retrieved questions that are equivalent. Recall is the measure by which we
check how well the model is in finding all the positive samples of the dataset. It
returns the proportion of relevant similar questions that have been retrieved over
the total number of relevant questions. We also used accuracy, which returns the
proportion of correctly classified questions as relevant or irrelevant.
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4.2 Results and Discussion

We compare ASLSTM against our previous approach called WEKOS as well as
the competitive state-of-the-art question retrieval methods tested in [19] on the
same datasets. The methods being compared are briefly described below:

– WEKOS [10]: A word embedding based method which uses the cosine dis-
tance to measure the similarity between the weighted continuous valued vec-
tors of the clustered questions.

– TLM [16]: A translation based language model which uses a query likelihood
approach for the question and the answer parts, and integrates word-to-word
translation probabilities learned through various information sources.

– ETLM [14]: An entity based translation language model, which is an exten-
sion of TLM where the word translation was replaced with entity translation
to integrate semantic information within the entities.

– PBTM [20]: A phrase based translation model which uses machine trans-
lation probabilities assuming that QR should be performed at the phrase
level.

– WKM [22]: A world knowledge based model which integrates the knowledge
of Wikipedia into the questions by deriving the concept relationships that
allow to identify related topics between the questions.

– M-NET [21]: A word embedding based model, which integrates the category
information of the questions to get a category based word embedding.

– ParaKCM [19]: A key concept paraphrasing based approach which explores
the translations of pivot languages and expands queries with paraphrases.

Table 2 gives a comparison of the performance of ASLSTM against the afore-
mentioned models on the English Yahoo! Answers dataset.

As illustrated in Table 2, ASLSTM outperforms in English all the compared
methods on all criteria by successfully returning a significant number of similar
questions among the retrieved ones. This good performance indicates that the
use of Siamese LSTM along with the attention mechanism is effective in the
QR task. Word embeddings allow to obtain an efficient input representation for
LSTM, capturing syntactic and semantic information in a word level.

Table 2. Question retrieval performance comparison of different models in English.

TLM ETLM PBTM WKM M-NET ParaKCM WEKOS ASLSTM

P@5 0.3238 0.3314 0.3318 0.3413 0.3686 0.3722 0.4338 0.5033

P@10 0.2548 0.2603 0.2603 0.2715 0.2848 0.2889 0.3647 0.4198

MAP 0.3957 0.4073 0.4095 0.4116 0.4507 0.4578 0.5036 0.5799

Interestingly, our approach does not require an extensive feature generation
owing to the use of a pre-trained model. The results show that ASLSTM performs



260 N. Othman et al.

better than translation and knowledge based methods, which provides evidence
that the question representations made by the Siamese LSTM sub-networks can
learn the semantic relatedness between pairs of questions and then are more
adequate for representing questions in the question similarity task. The Siamese
network was trained using backpropagation-through-time under the MSE loss
function which compels the LSTM sub-networks to detect textual semantic dif-
ference during training. A key virtue of LSTM is that it can accept variable
length sequences and map them into fixed length vector representations which
can overcome the length and structure’s problems in cQA.

Another significant finding is the effectiveness of the attention mechanism
which was able to improve the performance of the approach. We assume that
the attention mechanism managed to boost the similarity learning process by
assigning a weight to each element of the question. The weights will then allow to
compute which element in the sequence the neural network should more attend.

WEKOS averages the weighted embeddings, which is one of the most simple
and widely used techniques to derive sequence embedding but it leads to losing
the word order, while in ASLSTM, the LSTMs update their state to get the
main context meaning of the text sequence in the order of words. The goal of
the Siamese architecture is to learn a function which can map a question to
an appropriate fixed length vector which is favor for similarity measurement.
Interestingly, it offers vector representation for a very short text fragment that
should grasp most of the semantic information in that fragment.

In order to properly assess the Siamese LSTM model performance on the
similarity prediction problem, we plot training data vs validation data accuracy
using the Matplotlib library.

(a) Results on the English dataset (b) Results on the Arabic dataset

Fig. 2. Epochs vs accuracy of Siamese LSTM on the English and Arabic dataset

From the plots of accuracy given in Figs. 2a and 2b, we observe that we
get about 82% and 81% accuracy rate on the validation data for English and
Arabic respectively. The model has comparable consistent accuracy on both
train and validation sets. Both training and validation accuracy continue to
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increase without a sudden decrease of the validation accuracy, indicating a good
fit. Therefore, we can admit that, whilst the performance on the training set is
slightly better than that of the validation set in term of accuracy, the model
converged to a stable value without any typical overfitting signs.

It is worth mentioning that the accuracy used in the epochs-accuracy plots,
is the binary accuracy calculated by Keras, and it implies that the threshold is
set at 0.5 so, everything above 0.5 will be considered as correct.

Our results are fairly stable across different similarity functions, namely
cosine and Euclidean distances. We found that the Manhattan distance outper-
formed them on both the English and Arabic datasets as depicted in Tables 3a
and 3b which demonstrates that it is the most relevant measure for the case of
high dimensional text data.

Table 3. Comparison between similarity measures

(a) Results on the English dataset

P@5 Recall

Manhattan 0.5033 0.5477

Cosine 0.3893 0.4345

Euclidean 0.3393 0.3843

(b) Results on the Arabic dataset

P@5 Recall

Manhattan 0.3702 0.4146

Cosine 0.2562 0.3006

Euclidean 0.2062 0.2506

Furthermore, we remarked that ASLSTM could find the context mapping
between certain expressions mostly used in the same context such as bug
and error message or also need help and suggestions. ASLSTM was also able
to retrieve similar questions containing certain common misspelled terms like
recieve instead of receive, but it failed to capture other less common spelling
mistakes like relyable or realible instead of reliable. Such cases show that our
approach can address some lexical disagreement problems. Moreover, there are
few cases where ASLSTM fails to detect semantic equivalence, including queries
having only one similar question and most words of this latter do not appear in
a similar context with those of the query.

