

TALN 2004, Fès, 19-21 avril 2004

Using Semantic Information to Improve the Per formance of a
Restr icted-Domain Question-Answer ing System

Hai Doan-Nguyen and Leila Kosseim

CLaC Laboratory – Concordia University
Montreal, Quebec, Canada, H3G-1M8
{ haidoan, kosseim} @cs.concordia.ca

Résumé – Abstract

Ce papier présente nos expériences d’utilisation d’ informations sémantiques pour améliorer
la précision du module de recherche d’ information d’un système de question-réponse à
domaine restreint. Ce système vise à répondre à des questions sur les services offerts par une
grande compagnie. Notre approche consiste à découvrir un ensemble de termes spéciaux et à
construire une hiérarchie de concepts, qui peuvent efficacement caractériser la pertinence
d’un candidat à la question correspondante. La combinaison de ces informations sémantiques
avec le module de recherche d’ information a donné de très bons résultats.

This paper presents our experiments in using semantic information to improve the precision
of the information retrieval module of a restricted-domain question-answering system. The
system aims at replying questions on services offered by a large company. Our approach
consists in finding a set of special terms and building a concept hierarchy which can
effectively characterize the relevance of a retrieved candidate to its corresponding question.
Combining these two kinds of semantic information with the information retrieval module
has resulted in very good improvements.

Mots Clés – Keywords

Systèmes de question-réponse, recherche d’ information, informations sémantiques.
Question-answering, information retrieval, semantic information.

1 Introduction

This paper presents our experiments in developing a question-answering (QA) system which
aims at replying clients' questions on services offered by a large company, here Bell Canada.
As it is well-known, the precision of the document retrieval stage is essential to the success of
a QA system, because it places an upper bound on the precision of the entire system. Our

Hai Doan-Nguyen et Leila Kosseim

approach is to find kinds of semantic information which can effectively characterize the
relevance of a retrieved candidate to its corresponding question.

1.1 Restr icted-domain QA

Our system is an instance of restricted-domain QA, which works on a document collection
restricted in subject and volume. This kind of QA has some characteristics that make it
different from open-domain QA, which works over a large document collection, including the
WWW. Techniques developed recently for open-domain QA, particularly those within the
TREC competitions (e.g. TREC, 2002), may become less helpful to restricted-domain QA.
First, in restricted-domain QA, correct answers to a question may often be found in only very
few documents; the system does not have a large retrieval set abundant of good candidates for
selection. Light & al (2001) give evidences that the performance of a system depends greatly
on the redundancy of answer occurrences in the document collection. Second, a restricted-
domain QA system often has to work with domain-specific terminology, including domain-
specific word meaning. Lexical and semantic techniques based on general lexicons and
thesauri, such as WordNet, may not apply well here. Third, if the QA system is to be used for
answering questions from a company's clients, it should accept complex questions, of various
forms and styles. The system should then return a complete answer, which can be long and
complex, because it has to, e.g., clarify the context of the problem posed in the question,
explain the options of a service, give instructions or procedures, etc. Contrarily, techniques
generally used in TREC competitions, aiming at finding short and precise answers, are often
based on the hypothesis that the questions are constituted by a single constituent, and can be
categorized into a well-defined and simple semantic classification (e.g. PERSON, TIME,
LOCATION, QUANTITY, etc.).

Restricted-domain QA has a long history, beginning with systems working over databases
(e.g., BASEBALL (Green et al, 1961) and LUNAR (Woods, 1973)). Recently, research in
QA has concentrated mostly on problems of open-domain QA, in particular on how to find a
very precise and short answer. Nonetheless, restricted-domain QA seems to regain attention,
as shown by a dedicated ACL workshop to be held this year. Researchers also begin to
recognize the importance of long and complete answers. Lin & al (2003) carried out
experiments showing that users prefer an answer within context, e.g., an answer within its
containing paragraph. Buchholz & Daelemans (2001) define some types of complex answers,
and propose that the system presents a list of good candidates to the user, and let him
construct the reply by himself. Harabagiu & al (2001) mention the class of questions that
need an answer in form of an enumeration (listing answer).

