

Automatic acquisition of
semantic-based question reformulations

for question answering

Jamileh Yousefi and Leila Kosseim

CLaC laboratory
Department of Computer Science and Software Engineering

1400 de Maisonneuve Blvd. West
Montreal, Quebec, Canada H3G 1M8

j yousef@cs.concordia.ca, kosseim@cs.concordia.ca

Abstract. In this paper, we present a method for the automatic acqui-
sition of semantic-based reformulations from natural language questions.
Our goal is to find useful and generic reformulation patterns, which can
be used in our question answering system to find better candidate an-
swers. We used 1343 examples of different types of questions and their
corresponding answers from the TREC-8, TREC-9 and TREC-10 col-
lection as training set. The system automatically extracts patterns from
sentences retrieved from the Web based on syntactic tags and the se-
mantic relations holding between the main arguments of the question
and answer as defined in WordNet. Each extracted pattern is then as-
signed a weight according to its length, the distance between keywords,
the answer sub-phrase score, and the level of semantic similarity between
the extracted sentence and the question. The system differs from most
other reformulation learning systems in its emphasis on semantic fea-
tures. To evaluate the generated patterns, we used our own Web QA
system and compared its results with manually created patterns and au-
tomatically generated ones. The evaluation on about 500 questions from
TREC-11 shows some increase in precision and MRR scores. Hence, no
loss of quality was experienced, but no manual work is now necessary.

1 Introduction

Question reformulation deals with identifying possible forms of expressing an-
swers given a natural language question. These reformulations can be used in a
QA system to retrieve answers in a large document collection. For example given
the question What is another name for the North Star?, a reformulation-based
QA system will search for formulations like <NP>, another name for the North
Star or <NP> is another name for the North Star in the document collection and
will instantiate <NP> with the matching noun phrase. The ideal reformulation
should not retrieve incorrect answers but should also identify many candidate
answers.

Writing reformulations by hand is a tedious tasks that must be repeated for
each type of question and for each language in the case of a multilingual QA
system. This is why there have been many attempts at acquiring reformulations
automatically (ex. [1–5]). However, most work have analyzed string-based or
syntactic paraphrases and few have worked on generating semantically equivalent
reformulations such as <NP>, also known as the North Star or the North Star
is also called <NP>.

Our goal is to learn semantically equivalent reformulation patterns automat-
ically from natural language questions. We hope to find useful reformulation
patterns, which are general enough to be mapped to potential answer contexts
but specific enough not to retrieve wrong answers.

2 Related Work

Soubbotin et al. [6] along with [7] were among the first to use surface patterns
as the core of their QA system. This approach searches in the document collec-
tion for predefined patterns or exact sentences that could be the formulation of
the potential answer. In [6], the patterns were hand-crafted, while in [7] sim-
ple word permutations were performed to produce paraphrases of the question.
More recently, [1] also uses simple word permutations and verb movements to
generate paraphrases for their multilingual QA system. In the work of [5, 4, 8],
answer formulations are produced for query expansion to improve information
retrieval. While in [8] reformulation rules to transform a question of the form
What is X? into X is or X refers to are built by hand, [4, 5] learns to transform
natural language questions into sets of effective search engine queries, optimized
specifically for each search engine. [9] use a machine learning technique and a few
hand-crafted examples of question-answer pairs to automatically learn patterns
along with a confidence score. However, the patterns do not contain semantic
information. They include specific string of words such as was born on, was
born in, . . . with no generalisation of the is-born relation. [2] does use semantic
paraphrases, called phrasal synonyms, to enhance their TextMap QA system.
However, many of these patterns are manual generalisations of patterns derived
automatically by [9]. [10] use transformational grammar to perform syntactic
modifications such as Subject-Aux and Subject-Verb movements. [11] learn the
best query reformulations (or paraphrases) for their probabilistic QA system.
Here again, the paraphrases are syntactic variations of the original question.
[12], however, do try to learn semantically equivalent reformulations by using
the web as a linguistic resource. They start with one single prototypical ar-
gument tuple of a given semantic relation and search for potential alternative
formulations of the relation, then find new potential argument tuples and iterate
this process to progressively validate the candidate formulations.