Table 4. Question retrieval performance of ASLSTM in Arabic

WEKOS ASLSTM

P@5 0.3444 0.3702

P@10 0.2412 0.2872

MAP 0.4144 0.4540

Recall 0.3828 0.4146

Table 4 shows that ASLSTM outperforms in Arabic the best compared sys-
tem which proves that it can also perform well with complex languages.
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Nevertheless, a major limitation of the proposed approach is that it ignores
the morphological structure of Arabic words. Harnessing the word internal struc-
ture might help to capture semantically similar words. Therefore, endowing word
embeddings with grammatical information such as, the person, gender, number
and tense could help to obtain more meaningful embeddings that detect mor-
phological and semantic similarity. In terms of recall, ASLSTM reaches 0.4136
for Arabic which implies that the number of omitted similar questions is not
too big. Interestingly, unlike traditional RNNs, Siamese LSTM is able effectively
handle the long questions and learn long range dependencies thanks to its use
of memory cell units that can store information across long input sequences.

4.3 Conclusion

In this paper, we presented an Attention-based Siamese LSTM approach, aim-
ing at solving the question retrieval problem, which is of great importance in
real-world cQA. For this purpose, we suggested using Siamese LSTM to cap-
ture the semantic similarity between the community questions. An attention
mechanism was integrated to let the model give different attention to different
words while modeling questions. Interestingly, we showed that Siamese LSTM
is capable of modeling complex structures and covering the context information
of question pairs. Experiments on large scale Yahoo! Answers datasets showed
that the proposed approach can successfully improve the question retrieval task
in English and Arabic and outperform some competitive methods evaluated on
the same dataset. In the future, we plan to integrate morphological features into
the embedding layer to improve the question representations.
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Abstract. “A picture is worth a thousand words”, the adage reads.
However, pictures cannot replace words in terms of their ability to
efficiently convey clear (mostly) unambiguous and concise knowledge.
Images and text, indeed, reveal different and complementary informa-
tion that, if combined, result in more information than the sum of that
contained in the single media. The combination of visual and textual
information can be obtained through linking the entities mentioned in
the text with those shown in the pictures. To further integrate this with
agent background knowledge, an additional step is necessary. That is,
either finding the entities in the agent knowledge base that correspond
to those mentioned in the text or shown in the picture or, extending the
knowledge base with the newly discovered entities. We call this complex
task Visual-Textual-Knowledge Entity Linking (VTKEL). In this paper,
after providing a precise definition of the VTKEL task, we present a
dataset composed of about 30K commented pictures, annotated with
visual and textual entities, and linked to the YAGO ontology. Succes-
sively, we develop a purely unsupervised algorithm for the solution of the
VTKEL tasks. The evaluation on the VTKEL dataset shows promising
results.

Keywords: AI · NLP · Computer vision · Knowledge representation ·
Semantic web · Entity recognition and linking

1 Introduction

Given the prominent presence in the web of documents that combines text and
images, it becomes crucial to be able to properly process them. In spite of the
maturity and reliability of natural language processing (NLP) and computer
vision (CV) technologies, an independent processing of the textual and visual
part of a document is not sufficient. A more integrated process is necessary.
Indeed, the pictorial and textual parts of a document typically provide comple-
mentary information about a set of entities occurring both in the picture and
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in the text. For instance, in a news about a car accident, the text may mention
the brand and model of the car and the name of the driver, while the picture
may reveal the car brand and model as well, but also the car color and its sta-
tus after the crash. The information conveyed by the two media can be joined
by linking the entities mentioned in the text with those shown in the pictures,
possibly integrating them with some background knowledge that provides fur-
ther information about the entities. We call this task Visual-Textual-Knowledge
Entity Linking (VTKEL). More precisely, the VTKEL task aims at detecting
and linking the maximum visual and textual portions of a document that refer
to the same or individual entities of the document, a.k.a. entity mentions, with
the corresponding entity (or a newly created one) in a knowledge base.

State-of-the-art only provides partial solutions to the VTKEL task. Namely
entity linking [1] align textual mentions to entities of a knowledge base, coref-
erence resolution [2] links different textual mentions of the same entity, visual
entity linking [3] align visual entity mentions to a knowledge base, visual seman-
tic alignment [4] links different visual entity mentions that refer to the same
entity, and, text to image coreference [5] aligns visual and textual mentions of
the same entity.

The paper introduces VT-LinKEr1 (Visual-Textual-Knowledge Entity
Linker), an algorithm for solving the VTKEL task that combines state-of-the-art
NLP and computer vision tools, and ontological reasoning. Given a document
composed of text and image, VT-LinKEr applies an object detector to the
image, resulting in a set of bounding boxes labeled with classes of the ontol-
ogy. Each bounding box is called visual mention and the corresponding object,
which is an instance of the class label, is called visual entity. In parallel, VT-
LinKEr processes the text with a tool for entity recognition, which labels the
noun phrases with classes of the ontology. The recognized noun phrases are called
textual mentions and the corresponding instances of the ontological class are
textual entities. Finally, VT-LinKEr attempts to link visual and textual men-
tions which correspond to the same entity. This final task is done by exploiting
ontological knowledge about class/subclass hierarchy, and similarity information
available in the textual mentions.

To evaluate VT-LinKEr, we created a ground-truth dataset for the VTKEL
task, called the Visual-Textual-Knowledge Entity Linking dataset (VTKEL).
This dataset is derived from the Flickr30k-Entities [6] dataset, which contains
about 30 K images, each described by 5 captions. Each picture is annotated with
bounding boxes for objects and with coreference chains (a coreference chain links
mentions of the same entities across different captions with the corresponding
bounding box). We extended the Flickr30k-Entities by annotating each element
of the coreference chains with the proper ontological class. As a reference ontol-
ogy, we adopted YAGO [7]. Since the linking of the ontological class is performed
automatically (by using PIKES [8,22]), we manually evaluate the accuracy by
checking 1000 randomly selected entries from the VTKEL dataset. The resulting
accuracy was about 95% (notice that PIKES annotates all the noun phrases).

1 https://github.com/shahidost/Baseline4VTKEL.

https://github.com/shahidost/Baseline4VTKEL
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Out of the 1000 pictures, we created a dataset, called VTKEL∗, by manually
correcting the errors.

We evaluate VT-LinKEr on both VTKEL and VTKEL∗ datasets. The
evaluation is performed in three sub-tasks i.e. visual entities detection and typ-
ing, textual entities detection and typing, and visual textual coreference. The
F1 measure for visual entities detection and typing on VTKEL∗ and VTKEL
is 65.7% and 64.9% respectively; The F1 measure for textual entities detection
and typing 91.8% and 90.5%; the F1 for visual textual conference is 57.1% and
50.4%.