1.2 Semantic approaches in QA

Use of semantic information in QA systems, or more generally, in any Natural Language
Processing applications, has long been studied and continues to be an important research
direction. One well-known approach was semantic grammars (Brown & Burton, 1975),
which build pre-defined patterns of questions for a specific task. Simple and easy to
implement, this approach can only deal with very small tasks, and a restricted set of
questions. Latent Semantic Indexing (Deerwester & al, 1995), a kind of concept indexing,

Using Semantic Information to Improve the Performance of a Restricted-Domain Question-
Answering System

tries to find underlying or "latent" concepts from interrelationships between words. This
technique needs a large volume of data for a machine learning process, hence is not
applicable for our project. The most popular class of techniques includes using thesauri and
lexicons, classifying documents, and categorizing the questions as mentioned in Section 1.1
above. Harabagiu & al (2000), for example, use WordNet extensively to generate keyword
alternations and infer the expected answer category of a question.

Our approach for the Bell Canada QA system consists in finding a set of special terms which
characterizes the "working language" of the current task, and building an ontological concept
hierarchy which can help better map a question to relevant documents.

2 Corpus and question set

Our working corpus contains documents presenting Bell Canada's wide-range services to
personal and enterprise clients: telephones, wireless, Internet, etc. The corpus was constructed
by crawling on the company's website (www.bell.ca) and creating one document per Web
page. Markups were then removed in order to concentrate our efforts on pure text only. The
resulting corpus contains about 560K characters, and comprises more than 220 text
documents. Most documents are short, of 1K to 5K characters, some are long, up to 24K. As
the corpus is a pure text derivation of formatted documents (HTML and PDF), a lot of
important information was missing, like titles, subtitles, listings, tables, etc. In several
documents, there is "noisy" information, such as general navigation links of the website.

The available question set has 120 questions. It was assured that every question has an
answer from the contents of the corpus. The form and style of the questions vary freely and
the questions are rather long (11.3 words on average, compared to 7.3 words for TREC
questions). Most questions are composed of one sentence, but 2 questions are other
composed of two sentences. There are "Wh-questions", "Yes-No questions", questions in
form of an imperative (e.g. "Please tell me how..."), etc. The questions ask about what a
service is, its details, whether a service exists for a certain need, how to do something with a
service, etc. Below are some examples of questions:

− Do I have a customized domain name even with the Occasional Plan of Business Internet
Dial?

− How can our company separate business mobile calls from personal calls?

− With the Web Live Voice service, is it possible that a visitor activates a call to our company
from our web pages, but then the call is connected over normal phone line?

− It seems that the First Rate Plan is only good if most of my calls are in the evenings or
weekends. If so, is there another plan for long distance calls anytime during the day?

For the project, we divided the question set at random into 80 questions for training and 40
questions for testing. The training set was used to develop the approach and to find the best
values of different parameters (see next sections) and the test set was used for the final
evaluation.

Hai Doan-Nguyen et Leila Kosseim

3 Information retr ieval module

Although our corpus is not very large, it is not so small either so that a strategy of searching
the answers directly in the corpus could be obvious. Moreover, the missing of formatting
information mentioned above would make such an approach more difficult. We therefore
design our system following the classic strategy of QA systems, with two steps: (1)
information retrieval (IR); and (2) candidate selection and answer extraction.

For the first step, we use Okapi, a well-known generic IR engine
(www.soi.city.ac.uk/~andym/OKAPI-PACK/, also Beaulieu & al (1995)). For each question,
Okapi returns an ordered list of answer candidates, each of which is composed of one or
several consecutive paragraphs of a document. Okapi also gives a relevance score for each
candidate and the file name of the document containing it. The candidates are then evaluated
by a competent person using a binary scale: correct or incorrect. This kind of judgment is
recommended in the context of communications between a company and its clients, because
the conditions and technical details of a service should be edited as clearly as possible in the
reply to the client. However we did also accept some tolerance in the evaluation. If a question
is ambiguous, e.g., it asks about phones but does not specify whether it pertains to wired
phones or wireless phones, all correct candidates of either case will be accepted. If a
candidate is good but incomplete as a reply, it will be judged correct if it contains the
principal theme of the supposed answer, and if missing information can be found in
paragraphs around the candidate's text in the containing document.

