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Abstract: In this paper, we present our work in building a template-based system 
for translating English sentences into SQL queries for a relational database system. 
The input sentences are syntactically parsed using the Link Parser, and 
semantically parsed through the use of domain-specific templates. The system is 
composed of a pre-processor and a run-time module. The pre-processor builds a 
conceptual knowledge base from the database schema using WordNet. The 
knowledge base is then used at run-time to semantically parse the input and create 
the SQL query. The system is meant to be domain independent and has been tested 
with the Cindi database that contains information on a virtual library. 

1. Introduction 

1.1 Natural language interfaces to databases (NLIDB)  

One of the earliest and most widely studied areas of Natural Language Processing (NLP) 
is the development of a natural language interface to database systems (NLIDB) [8].  
Such front ends relieve the users of the need to know the structure of the database and 
offer a much more convenient and flexible interaction.  Because of this, this application 
of NLP is still widely popular today [12]. 

1.2 Question-Answering (QA) 

Compared to NLIDB, open-domain question-answering (QA) is a fairly recent field in 
NLP and the approaches typically used in this domain can be very useful in NLIDB [6].  
Recent developments in QA [13] have made it possible for users to ask a fact-based 
question in natural language (ex.  Who was the Prime Minister of Canada in 1873?) and 
receive a specific answer (Alexander Mackenzie) rather than an entire document where 
the users must further search for the specific answer themselves [5].  In this respect, QA 
can be seen as the next generation of handy tools to search huge text collections such as 
the Internet [8][9]. 
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1.3 NLIDB versus QA 

Natural language interfaces to database systems and question answering systems differ 
fundamentally in their scientific goals and their technical constraints.  QA systems try to 
answer a NL question by analysing a collection of unrestricted and unstructured texts; 
while NL interfaces to DB have the advantage of dealing with structured texts, that is, 
texts that have already been decomposed semantically; entities and relations have 
already been identified and related.  However, both NL interfaces to DB and QA systems 
share an interesting similarity: they both take as input a question formulated in natural 
language and must interpret it in order to answer it properly.  The advantage of the QA 
domain is that standard metrics do exist to evaluate and compare different approaches.  
In 2001, the best scoring system at the TREC conference used patterns and provided 50-
60% correct hits when the answer was a passage of 50 bytes long [15]. 
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Figure 1. Left: The process flow of a typical NL interface to a data base   Right:  The process flow 
of our NL interface to the data base.  The semantic parsing makes use of the schema. 

Analysing an input question in QA and in NLIDB systems is mainly based on a part-of-
speech tagging of the words (or tokens), often followed by a syntactic analysis (partial or 
full) and finally, a more or less precise semantic interpretation. Although there exist 
standard techniques for part-of-speech tagging and syntactic analysis, techniques for 
semantic parsing are still very varied and ad-hoc.  In an open-domain situation, where 
the user can ask questions on any domain, this task is often very tentative and relies 
mainly on lexical semantics only.  However, when the discourse domain is limited (as is 
the case in NLIDB), the interpretation of a question becomes easier as the space of 
possible meanings is smaller, and specific templates can be used [14]. 

We believe that meta-knowledge of the database, namely the schema of the database, 
can be used as an additional resource to better interpret the question in a limited domain.   

The two strategies described above are presented in Figure 1. The left part of Figure 1 
illustrates the general architecture of a NL interface system. The processing is linear, 

236



going through the stages detailed above. The right part of the Figure 1 shows how 
semantic interpretation can be improved by making use of the meta-information, i.e. the 
schema of the database.  

Once the question has been analyzed, the system tries to match the template 
representation to the knowledge base created by the pre-processor and to generate the 
SQL query. 

2. Our Proposed Architecture  

The detailed design of the NLP processor is presented in Figure 2. 
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Figure 2. The design of our NL Processor 

2.1 Semantic Sets 

In order for the interface to take into account lexical variations in the input questions, the 
pre-processor builds a semantic knowledge base composed of interpretation rules and 
semantic sets for all possible table and relation names in the database.  This allows us to 
build the same semantic representation, and hence, the same SQL query for questions 
like: 

1. Who is the author of the book “Algorithms”? 
2. Who is the writer of the book “Algorithms”? 
 

To build the semantic knowledge base, the pre-processor first reads the schema of the 
database, and then identifies all table and attribute names and finally, it uses WordNet 
[7] to create a list of hyponyms, hypernyms and synonyms for each table and attribute 
name.  
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2.2 User-Defined Vocabulary Rules  

While the semantic sets are built semi -automatically, certain vocabulary words and 
default rules can only be built by the system administrator.  These include what we call 
action verb rules, default attributes rules and relation rules. 