The paper is structured as follows: in Sect. 2, we give a detailed formula-
tion of the VTKEL task. In Sect. 3, we review the main approaches related to
the VTKEL task and argue that only partial solutions are available. Section 4
describes VT-LinKEr in details. In Sect. 5, we describe the experiments.
Section 6 provides some conclusions and future research directions.

2 Visual-Textual-Knowledge Entity Linking

The Visual-Textual-Knowledge Entity Linking (VTKEL) task takes in input a
document composed of text and a picture.2 More precisely, a document d is
a pair 〈dt, di〉, where dt is a text in natural language represented as a string
of characters and di is an image, represented as a 3-channel (w × h)-matrix.
We ignore all the structural information about the document, e.g. the relative
position of the image w.r.t. the text, the explicit references to the figures, etc.
If e is an entity of the domain of discourse of a document d, for example a
specific car or a person, a textual mention of e in d is a portion of the text
dt that refers to the entity e. Such a mention can be identified by an interval
〈l, r〉 with 0 ≤ l < r ≤ len(dt), corresponding to the characters (in dt) of the
mention. Analogously, a visual mention of an entity e is a region of the picture
di that shows (a characterizing part of) the entity e. E.g., the region of a picture
that shows the (face of a) person is a visual mention of that person. If we
restrict to rectangular regions (a.k.a. bounding boxes) a visual mention can be
represented by a bounding box encoded by four integers 〈x, y, x + w, y + h〉 with
0 ≤ x, x + w ≤ width(di) and 0 ≤ y, y + h ≤ height(di), where 〈x, y〉 represents
the position of the pixel in the top left corner of the bounding box, and w, h
represent the width and height of the bounding box (in pixels).

A knowledge base is a logical theory that states properties and relations about
a set of entities, called the domain, using a logical language. In description logics
a knowledge base is composed of a T-box and an A-box. The T-box contains a
set of axioms of the form C � D and R � S, for some concept expressions C and
D and relations R and S stating that C is a subclass of D (R is a sub-relation
of S). The A-box contains assertions of the form C(e) (the entity e is of type
C) and R(e, f) (the pair of entities 〈e, f〉 are in relation R) where e and f are
2 For the sake of simplicity, we consider only documents that contain one single picture.

The extension to multiple pictures, though intuitive, presents additional challenges
that are out of the scope of this paper.
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• A young woman on a tennis court
with a ball coming from behind her.
• A female tennis player casually swing-

ing her tennis racket .

entity

location

court

person

womanplayer

artifact

racket ball

e1 e2 e3 e4

sub class of

sub class of

instance of

Knowledge Base

Fig. 1. The picture shows the output of the VTKEL task, which takes in input a picture
with related text and an ontology. The output consists of a set of visual mentions (c.f.
the bounding boxes in the image) and textual mentions (c.f. the highlighted words in
the sentences), corresponding to the mentioned entities (in this case: a ball, a woman,
the tennis court and a racket), and the extension (or alignment) of the ontology with
entities of the correct (most specific) type.

entities of the knowledge base and C and R are concept and role expressions
respectively. The entities of a knowledge base are constant symbols that explic-
itly occur in some axiom of the T-box or assertion of the A-box. For instance,
the T-box may contain the knowledge that every car has a manufacturer and
that a manufacturer is a company. This knowledge can be formalized by the
axioms Car � ∃ hasManufacturer. Manufacturer and Manufacturer � Company,
where Car, Manufacturer, and Company are concept names and hasManufacturer
is a relation (or role). The A-box may contain the knowledge that a specific
car (an entity), say car22, is a BMW and that BMW is a Manufacturer. This is
formalized by the assertional axioms Car(car22), hasManufacturer(car22,BMW),
and Manufacturer(BMW).

Problem 1 (VTKEL). Given a document composed of a text dt and an image
di and a knowledge base K, VTKEL is the problem of detecting all the entities
mentioned in dt and shown in di, and linking them to the corresponding entities
in K, if they are present, or to newly added entities of the correct type.

An example of the result of the VTKEL task is shown in Fig. 1. VTKEL
is a complex task that requires the solution of a set of well studied elementary
tasks in NLP, CV, and logical reasoning. In particular, the following are the
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key subtasks of VTKEL: entity recognition and classification (i.e. typing) in
texts [9]; object detection in images [10]; textual co-reference resolution [2];
textual entity linking to a knowledge base (ontology) [1]; visual entity linking
to a knowledge base (ontology) [11]; visual and textual co-reference resolution
[4,5,12]. We propose a method to solve the VTKEL task which is obtained by
composing state-of-the-art tools that solve some of the subtasks listed above.

3 Related Work

Recently the NLP and CV scientific communities devoted some effort in investi-
gating the interaction and integration of text and image. For an exhaustive sur-
vey of the approaches in the area of entity information extraction and linking, we
refer the reader to [13]. In particular: [5] exploits natural language descriptions
of a picture in order to understand the content of the scene itself. The proposed
approach solves the image-to-text coreference problem. It successively exploits
the visual information and visual-textual coreference previously found to solve
coreference in text. The work described in [14,15] tackles the problem of rank-
ing the concepts from the knowledge base that best represents the core message
expressed in an image. This work involves the three elements: Image, Text, and
Knowledge, but it does not provide information about the entities mentioned in
the text and shown in the image. The approach in [3] adapts Markov Random
Fields to represent the dependencies between what is shown in the frames of
videos about the wild-life animal and the subtitles. The main objective is to
detect the animal shown in a frame, and the mentions of animal in the subti-
tle. The set of entities are the animal names available in WordNet [16]. Object
detection is not performed: the approach assumes that only one animal is shown
in a frame, and the vision part consists of image classification. Furthermore, no
background knowledge about animals is used. [11] proposes a basic framework
for visual entity linking to DBpedia and Freebase. The approach involves also
textual processing since the link of bounding boxes to DBpedia and Freebase
entities is found passing through an automatically generated textual description
of the image. The approach uses the Flickr8k dataset, which is a subset of the
Flikr30k-Entities dataset. A combination of textual coreference resolution and
linking of image and textual mentions is described in [17] with the objective of
solving the problem of assigning names to people appearing in TV-show.