The table in Figure 1 gives statistics of Okapi's performance on the training question set. C(n)
is the number of candidates at rank n which are judged correct. Q(n) is the number of
questions in the training set which have at least one correct answer among the first n ranks.
We kept only 10 best candidates for each question, because after rank 10 a good answer is
very rare (i.e. %C(n) < 5%).

n 1 2 3 4 5 6 7 8 9 10

C(n) 20 11 5 4 9 3 1 1 4 1

%C(n) 25% 13.8% 6.3% 5% 11.3% 3.8% 1.3% 1.3% 5% 1.3%

Q(n) 20 26 28 32 39 41 42 43 44 45

%Q(n) 25% 32.5% 35% 40% 48.8% 51.3% 52.5% 53.8% 55% 56.3%

Figure 1 : Performance of Okapi on the training question set (80 questions).

As for answer redundancy, among the 45 questions having at least a correct answer (see
Q(10)), there are 33 questions (= 41.3% of the entire training set) having exactly 1 correct
answer, 10 questions (12.5%) having 2 , and 2 questions (2.5%) having 3 correct answers.

The results show that Okapi's performance is not satisfying, conforming to our discussion
about characteristics of restricted-domain QA above. The system's precision is particularly
weak for n's from 1 to 5. Unfortunately, these are cases that the system aims at. n=1 means
that only one answer will be returned to the user – this corresponds to a totally automatic
system. n=2 to 5 correspond to more practical scenarios of a semi-automatic system, where

Using Semantic Information to Improve the Performance of a Restricted-Domain Question-
Answering System

an agent of the company chooses the best one among the n candidates, edits it, and sends it to
the client. We stop at n=5 because a greater number of candidates seems too heavy
psychologically to the human agent. Also note that the rank of the returned candidates is not
important here, because they would be equally examined by the human agent. This explains
why we use Q(n) to measure the precision performance of the system rather than other well-
known scoring such as mean reciprocal rank (MRR).

Examining the correct candidates, we find that they are generally good enough to be sent to
the user as an understandable reply. About 25% of them contain superfluous information for
the corresponding question, while 15% are lacking of information. However, only 2/3 of the
latter (that is 10% of all) look difficult to be completed automatically. Extracting the answer
from a good candidate therefore seems less important than improving the precision of the IR
module. In the following, we concentrate on how to improve Q(n), n= 1 to 5, of the system.

4 Improving the precision of the system with special terms

Our main idea here is to try to push the correct candidates among the 10 best candidates kept
for a question to the first ranks as much as possible. To do this, it is necessary to find some
kind of information which could effectively characterize the relevance of a candidate to its
corresponding question. We note that the names of specific Bell services could be helpful
here, because they occur very often in almost every document and question, and a service is
often presented or mentioned in only one or a few documents – making these terms very
discriminating. To have a generic concept, we will call these names 'special terms'. Finally,
in the corpus, these special terms occur normally in capital letters, e.g. 'Business Internet
Dial', 'Web Live Voice', etc., and can easily be extracted automatically. After a manual
filtering, we obtained more than 450 special terms.

In (Doan-Nguyen & Kosseim, 2004), we obtained very good improvements by re-ranking
Okapi's candidates using a new scoring system which raises the score of candidates
containing occurences of special terms found in the corresponding question, as follows:

(1) Score_of_candidate[i] = DC * (OW * Okapi_score + RC[i] * Term_score)

According to the formula, the score of candidate i in the ranked list returned by Okapi is a
function of 3 factors: (1) The original Okapi_score given by Okapi, weighted by some
integer value OW. (2) A Term_score that measures the importance of common occurrences
of special terms in the question and the candidate. It is weighted by some integer value RC[i]
(for rank coefficient) that represents the role of the relative ranking of Okapi. (3) A document
coefficient DC that indicates the relative importance of a candidate i coming or not coming
from a document which contains a special term occurring in the question. DC is thus
represented by a 2-value pair; e.g., the pair (1, 0) corresponds to the extreme case of keeping
only candidates coming from a document which contains at least one special term in the
question, and throwing all others.