In these systems and most similar approaches, automatic paraphrases are
constructed based on lexical or syntactic similarity. When searching a huge doc-
ument collection such as the Web, having only syntactic reformulations is accept-

able because the collection exhibits a lot of redundancy. However, in a smaller
collection, semantic reformulations are necessary.

3 Learning reformulation patterns

3.1 Question and Answer Patterns

Our work is based on our current reformulation-based QA system [13, 14], where
reformulations were hand-crafted. Given a question, the system needs to identify
which answer pattern to look for. It therefore uses:

A question pattern: that defines what the question must look like. For ex-
ample Who Vsf PERSON? is a question pattern that matches Who is George
Bush?.

An answer pattern: Once a question pattern is activated (is found to match
the input question) a set of answer patterns will be looked for in the docu-
ment collection. An answer pattern specifies the form of sentences that may
contain a possible candidate answer. For example, for the question Who is
George Bush?, the system tries to find sentences that match any one of these
answer patterns:

<QT> <Vsf> <ANSWER>
<ANSWER> <Vsf> by <QT>

Where <ANSWER> is the candidate answer, <QT> is the question term (i.e.
George Bush), and <Vsf> is the verb in simple form.

In the current implementation, both sets of patterns are hand-crafted using
the following types of tags:

– Named-entity tags (e.g. PERSON) – found using the GateNE named entity
tagger [15].

– Part-of-speech tags (e.g. Vsf) – found using [16]
– Tags on strings (e.g. QT, ANY-SEQUENCE-WORDS)
– Specific keywords (e.g. Who, by)

In this paper, we will discuss how answer patterns can be discovered auto-
matically.

3.2 The Training Corpus

Our learning algorithm starts with a training corpus of 1343 question-answer
pairs taken from the TREC-8, TREC-9, and TREC-10 collection data [17–19].
Each question-answer pair is composed of one question and its corresponding
answer. The following are some examples:

Where is the actress, Marion Davies, buried? Hollywood Memorial Park
When did Nixon die? April 22, 1994
Who is the prime minister of Australia? Paul Keating

Corpus Size

Who Corpus 208
Where Corpus 119
When Corpus 88
What Corpus 747
Why Corpus 8
Which Corpus 32
How Corpus 111
Other Corpus 30
Total 1343

Table 1. Training corpus files according to the type of question. The size is the number
of question-answer pairs.

We divided the training corpus according to the question type. Questions
are classified depending on the kind of information sought. In fact, one major
factor to guessing the answer type is to know the question type. We used the
classification used in [20] to categorize questions into 7 main classes (what, who,
how, where, when, which, why) and 20 subclasses (ex. what-who, who-person,
how-many, how-long, . . .). Table 1 shows our training files along with their sizes
(number of question-answer pairs).

3.3 Overview of the algorithm

Each question-answer pair is analyzed to extract the arguments and the semantic
relation holding between the question arguments and the answer. A query is
then formulated using the arguments extracted from the question-answer pair.
The formulated query is sent to a Web search engine which returns the N most
relevant documents. The sentences that contain all the query terms are then
filtered to keep only these that contain the same semantic relation. These are
then passed to a sentence splitter, a part-of-speech tagger, and a noun phrase
chunker, to select be generalized into an answer pattern using syntactic and
semantic tags. Finally, a confidence weight is assigned to each generated pattern
according to its semantic distance from the question and the frequency of the
pattern. Let us now describe each of these steps in detail.

4 Generating Answer Patterns

The goal here is to find many sentences from the document collection (here, the
Web) that contain the answer and see if we can generalize them into syntactico-
semantic patterns.