Concerning datasets that combine text and images, there are several
resources available, however, none of them have all the three components neces-
sary for the VTKEL task. VisualGenome [18] is an extremely large dataset that
contains pictures in which objects are annotated with their types, attributes, and
relationships. Annotations are mapped to WordNet synsets. Objects can also be
annotated with some short sentence that describes some qualitative property of
the object. E.g., “The girl is feeding the elephant” or “a handle of bananas”.
However, there is no alignment between the objects mentioned in these phrases
and the objects shown in the picture. E.g., there is no bounding box for the
object “bananas” or “elephant”. The Visual Relationship Dataset (VRD) [19] is



Visual-Textual-Knowledge Entity Linker 269

a dataset of images annotated with bounding boxes around key objects. Further-
more, VRD contains annotations about relationships between objects in the form
of triplets 〈object type, relation, subject type〉 describing the scene. Examples of
annotations are 〈man, riding, bicycle〉 and 〈car, on, road〉. However, these anno-
tations are not aligned to any knowledge base. The Microsoft COCO dataset [20]
contains pictures associated with five captions. They are annotated with objects
regions of any shape (not simple bounding boxes) and each region is assigned
with an object-type. This dataset does not contain any information about the
relation between object regions, and the relation between regions and mentions
in the captions. Conceptual Captions [21] is a recently introduced dataset that
has been developed for automatic image caption generation. It contains one
order of magnitude more items than Microsoft COCO. It is a realistic dataset
as images with captions have been automatically extracted and filtered from the
web. However, there is no visual/textual mention annotation and visual textual
entity linking.

From the above analysis, it becomes clear that there is not a single, compre-
hensive approach corresponding to the VTKEL task. This justifies the introduc-
tion of the task, the development of a ground truth dataset, and a first (baseline)
algorithm for its solution.

4 The VT-LINKER Algorithm

VT-LinKEr is composed of two sequential phases: The first phase, the entity
detection phase, focuses on visual entity detection & typing (VMD-VET) and
textual entity detection & typing (TMD-TET); the second phase, the matching
phase, attempts to match the discovered entities i.e. visual-textual coreference
(VTC). The entity detection phase is based on the output of state-of-the-art
tools in NLP and CV. The matching phase is realized by using the semantic
matching which exploits the knowledge available in the T-box (i.e. class/subclass
hierarchy). In the following, we illustrate the different steps for each phase.

Visual Mention Detection (VMD): To implement VMD, we process images
with YOLO [23], which returns a set of bounding box proposals each of which
is associated with a YOLO-class and a confidence score in [0,1]. We used the
model pre-trained on the 80 classes of the COCO dataset. Among the bounding
box candidates, we retain only those having confidence equal or greater than a
specified threshold (in the experiments we set it to 0.5). In general, one could
use some more sophisticated selection criteria that take into account also the
co-occurrence with the other bounding box candidates (e.g., glass and bottle are
more probable than glass and elephant) and the output of the textual mention
detection and the ontological knowledge. For the picture of Fig. 1, YOLO returns
three bounding box candidates with score higher than 0.5, labeled with person,
ball and racket, but no bounding box has been found for the tennis court (due
to the lack of appropriate classes for locations in the YOLO class set).
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Visual Entity Typing (VET): The objective of this sub-task is to find the
correct most specific class in the knowledge base that can be associated to each
visual entity associated to the visual mention detected in the VMD step. Notice
that the COCO class does not correspond one-to-one with the YAGO classes,
this implies that we need to map the class returned by YOLO into YAGO. A
näıve way to implement this task is to map the label contained in the output of
the object detector to its corresponding ontology class. Also, here more sophisti-
cated methods can be implemented that take into account also the weight of the
labels or additional visual/numerical features. In the VT-LinKEr algorithm, we
adopt the straightforward approach of manually mapping the 80 COCO classes
to the corresponding (most specific) classes of the YAGO ontology.3 Exam-
ples of mappings from COCO to YAGO are: person → yago:Person100007846,
ball → yago:Ball102778669, and hotdog → yago:Frank107676602.

Textual Mention Detection (TMD): To detect textual mentions of entities
we process the text with the PIKES suite, which provides services for both
textual mention detection and textual entity typing to the YAGO ontology.
These two tasks are tightly integrated in PIKES, however, for conceptual clarity,
here we present them separately. Let us focus on the entity mention detection.
Given a text in input PIKES applies different state-of-the-art NLP techniques
to discover entity mentions depending on their “nature”:

– named entity mentions (e.g., Barak Obama, Trento, IBM) refers to entities
for which there is an individual in the knowledge base. They are recognized
and linked (performing a task called Entity Linking) to the corresponding
entity in YAGO (the knowledge base is not extended).

– common nouns (e.g., racket, ball, player, and woman) implicitly identify enti-
ties, by referring to their type (e.g., the mention of “racket” does not refer to
the general notion of racket, but to a specific object, of type racket). Common
nouns are discovered via word sense disambiguation (WSD). For every com-
mon noun, WSD returns the WordNet synset corresponding to the correct
sense in which the noun is used. For instance, the correct sense of “racket” is
the one indicating a sport equipment, and not a loud and disturbing noise.
A new entity is created and added to the knowledge base for common nouns
occurring in the text.
Some further processing is performed to properly handle compound noun
phrases (e.g., “a female tennis player”). PIKES also performs a syntactic
analysis of the text: in particular, words in a noun phrase can be tagged
either with head or with modifier, depending on their syntactic role in the
noun phrase (e.g., in “a female tennis player” the noun “player” is the head
and “female” and “tennis” are modifiers). In the current version of the VT-
LinKEr algorithm, a new entity is added to the knowledge base only for the
head noun, and not for its modifiers.