The table in Figure 2 gives the best results obtained when running the system with 20
different values of DC, 50 of RC, and OW from 0 to 60, on the training question set. See
(Doan-Nguyen & Kosseim, 2004) for how to design these values. The table in Figure 3 gives
the results of running the system with optimal training parameters on the test question sets.

Hai Doan-Nguyen et Leila Kosseim

n 1 2 3 4 5

Q(n) of Okapi 20 26 28 32 39

Q(n) of system 30 38 41 43 44

Improvement 10 12 13 11 5

%Improvement 50% 46.2% 46.4% 34.4% 12.8%

Figure 2: Best results of scoring function (1) on the training set (80 questions).

n 1 2 3 4 5 6 7 8 9 10

C(n) 10 6 7 2 3 2 3 2 1 0

Q(n) of Okapi 10 14 19 20 22 22 24 25 25 25

%Q(n) of Okapi 25% 35% 47.5% 50% 55% 55% 60% 62.5% 62.5% 62.5%

Q(n) of system 15 19 22 23 23

Improvement 5 5 3 3 1

%Improvement 50% 36% 16% 15% 5%

Figure 3: Results of scoring function (1) on the test set (40 questions).

5 Improving precision with a concept hierarchy

In another effort to find a semantic characteristic of a document, we try to map the
documents into a hierarchy of concepts. Each document corresponds to a set of concepts, and
a concept corresponds to a set of documents. Building such a concept hierarchy seems
feasible within closed-domain applications, because the domain of the document collection is
pre-defined, the number of documents is in a controlled range, and the documents are often
already classified topically, e.g. by its creator. If no such classification existed, one can make
use of techniques of building hierarchies of clusters (e.g. those summarized in Kowalski
(1997)). However they are painstaking in programming and may not be very precise.

5.1 Building the concept hierarchy

We are lucky finding that the web page URL of a document can help here. Although the
URLs are complex, they contain a portion which can be used to construct the concept
hierarchy and the mapping. For example, below are the URLs of documents presenting the
long distance (wired) phone service, and its 'First Rate' plans, respectively. The portions in
bold characters are useful portions:

− http://www.bell.ca/shop/application/commercewf?origin=noorigin.jsp&event=link(goto)&conte
nt=/jsp/content/personal/catalog/phoneservices/long_distance/index.jsp&REF=HP_PERS

− http://www.bell.ca/shop/application/commercewf?origin=noorigin.jsp&event=link(goto)&conte
nt=/jsp/content/personal/catalog/phoneservices/long_distance/first_rate/index.jsp

Using Semantic Information to Improve the Performance of a Restricted-Domain Question-
Answering System

After some string manipulations, including removing parts like '/jsp/content/', 'catalog',
'index.jsp', etc., we obtain labels which can be used as the characterizing topic or concept of a
document, e.g., Personal-Phone-LongDistance, Personal-Phone-LongDistance-

FirstRate, etc. Note that although many concepts coincide in fact with a special term, e.g.
'First Rate', many other are not special terms, e.g. 'phone', 'wireless', 'long distance', etc. Now
it is easy to build a concept hierarchy from the labels: one which is a prefix of another will be
its parent concept. After some manual editing, we achieve a nice concept hierarchy and
mapping between it and the document collection. Below is a small excerpt from the
hierarchy:

!Bellroot!

 Personal

 Personal-Phone

 Personal-Phone-LongDistance

 Personal-Phone-LongDistance-BasicRate

 Personal-Phone-LongDistance-FirstRate

5.2 Mapping from questions to documents via concepts

The use of the concept hierarchy in the QA system is based on the following assumption: A
question can be well understood only when we can recognize the concepts implicit in it. For
example, the concepts in the question:

It seems that the First Rate Plan is only good if most of my calls are in the evenings or weekends.
If so, is there another plan for long distance calls anytime during the day?

include Personal-Phone-LongDistance and Personal-Phone-LongDistance-

FirstRate. Once the concepts are recognized, we can determine a small set of documents
relevant to these concepts, and carry out the search of answers in this set.