4.1 Extracting Arguments

For each question-answer pair, we define an argument set as the set of terms
which we believe a relevant document should contain. To give an example, con-
sider the question-answer pair:

Q: Who provides telephone service in Orange County, California?
A: Pacific Bell
Any relevant document to this question-answer pair must contains the terms

“telephone service”, “Orange County, California”, and “Pacific Bell”. Therefore
to search documents on the Web, we formulate a query made up of all the
arguments found in the question-answer pair. To obtain the argument sets, the
question is chunked (with the BaseNP chunker [16]) to identify its base noun
phrases. All the base noun phrases detected in the question are grouped in a set
called q-arguments.

q-arguments = {‘‘telephone service’’, ‘‘Orange County, California’’}

In the TREC 8-11 collections, the candidate answer is typically a noun phrase
that can contain one or more words. Some supporting documents may only
contain part of this noun phrase. To increase the recall of document retrieval,
we search for a combination of question arguments and each sub-phrase of the
answer. We restrict each sub-phrase to contain less than four1 words and to
contain no stop word. Finally, we assign a score to each sub-phrase according to
proportion of the words in the sub-phrase compared to the total number of words
in the candidate answer. For example, the sub-phrases and the score assigned
for the previous question-answer pair are:

Pacific Bell 1 Pacific 1
2 Bell 1

2
The sub-phrase score will be used later to rank the patterns (and ultimately,

the extracted answers) from the retrieved sentences (see section 4.6). Finally,
we group the original candidate answer and all its sub-phrases in the set ans-
arguments. For example,

ans-arguments = {(Pacific Bell,1), (Pacific, 1
2), (Bell, 1

2) }

4.2 Document Retrieval

At this stage, we construct a query in the format accepted by the Google search
engine. The query is formed using all the arguments extracted from the question
(q-arguments), and the original candidate answer or one of its sub-phrases
(ans-arguments) are conjugated with arithmetic operators. For example,

‘‘telephone service’’ + ‘‘Orange County, California’’ + ‘‘Pacific Bell’’

We post the structured query to the Google search engine and then we scan
the first 500 retrieved documents to identify the sentences that are likely to
contain the answer. From the above documents, only those sentences that contain
all of the question arguments and at least one answer argument are retained.

4.3 Extracting Semantic Relations

The key aspect of this research is to find reformulations that are semantically
equivalent. To do this, we need to find sentences that contain equivalent semantic
1 This limit was set arbitrary.

relations holding between question arguments and the answer. In fact, semantic
relations are used in measuring the relevance of sentences with the question-
answer pair. We assume that the semantic relation generally appears as the
main verb of the question. For example, the verb ‘provide’ is considered as the
semantic relation in the following question-answer pair:

Q: Who provides telephone service in Orange County, California?
A: Pacific Bell

The representation of the above concepts is done in the following constructs:
Relation schema: argument-1: telephone service

relation: provide
argument-2:Orange County, California

If the main verb of the question is an auxiliary verb, then we ignore the semantic
relation. For example, in:

Q: Who is the president of Stanford University?
A: Donald Kennedy

The semantic relation is ignored and the semantic validation of the relevant
sentence (see section 4.4) is based on the frequency of the answer context alone.

Once the semantic relation is determined, we generate a semantic represen-
tation vector composed of the relation word, its synonyms, one-level hyponyms
and all hypernyms obtained from WordNet. This vector will serve later to verify
the semantic validity of the sentences retrieved. To weight each answer pattern
according to our confidence level, we also assign a weight to each term in the
vector based on the semantic distance of the term to the original verb in Word-
Net. We want to estimate the likelihood that the sentence and the question
actually refer to the same fact or event. We assign the similarity measure using
the following weights:

– 1: for the original verb in the question.
– 1

2 : for strict synonyms of the question verb, i.e. a verb in the same synset.
– 1

8 : for hyponyms and hypernyms of the question verb.