For example, for the first sentence of the caption in Fig. 1, PIKES detects three
textual mentions: woman, court and ball.
3 The whole mapping can be downloaded from https://figshare.com/articles/

YOLO to YAGO classes mapping/8889848.

https://figshare.com/articles/YOLO_to_YAGO_classes_mapping/8889848
https://figshare.com/articles/YOLO_to_YAGO_classes_mapping/8889848
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Textual Entity Typing (TET): This task is also implemented using PIKES
primitives. Typing for named entities is not necessary since these entities are
in the YAGO knowledge base, and thus already typed according to the YAGO
ontology. For the common nouns, we exploit the mapping from WordNet to
YAGO also available in PIKES to obtain the (more specific) YAGO class associ-
ated to the WordNet synset of the mention, and the corresponding type assertion
will be added to the knowledge base. For example, for the first sentence of the
caption in Fig. 1, PIKES types the entities corresponding to the textual men-
tions woman, court and ball, with the YAGO classes yago:Woman110787470,
yago:Court108329453, and yago:Ball102778669, respectively.

Visual Textual Coreference (VTC): This is the last sub-task that has to
be accomplished by VT-LinKEr. For this task, we exploit the class/subclass
hierarchy between the classes in the knowledge base. Let V E and TE be the set
of textual and visual entities that are mentioned in a visual-textual document,
and that are present in the knowledge base with a given type. The coreference
sub-task has the objective of finding the coreference relation CR ⊆ V E × TE
such that the following consistent properties hold:

(i) For every ve ∈ V E there is at least one 〈ve, te〉 ∈ CR;
(ii) For every ve ∈ V E there is at most one 〈ve, te〉 ∈ CR;
(iii) If 〈ce, ve〉 (ce is the coreference entity) and ve and te are of type Cv and Ct

respectively then either Cv � Ct or Ct � Ce holds in the knowledge base.

In simple situations, the above criteria uniquely defines the coreference rela-
tions. This is the case for instance for the example presented in Fig. 1. However,
in many cases the relation CR ⊆ V E × TE is not uniquely defined by the
above criteria. Nevertheless, the problem can be straightforwardly encoded as
a MaxSat problem. In case of CRs with equal total weight, a random choice is
taken although additional heuristics could be implemented either by using some
supervised learning method or by handcrafting the weight of a pair 〈ve, te〉 by
exploiting some additional features of the mentions of ve and te.

5 Experimental Evaluations

To evaluate the performance of VT-LinKEr, we have developed two ground
truth datasets [25]. The first one, called VTKEL, has been derived from
Flickr30k-Entities, and it is generated automatically by typing the visual and
textual entities with classes from the YAGO ontology. The second one, called
VTKEL∗, has been obtained by randomly selecting 1000 pictures (and the cor-
responding captions) from the first dataset, and manually validating and revising
the proposed alignments to YAGO. In the following, we provide some details on
the datasets, and then we describe the evaluations conducted.
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5.1 Datasets

The first dataset called VTKEL, 4 has been obtained by extending the Flickr30k-
Entities dataset by linking textual and visual mentions to entities assigned with
the most specific YAGO class. Looking at Fig. 1, we started form the left part of
the figure (the picture and captions, with annotated visual and textual mentions,
and alignment between corresponding mentions), available in the Flickr30k-
Entities, and we extended it with the right part, by populating a knowledge
base with corresponding entities typed according to the YAGO ontology. The
30K VTKEL dataset has been automatically produced by processing the cap-
tions of Flickr30k-Entities with PIKES for entity recognition and linking to
YAGO. Specifically, for each textual mention (aligned to a visual mention) in
Flickr30k-Entities, detected also by PIKES, a corresponding entity is created (or
aligned to, if already existing) and typed according to the appropriate YAGO
ontology.

The second dataset, called VTKEL∗,5 has been obtained by randomly sam-
pling 1000 entries from the VTKEL dataset (corresponding to 20, 356 textual
mentions, and 8673 visual mentions). Every entry of VTKEL∗ has been manu-
ally checked for the correctness and completeness of the YAGO classes associated
to the mentioned entities. Wrong and missing links are manually adjusted. Errors
are mainly due to the incorrect word sense disambiguation: e.g., in some cases,
“bus” was linked to the concept of the computer bus, instead of that of coach, and
“arm” to weapon instead of bodypart. The construction of VTKEL∗-dataset
allows us also to estimate the error rate of the larger VTKEL dataset. In par-
ticular, we found no missing link (i.e., recall is 100%) and 916 incorrectly linked
mentions, which amounts to Precision = 0.955, Recall = 0.893, and F1 = 0.923.
We believe that an error rate of ≈ 4.5% is physiological also in manually devel-
oped datasets, and therefore we believe that the VTKEL-dataset can be rea-
sonably considered a ground truth.

To maximize reusability and connection with the Semantic Web, we represent
the datasets in RDF. This representation will also support semantic visual query
answering via standard SPARQL language. To organize the dataset, we adopt the
model proposed in [8], extending it for representing visual mentions. The model
is organized in three distinct yet interlinked representation layers: Resource,
Mention, and Entity layer.

5.2 Evaluation

We evaluated the performances of VT-LinKEr on both VTKEL and VTKEL*
datasets. We separately assessed the performance on the three sub-tasks
described in Sect. 4. We use the standard metrics, namely precision (P ), recall
(R), and F-score (F1). The figures obtained from the evaluation are reported in
Table 1.
4 The VTKEL dataset can be downloaded from https://figshare.com/articles/

VTKEL dataset/9816242/4.
5 https://figshare.com/articles/VTKEL dataset/10318985.

https://figshare.com/articles/VTKEL_dataset/9816242/4
https://figshare.com/articles/VTKEL_dataset/9816242/4
https://figshare.com/articles/VTKEL_dataset/10318985
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Table 1. VT-LinKEr evaluation results

VTKEL∗ dataset VTKEL dataset

Task Precision Recall F1 Precision Recall F1

VMD + VET 0.765 0.574 0.657 0.731 0.585 0.649

TMD + TET 0.954 0.884 0.918 0.942 0.872 0.905

VTC 0.586 0.558 0.571 0.514 0.486 0.504

Visual Entities Detection and Typing (VMD) + (VET): To evalu-
ate the visual detection part, we use standard method adopted for evaluat-
ing object detection. A visual mention bp of type tp produced by VT-LinKEr
on an image is considered to be correct if the ground truth annotation of the
image contains a bounding box bg of type tg such that the intersection over
union ratio ( area(bp∩bg)

area(bp) ∪ area(bg)
) is greater or equal to 1

2 and if the predicted
type tp is equal or a subclass of tg in YAGO. For the 1000 entries dataset
VTKEL∗, VT-LinKEr predicted 6914 total visual entities with respect to
the 9243 annotated visual entity objects. VT-LinKEr correctly predicted 5306
(P = 0.767, R = 0.574, F1 = 0.657) of them. By using the same procedure for
30 K entries VTKEL dataset, VT-LinKEr predicted 220, 853 total visual enti-
ties with respect to the 275, 770 annotated visual entity objects. VT-LinKEr
correctly predicted 161, 342 (P = 0.731, R = 0.585, F1 = 0.649) of them. In the
majority of the cases, VT-LinKEr framework ignored human bodyparts and
clothing during the prediction of visual mentions due to the 80 classes of COCO
dataset [20]. In some cases, VT-LinKEr predicts additional correct visual men-
tion not annotated in Flickr30k-Entities. In the evaluation, these are considered
errors though they are not strictly so.