To map a question to the concept hierarchy, we postulate another assumption, that the
question should contain words expressing the concepts. These words may be those
constituting the concepts, e.g., "long", "distance", "first", "rate", etc., or synonyms/near
synonyms of them, e.g., "telephone" to "phone"; "mobile", "cellphone" to "wireless". Because
the questions are very varying in form, we used a bag of word approach. For every concept,
we build a bag of words which make up the concept, e.g., for the concept Personal-Phone-
LongDistance-FirstRate, the word bag is { "personal", "phone", "long", "distance", "first",
"rate"} . We also build manually a small lexicon of (near) synonyms as mentioned above.

Now, a question will be analyzed into separate words, and we look for concepts whose word
bags have elements in common with them. A concept is judged more relevant to a question if:
(1) its word bag has more elements (in stemmed form) in common with the question's words;
(2) the (percentage) quotient of the subset in (1) over the entire word bag is higher; and (3)
there are more occurrences of words in that subset in the question. For the example question
above, here are the first 6 relevant concepts in descending order (the numbers indicate their
rank):

Personal-Phone-LongDistance-FirstRate 1
Personal-Phone-LongDistance-FirstRateOverseas 2
Personal-Phone-LongDistance-FirstRate24 2
Business-Voice-LongDistance-CallingCard 4
Business-Voice-LongDistance-SavingsPlan 4
Business-Voice-LongDistance-PerCall 4

Hai Doan-Nguyen et Leila Kosseim

From the relevant concept sets, it is straightforward to derive the relevant document set for a
given question. The documents will also be ranked according to the order of the deriving
concepts. (If a document is derived from several concepts, the highest rank will be used.) As
for the coverage of the mapping, there are only 4 questions in the training set and 3 in the test
set having an empty relevant document set. In fact, these questions seem to need a context to
be understood, e.g., a question like 'What does Dot org mean?' should be posed in a
conversation about Internet services. Roughly speaking, the mapping can cover about 94%
(=113/120) of the questions.

5.3 Improving precision via concepts

To determine whether the list of documents derived for a question as described above makes
any difference, we use a formula similar to (1), but rather than using DC, we use CC, a
concept-related coefficient that measures to what degree a document occurs in the concept-
derived list. This can be formulated as:

(2) Score of candidate[i] = CC * (OW * Okapi_score + RC[i] * Term_score + 1)

The value of CC depends on the document that provides the candidate[i]. CC should be high
if the rank of the document is high, e.g. CC=1 if rank=1, CC=0.9 if rank=2, CC=0.8 if
rank=3, etc. If the document does not occur in the concept-derived list, its CC should be
small, e.g. 0. We run the system with 14 different values of the CC vector, with CC for rank
1 varying from 1 to 7, and CC for other ranks decreasing accordingly. Values for other
coefficients are the same as in the previous experiment using (1). We obtain the results shown
in Figure 4, which are slightly better than the previous experiment (cf. Figure 2). This shows
that our approach of using concepts is appropriate. It also suggests us to combine CC and DC
in the next experiment.

n 1 2 3 4 5

Q(n) of Okapi 20 26 28 32 39

Q(n) of system 31 39 41 41 42

Improvement 11 13 13 9 3

%Improvement 55% 50% 46.4% 28.1% 7.7%

Figure 4: Best results with concept-related coefficient CC on the training set

5.4 Combining document-related scor ing and concept-related scor ing

In the last experiment, we try to combine the document coefficient used in the scoring
function (1) and the concept coefficient of function (2). We make a simple combination of
CC and DC as below:

(3) Score of candidate[i] = (CC + DC) * (OW * Okapi_score + RC[i] * Term_score + 1)

This time, the results (Figure 5) are better than when using DC or CC alone. This shows that
special terms and concepts are complementary methods, which yield very good
improvements when combined.

Using Semantic Information to Improve the Performance of a Restricted-Domain Question-
Answering System

n 1 2 3 4 5

Q(n) of Okapi 20 26 28 32 39

Q(n) of system 33 42 43 44 44

Improvement 13 16 15 12 5

%Improvement 65% 61.5% 53.6% 37.5% 12.8%

Figure 5: Best results with DC and CC combined on the training set.