Action Verbs  

To indicate the possible action verbs that can relate entities in a specific database 
schema, the database administrator should provide a list of action verbs and associate 
them with the table names. For example, Figure 3 shows two action verbs (download and 
writes) and how they can be used to relate to the Cindi dababase [1]. 
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1 1
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user
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NN
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Figure 3. Two action verbs for the Cindi databse 

Default Attributes 

Default attributes are used to indicate which attribute is being asked for, when the user 
input does not contain an explicit reference to an attribute name.  For example, in Who 
wrote The Old Man and The Sea?, the action verb wrote relates the tables author and 
resource, but the attributes of interest are not explicitly stated in the query as in What is 
the name of the author who wrote the book with the title: The Old Man and The Sea?.   
In order to determine which attributes are referenced when none are explicated, the 
database administrator must    designate a default attribute for each table in the database.  

Relations Rules 

Relations rules are meant to take into account dependencies between relations; and 
indicate the general pattern of mapping a user input into an SQL query.  For example, 
given the 3-table relation shown in Figure 4, if the tables resource and author are 
involved in a SQL query, then the table resource_author must appear as well. The 
relation rules determine the list of tables and the list of conditions in the final SQL 
query. 

resource author

resource_author MN  

Figure 4. Example of a three table relation 

The rule associated with the table configuration of Figure 4 is: 

if (table_list contains (author, resource)) 
then table_list = table_list + resource_author 
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Each relation rule is associated to an SQL template, that created by the pre-processor, 
and used at run time to build the final SQL query with the specific values found the user 
input. For example, with the relation of Figure 4, the associated SQL template will be: 

SELECT <attribute_list>  
FROM author, resource, resource_author 
WHERE author.author_id=resource_author.author_id 
AND resource.resouce_id=resource_author.resource_id 
AND <conditions_list> 

2.3 Question Analysis through Semantic Templates 

The analysis of the input questions is performed by matching the syntactic parse of the 
question to a set of fixed templates.  This approach is similar to that of much work in QA  
[10].  Once we have taken into account the semantics of the individual words, we try to 
account for the interpretation of the entire question.  For this, we use 3 main types of 
semantic templates:  

<attribute> of <object> 
<attribute> of <object> of <object> 
<action verb> <object> <attribute value> 
 

To determine that a natural language question matches a particular template, the question 
is parsed through the Link Parser [11].  As this parser finds a ranked list of parse trees 
(from the most likely to the least likely) for a given input, we try all parse trees in the 
order presented until one matches a template.  As objects are mostly realized 
linguistically as noun phrases, to match an <object> in a template, we specifically look 
for the tags of the link parser that correspond to noun phrases.  To match an <attribute>, 
any string will be considered, as long as it forms a full constituent. Let us now show 
each template in detail. 

Attribute of Object of Object Template 

This template is meant to take into account questions that involve one explicit attribute 
from a table and the default attribute from a second table. This  is shown in Figure 5. 

of <table1> of <table2> <value of table2.default_attribute>table1.attribute
 

Figure 5. The attribute-of-object-of-object template 

 

The associated SQL template is: 

SELECT table1.attribute  
FROM table1,table2 WHERE table2.def_att=<value of table2.def_att> 
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Action Verb Template 

The action verb template is shown in Figure 6. 

action
verb

<table 1> <table 2> <value of table 2.default_attribute>

 

Figure 6. The action verb template 

The simplest example for the action verb template involves one action verb and the value 
of one default attribute, as in Who wrote the Old Man and The Sea? The system does not 
find any table name in the input sentence, but it finds the action verb wrote, which is 
related to the tables author and resource as we already saw in the Relation Rules. From 
the default attribute table: 

Attribute1=Table1.default_attribute=author.name 
Attribute2=Table2.default_attribute=resource.title=`the old man 
and the sea’ 

 

From the schema rules, (author, resource)  involves (resource_author) as well. The final 
SQL is: 

SELECT author.name 
FROM author,resource,resource_author 
WHERE resource.title=‘the old man and the sea’ 
AND resource_author.resource_id=resource.resource_id 
AND resource_author.author_id=author.author_id 

3. Implementation 

In order to test our approach, we incorporated it within the Cindy database system. The 
Cindi system [2][3] is a virtual library system meant to increase the search results by 
using an appropriate index entry called the Semantic Header [4] and providing a 
mechanism to register, manage and search a bibliography.  The accuracy of the system is 
currently being tested on the database for the Cindi library system. The schema contains 
15 tables (relations). The natural language input varies from 3 to 20 words. By creating 
additional rules, and by improving the mechanism of generating the rules, we intend to 
raise the capabilities of the NLP system beyond these limits 

At the present time, we estimate a success rate of about 70%1 for questions having one 
action verb, one direct object and two modifiers. With three modifiers, the success rate 
decreases significantly because the input question becomes syntactically more complex 
and the number of possible parses found by the Link Parser increases exponentially.  

                                                                 

1 That is, 70% of the input questions have been correctly translated into SQL. 
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4. Conclusion And Future Work 

If the data is highly organised, as is the case in the RDBMS area, the search domain can 
be reduced, and thus the precision of the question analysis can be improved. The 
reduction of the search domain is made possible because the system knows in advance, 
through the interpretation rules, what it can answer. 

We plan to associate probability measures to the constructed SQL queries using our 
confidence level in the lexical and semantic relations used by the pre-processor and to 
the analysis of the question.  
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