Textual Entities Detection and Typing (TMD) + (TET): To evaluate
the performance of this sub-task, we apply a criterion analogous to the visual
entity detection and typing sub-task. A textual mention wp of an entity of YAGO
class tp predicted by VT-LinKEr on a caption, is considered to be correct if
the ground truth annotation on the caption contains a mention wg of an entity
of type tg such that wp is equal or a sub-string of wg and the type tp is equal or
a sub-type of tg according to the YAGO class hierarchy. From the 5000 captions
of VTKEL∗dataset, VT-LinKEr wrongly recognized and linked 935 out of
total 20, 374 textual entities, which amount to P = 0.954, Recall = 0.884, and
F1 = 0.918. Similarly, for 158, 605 captions of VTKELdataset, VT-LinKEr
correctly recognized and linked 576, 769 out of total 612, 281 textual entities.
Most of the errors during entity recognition and linking are due to the word
sense disambiguation.

Visual Textual Coreference (VTC): We evaluate the capability of VT-
LinKEr of aligning visual and textual entities. A coreference pair 〈vep, tep〉
produced by VT-LinKEr is correct, if the ground truth contains the triple
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veg owl:sameAs tev such that the visual mentions (bounding boxes) of vep and
veg matches (under the IOU ratio), the textual mention of tep matches the
textual mention of teg (i.e., tep is equal or a substring of teg). Notice that here
we are not considering the types of the entities. Type compatibility is indeed
guaranteed by the fact that coreference pairs are added only if their types are
compatible (i.e., they are either equal or in subclass relation in YAGO). From
the 1000 entries VTKEL∗dataset, VT-LinKEr correctly aligned 4082 visual
entities with 8681 textual entities out of total 6914 visual and 14, 786 textual
entities (P = 0.586, R = 0.558, F1 = 0.571). Similarly, for VTKEL dataset, VT-
LinKEr correctly aligned 118, 502 visual entities with 243, 831 textual entities
out of total 220, 853 visual and 576, 769 textual entities. In most of the cases,
the alignment of human-body parts and clothing with visual entities are missed
by VT-LinKEr.

6 Conclusion and Future Works

In this paper, we have introduced a new complex task for recognizing mentions
of entities in multimedia documents composed of image and text, and align them
with a reference ontology. This task turns out to be rather important for many
applications in the area of multimedia indexing processing and retrieval, e.g.,
information extraction from multimedia systems [24], for visual question answer-
ing [26], and for visual textual dialogue systems [27]. We argue that there are
advantages to solve the VTKEL task in a collective manner, i.e., trying to jointly
solve all the tasks involved in it. For this reason, we created a new dataset anno-
tated with all the information necessary for the VTKEL task. We perform this
in a completely automatic manner, by processing the captions of the Flickr30k
dataset to find entities and linking them to the YAGO ontology. We also devel-
oped the first algorithm to solve the task of VTKEL. The proposed algorithm
is developed by using state-of-the-art tools for object detection in images, entity
recognition in text, entity linking to ontologies and alignment of visual-textual
entity mentions. This allows us to close the loop between language, vision, and
knowledge. In the future, we are planning to improve the accuracy of every sin-
gle sub-task, especially the object detection, by using a more complete set of
object classes. We also planned to implement a more sophisticated method for
the visual-textual entity matching, based on supervised methods, or statistical
relational learning methods. We also want to apply the method to a dataset that
includes more pictures and text different from captions (e.g., short news with
pictures).
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Abstract. This paper describes a prototype system for partial automa-
tion of customer service operations of a mobile telecommunications oper-
ator with a human-in-the loop conversational agent. The agent consists of
an intent detection system for identifying the types of customer requests
that it can handle appropriately, a slot filling information extraction
system that integrates with the customer service database for a rule-
based treatment of the common scenarios, and a template-based lan-
guage generation system that builds response candidates that can be
approved or amended by customer service operators. The main focus of
this paper is on the system architecture and machine learning system
structure design, and the observations of a limited pilot study performed
to evaluate the proposed system on customer messages in Latvian. We
also discuss the business requirements and practical application limita-
tions and their influence on the design of the natural language processing
components.

Keywords: Conversational agents · Intent detection · NER

1 Problem Description

The use of chatbots has been growing not only in consumer applications, but is
also gaining traction in attempts aim to add conversational agents as another
alternative channel for customer service communications, which is a significant
expense for many companies and has potential for automation.

However, as chatbots improve towards fluent and varied language, there is
an ‘uncanny valley’ effect where the observed language skills give rise to expec-
tations of true competency in solving the customers’ problems which often can
not be met by the chatbots at this point, leading to customer dissatisfaction.

In this situation we proposed an approach for integrating conversation agents
in the current customer service workflow, reducing operator workload. The cus-
tomer service agent would be in full control over the customer communication,
but the conversation can be automated for many routine cases where the cus-
tomer service agent would be expected to follow standard guidelines. The notable
difference from a full-scope conversational agent is the fact that covering unusual
scenarios is not required as long as the agent is capable to identify when the cus-
tomer is asking something that the automated agent can not understand or
answer and human involvement is necessary.
c© Springer Nature Switzerland AG 2020
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2 Related Work

Published research relevant to goal-oriented conversational agents in Latvian is
limited. There has been previous work on the chatbot “Anete” [16] for telecom-
munications provider Lattelecom, however, the technical details have not been
published. There are proof of concept systems developed for customer service at
an airline and the public library network [15], and there is published work on
intent detection models [1] including a review of their applicability for Latvian.