5.5 Final test

Finally, we carry out the final test with the optimal values of CC, DC, RC, and OW on the
test question set. The results in Figure 6 show that the current system outperforms Okapi, and
is also uniformly better than when we use only special terms (see Figure 3).

n 1 2 3 4 5

Q(n) of Okapi 10 14 19 20 22

%Q(n) of Okapi 25% 35% 47.5% 50% 55%

Q(n) of system 21 23 23 24 24

Improvement 11 9 4 4 2

%Improvement 110% 64.3% 21% 20% 9%

Figure 6: Results of the final test using formula (3) on the test set (40 questions).

6 Discussion and Conclusions

Precision performance is a hard issue for restricted-domain QA, due to data scarcity. In this
work, we have made considerable improvements on the precision of the IR module of the QA
system. Special terms, constituted by service names of Bell Canada, and the concept
hierarchy, built from the company's original document classification, play a major role in
these improvements. They are complementary information sources which make the QA
system much more sensitive to the working language of the application than a general IR
approach.

We believe that the methodology and conclusions drawn in this study are transferable to other
domains and corpora. The main idea here is to find some kinds of semantic information
which can efficiently characterize the relevance of a candidate to the corresponding question.
One such kind of information can be the essential terminological set used in the interested
task In our case, the extraction of special terms was simplified thanks to the systematic use of
capital letters in the corpus. In another application, these resources can be constructed by
hand or (semi-)automatically using different term extraction techniques. As for the concept
hierarchy, it is reasonable to hypothesize that some classification exists for a domain-specific

Hai Doan-Nguyen et Leila Kosseim

document set. However, our work is not about how to construct such a concept hierarchy, but
rather how to apply it in finding correct answers.

Acknowledgements

This project was funded by Bell University Laboratories and NSERC. The authors would
like to thank the anonymous referees for their comments.

References

BEAULIEU M. ET AL.. (1995). Okapi at TREC-3. In: Overview of the Third Text REtrieval
Conference (TREC-3). Edited by D. K. Harman. Gaithersburg, MD: NIST, April 1995.

BROWN J., BURTON R. (1975). Multiple representations of knowledge for tutorial reasoning.
In Bobrow & Collins (Eds), Representation and Understanding. Academic Press, New York.

BUCHHOLZ S., DAELEMANS W. (2001). Complex Answers: A Case Study using a WWW
Question Answering System. Natural Language Engineering, 7(4), 2001.

DEERWESTER S., DUMAIS S., FURNAS G., LANDAUER T., HARSHMAN R. (1990). Indexing by
latent semantic analysis. Journal of American Society of Information Science, 41, 391-407.

DOAN-NGUYEN H., KOSSEIM L. (2004). Amélioration de la précision dans un système de
question-réponse de domaine fermé. To appear. Proceedings of 7es Journées internationales
d’Analyse statistique des Données Textuelles (JADT). Louvain-la-Neuve, Belgium.

GREEN W., CHOMSKY C., LAUGHERTY K. (1961). BASEBALL: An automatic question
answerer. Proceedings of the Western Joint Computer Conference, pp. 219-224.

HARABAGIU S. ET AL. (2000). FALCON: Boosting Knowledge for Answer Engines.
Proceedings of the Ninth Text REtrieval Conference (TREC).

HARABAGIU S. ET AL. (2001). Answering Complex, List and Context Questions with LCC's
Question-Answering Server. Proceedings of the 10th Text REtrieval Conference (TREC).

KOWALSKI G. (1997). Information Retrieval Systems – Theory and Implementation. Kluwer
Academic Publishers, Boston/Dordrecht/London.

LIGHT M., MANN G., RILOFF E., BRECK E. (2001). Analyses for Elucidating Current Question
Answering Technology. Natural Language Engineering, 7(4), 2001.

LIN J., QUAN D., SINHA V., BAKSHI K., HUYNH D., KATZ B., KARGER D. (2003). The Role of
Context in Question Answering Systems. Proceedings of the 2003 Conference on Human
Factors in Computing Systems (CHI 2003), April 2003, Fort Lauderdale, Florida.

TREC (2002). Proceedings of The Eleventh Text Retrieval Conference. NIST Special
Publication: SP 500-251. E. M. Voorhees and L. P. Buckland (Eds).

WOODS W. A. (1973). Progress in natural language understanding: An application to lunar
geology. AFIPS Conference Proceedings, Vol. 42, pp. 441-450.