There is substantial relevant related work on such agents for English and
other major languages [4,5,12]. A major focus of recent research is work on end-
to-end neural systems [13,14,17,19], however, the human-in-the-loop approach
requires a natural language understanding system instead of a ‘black-box’ end-
to-end solution. The key natural language processing tasks of such a system
are intent detection, entity recognition and information extraction, in particular
‘slot-filling’. For intent detection and slot filling tasks state of art results have
been achieved with neural network approaches, mostly with recurrent neural
networks and attention mechanisms [7,11,18]. Our earlier research [8,21] and
other teams [1,2,10] also support the effectiveness of neural network models for
specifics of Latvian language in other NLP tasks.

The technical aspects of building human-in-the-loop conversational agent
systems have not been well described in existing literature. The core concept
of human-in-the loop conversational agents is not novel, we are aware of some
research of such systems [6], but most known applications of this approach are
proprietary, and the inner workings of these systems are not published.

3 System Architecture

The proposed system architecture, illustrated in Fig. 1, involves an intent detec-
tion system for identifying the types of customer requests that it can handle
appropriately, a slot filling information extraction system that integrates with
the customer service database for a rule-based treatment of the common sce-
narios, and a template-based language generation system that builds response
candidates that can be approved or amended by customer service operators.

The operator actions in correcting the selected intent and the appropriate
response continuously provide the system with new, recent training data, and
the intent detection modules are periodically retrained on it.

The prototype system was developed using the Tensorflow framework in
Python, and deployed as a Docker container.

4 Named Entity Recognition

The named entity recognition system is designed to identify not only common
named entities such as people and organization names, but also the specific enti-
ties which would be candidates for the slot filling task such as invoice numbers,



Human-in-the-Loop Conversation Agent for Customer Service 279

Fig. 1. System architecture

money amounts, dates, relative dates (e.g. ‘next month’) and date ranges. In
total, 16 named entity categories are considered.

The dataset used for initial validation consisted of 1732 customer requests
that were prepared in three steps:

1. Replace sensitive text spans with sensitive data markers
2. Manually annotate named entity spans
3. Generate named entities in place of sensitive data markers

For named entity generation, we used list of person names, registry of addresses
and regular expression rules to generate invoice, personal legal ID and phone
numbers.

The named entity recognition system uses GloVe word embeddings [9] pre-
trained on the comment corpus collected from the project Virtual Aggression
Barometer1, character based LSTM representation, two bidirectional LSTM lay-
ers and a conditional random field (CRF) loss.

Customer requests usually contain grammatical errors and additional whites-
paces for formatting. Sentences are not easily automatically separable, so full
request text is used as input to maximally preserve context. Text is split on
whitespace and punctuation characters without trying to extract email, date or
phone number tokens. Whitespace information is passed as and additional input

1 http://barometrs.korpuss.lv/.

http://barometrs.korpuss.lv/
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to the neural network in a one-hot vector: no space before the token, newline
before the token, whitespace before the token. Word shape feature is used as an
additional input to capture emails and named entities with a regular structure.

Table 1. Named entity recognition system results.

System Precision Recall F1

Baseline 76.82 80.20 78.48

GloVe 80.88 78.00 79.41

BERT 81.80 80.45 81.12

Named entity recognition experiment results are shown in Table 1. The base-
line system does not include any additional features. The BERT system that
uses multilingual BERT model fine-tuned on the Barometer comment corpus
achieves best results. The most problematic categories with F1-score below 80%
are company names, product names and addresses.

As customer service discussions frequently include sensitive personal infor-
mation, we implement the data minimization principle required by the General
Data Protection Directive by anonymizing the customer messages using the NER
results both in the intent detection system processing and in the stored training
data. The customer identifying data is passed only to the main operations sys-
tem, but for intent detection and permanently stored training data we replace it
with generic placeholders reflecting the entity type - for example, ‘[[Phone num-
ber]’ or ‘[[Address]]’. This also has a beneficial effect on the intent detection sys-
tem, reducing data sparsity, overfitting and assigning ‘superstitious’ significance
to irrelevant or potentially discriminatory factors such as particular surnames.

5 Intent Detection

The intent detection system is a LSTM based deep neural network classifier. The
classifier was designed to output both a coarse-grained intent topic, suitable for
clustering customer requests and assigning some topics to specialized operators,
and also fine-grained intent that can be matched to specific actions and answer
templates. For initial word embedding layer we used GloVe [9] embeddings pre-
trained on a large corpus of Latvian [20].

The developed neural network structure and chosen parameter values were
the following:

– Tokenization
– Pretrained word embeddings for each token, concatenated with 10-neuron

trainable ‘miniembeddings’
– Unidirectional LSTM layer with 150 cells
– Dense fully connected layer with 100 neurons, 30% dropout
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– Dense fully connected layer with 50 neurons, 30% dropout
– Two separate output layers, for topics and fine-grained intent

We also investigated the application of more complex architectures such as
BERT [3] which have achieved state of art results for other tasks, but this did
not result in improved accuracy in our testing (see Sect. 5.1) and substantially
increased training time, so this avenue was not pursued further.

5.1 Dataset and Experimental Validation

The dataset used for initial validation consisted of 1732 customer requests anno-
tated with fine-grained intent data and named entities relevant to the intent. The
data contained 24 topic classes with 115 different specific intents annotated. The
intent distribution was representative of incoming customer requests, and thus
was not balanced with respect to the topics. The most frequent topic class was
billing with 794 requests (46% of total), which also contained the most frequent
intents - postponing bills (356 requests) and confirming that an overdue bill has
been paid (207 requests), while many specific intents had only a single example
request.

Repeated experimentation on various options for neural network structures
was performed on this dataset using cross-validation, in order to prepare a single
architecture to be evaluated during the pilot study.

Table 2. Intent detection system accuracy

System Topics All intents Postponing Confirmations

Simple 68% 56% 86% 42%

Proposed 80% 70% 90% 81%

BERT 81% 69% 91% 81%

The key metrics used in evaluation (shown in Table 2) were the system aver-
age accuracy scores respectively for all the coarse grained topics, all the fine
grained intents, and the F1 scores for the above-mentioned two most frequent
intent groups, as they would be the focus of subsequent pilot study. The described
systems include a simple multilayer perceptron without precomputed embed-
dings; the proposed network structure described in the previous section, and a
transformer architecture based on fine-tuning BERT [3] for Latvian.

The preliminary results indicated that there was sufficient training data for
two most common specific intents, and for the other topics only the coarse-
grained topic classes have sufficient accuracy to be practically usable unless
significant amounts of additional training data are used.



282 P. Paikens et al.

6 Slot Filling and Pre-filling a Response

If the detected customer intent is one of the prepared scenarios which can be
handled by the system, then it is possible to prepare a template answer based on
the detected intent and specific conditions. For example, if the intent is to change
the payment plan, then it is possible to automatically verify in the core billing
system whether the customer is eligible for this plan and prepare an appropriate
personalized response template depending on the eligibility.

In addition, a checklist of specific actions for the customer service operator
would be generated. For example, if the intent is to assert that a bill has been
paid by supplying an attached payment document, then the operator needs to
verify the suitability of that document.

For some intents, the system needs to extract specific information from the
message in order to fulfil that intent. For example, if the customer is disputing a
bill payment, then the date and amount of the payment needs to be identified. If
the slot filling system in the proposed architecture would not be able to identify
some of the required information, then the generated template answer would
include specific sentences explicitly asking for that particular information.

This functionality would require substantial integration work with core billing
systems. The proposed architecture is aimed to support this functionality, but
development of it was started only after the evaluation of the pilot study and is
not complete.

7 Pilot Study

The proposed model was initially validated in a three month pilot study at the
mobile telecommunications operator customer service center. The pilot study
was aimed to evaluate the feasibility of core technical concepts and proposed
architecture in order to justify further integration and development of the full
system. While the study involved the actual customer service team, it was pri-
marily a technical feasibility pilot study without a systematic review of the
human experience factors.

For the purposes of this study, the intent detection and response generation
were limited to two most common types of communication - requests to postpone
bill payment, and requests to restore service after payment of overdue bills.

In the scope of this pilot study, the following components of the proposed
architecture were prepared and evaluated:

– Integration with message sources
– Named entity recognition
– Data anonymization
– Intent detection
– Integration with customer service systems
– Basic response templates
– Automatic retraining based on customer service agent feedback

Development of the slot filling and decision making component, as well as further
work on response generation was not included in the pilot study. The pilot study
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was implemented only for conversations in Latvian language, but the planned
system architecture is trilingual Latvian-Russian-English. Nonetheless we believe
that the scope of the pilot study is sufficient to demonstrate applicability of the
full proposal.

In the limited pilot study, 14000 customer requests were processed using
this system, and continuously used to retrain the intent detection model with
additional data. As expected based on the preliminary testing, the detected
intent and the automatically chosen answer template (which was selected for
the two most frequent topics only) was accurate approximately 90% of the time
and required operator intervention for the remaining 10% cases. At the end of
the pilot study, the additional data gathered was able to improve the intent
detection accuracy by approximately 2% points, so only 8% of the main billing
requests needed changes by the operator.

From the perspective of the end users, the pilot study was considered suc-
cessful, saving time and effort. From the business perspective the study affirmed
the feasibility of this concept and supported continuing further development of
the proposed system.

8 Conclusions and Future Work

We have described an architecture proposal for a human-in-the-loop system that
supports customer service answers to customer enquiries. The initial experiments
and a limited pilot study have demonstrated the feasibility of this proposal and
support further development of this proposal.

It can be concluded that human-in-the-loop conversational agents are a fea-
sible option for partial customer service business process automation. We argue
(but do not conclusively prove in this study) that this approach can save time
and effort when handling common customer service enquiries while still main-
taining a high quality of service.
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In: Ekštein, K. (ed.) Text, Speech, and Dialogue, pp. 58–68. Springer International
Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-27947-9 5

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding (2018)

4. Følstad, A., Nordheim, C.B., Bjørkli, C.A.: What makes users trust a chatbot
for customer service? An exploratory interview study. In: Bodrunova, S.S. (ed.)
Internet Science, pp. 194–208. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-030-01437-7 16

https://doi.org/10.1007/978-3-030-27947-9_5
https://doi.org/10.1007/978-3-030-01437-7_16


284 P. Paikens et al.

5. Jenkins, M.-C., Churchill, R., Cox, S., Smith, D.: Analysis of user interaction with
service oriented chatbot systems. In: Jacko, J.A. (ed.) HCI 2007. LNCS, vol. 4552,
pp. 76–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73110-
8 9

6. Kucherbaev, P., Bozzon, A., Houben, G.J.: Human-aided bots. IEEE Internet Com-
put. 22(6), 36–43 (2018)

7. Liu, B., Lane, I.: Attention-based recurrent neural network models for joint intent
detection and slot filling (2016)

8. Paikens, P.: Deep neural learning approaches for Latvian morphological tag-
ging. In: Human Language Technologies - The Baltic Perspective. vol. 289.
IOS Press (2016). https://doi.org/10.3233/978-1-61499-701-6-160, http://ebooks.
iospress.nl/volumearticle/45531

9. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

10. Pinnis, M.: Latvian tweet corpus and investigation of sentiment analysis for Lat-
vian. In: Baltic HLT, pp. 112–119 (2018)

11. Qin, L., Che, W., Li, Y., Wen, H., Liu, T.: A stack-propagation framework with
token-level intent detection for spoken language understanding (2019)

12. Rizk, Y., et al.: A unified conversational assistant framework for business process
automation (2020)

13. Serban, I.V., Sordoni, A., Bengio, Y., Courville, A., Pineau, J.: Building end-to-end
dialogue systems using generative hierarchical neural network models. In: Thirtieth
AAAI Conference on Artificial Intelligence (2016)

14. Shah, P., Hakkani-Tur, D., Liu, B., Tur, G.: Bootstrapping a neural conversational
agent with dialogue self-play, crowdsourcing and on-line reinforcement learning. In:
Proceedings of the 2018 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 3
(Industry Papers), pp. 41–51 (2018)

15. Vasiljevs, A., Skadina, I., Deksne, D., Martins Kalis, T., Vira, L.: Application of
virtual agents for delivery of information services. In: New Challenges of Economic
and Business Development, pp. 702–713 (2017)

16. Vevers, J.: Lattelecom klientu apkalpošanas robotmeitenes anetes projekts: soli
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