Since the relation word can be polysemous, we consider all its possible senses.
The representation of the above concepts is done in the following construction:

Relation provide
Synonyms(provide) {supply, render, offer, furnish, . . . }
Hyponyms(provide) {charge, date, feed, calk, fund, stint, . . . }
Hypernyms(provide) {give, transfer stipulate, qualify, . . . }
Semantic representation vector {(provide,1), (supply, 1

2
), (render, 1

2
), (offer, 1

2
),

(furnish, 1
2
), . . . , (charge, 1

8
), (date, 1

8
), (feed, 1

8
), . . . ,

(give, 1
8
), (transfer, 1

8
), . . . }

4.4 Semantic Filtering of Sentences

We then filter the set of sentences retrieved by Google, according to the validity
of the semantic relation that they contain. We only choose sentences that have
the same relation as the relation extracted from the question-answer pair. To

do so, we examine all verbs in the selected sentences for a possible semantic
relation. We check if the main verb of the sentence is a synonym, hypernym, or
hyponym of the original verb in the question. The verb is valid if it occurs in the
semantic representation vector. For example, with our running example, both
these sentences will be retained:

Sentence 1 California’s Baby Bell, SBC Pacific Bell, still provides nearly all of
the local phone service in Orange County, California, California.

Sentence 2 Pacific Bell Telephone Services today offers the best long distance
rate in Orange County, California.

Because both sentences contain a verb (“provide” and “offer”) that is included
in the semantic representation vector of the question verb (“provide”).

At first, we only attempt to validate verbs but if the semantic relation is not
found through the verbs, then we also validate nouns and adjectives because the
semantic relation may occur as a nominalisation or other syntactic and morpho-
syntactic variations. In such a case, we use the Porter stemmer [21] to find the
stem of the adjectives and nouns and then we check if it has the same stem as
the original verb or another verb from its semantic representation vector. For
example, for the phrase “provider of” we check if the stem of the original verb
“provide” or one of its synonyms, hyponym or hypernym is the same as “provide”
(the stem of “provider”). For example, the following sentence is also selected:

Sentence 3 Pacific Bell, major provider of telephone service in Orange County,
California...

4.5 Generating the Answer Pattern

Once we have identified a set of sentences containing the answer, the arguments
and the same semantic relation, we try to generalize them into a pattern using
both syntactic and semantic features. Each sentence is tagged and syntactically
chunked (with [16]) to identify POS tags and base noun phrases. To construct
a general form for answer patterns, we replace the noun phrase corresponding
to ans-argument by the tag <ANSWER> and the noun phrases corresponding
to q-arguments by the tag <QARGx> where x is the argument counter. We
replace the other noun phrases that are neither question arguments nor answer
arguments with <NPx>, where x is the noun phrase counter. To achieve a more
general form of the answer pattern, all other words except prepositions are re-
moved. For example, the following sentence chunked with NPs:

[California’s/NNP Baby/NNP Bell,/NNP SBC/NNP Pacific/NNP Bell,/NNP]/NP
still/RB provides/VBZ nearly/RB all/DT of/IN [the/DT local/JJ phone/NN
service/NN]/NP]/NP in/IN [Orange/NNP County,/NNP California./NNP]/NP

will generate the following pattern:

<ANSWER> <VERB> <QARG1> in <QARG2> | senseOf(provide)
The constraint senseOf(provide) indicates the semantic relation to be found

in the candidate sentences through a verb, a noun or an adjective.
Finally, we try to replace the <ANSWER> tag with the corresponding named-

entity tag. To do so, we tag the answer in the question-answer pair of the training
set with the GateNE named entity tagger [15]. If the answer does not correspond
to a named entity, then we back off to using the expected named entity corre-
sponding to the question type. Again, if this cannot be determined (e.g. more
than one type can satisfy the question), then we back off to a syntactic tag.
In our example, since the question calls for an organization, the following are
produced:

<ORGANIZATION> <VERB> <QARG1> in <QARG2> | senseOf(provide)
<ORGANIZATION> <QARG1> <QARG2> | senseOf(provide)
<ORGANIZATION> <QARG1> <VERB> <QARG2>| senseOf(provide)

4.6 Assigning Confidence Weights

As one pattern may be more reliable than another, the last challenge is to assign
a weight to each candidate pattern. This helps us to better rank the pattern list,
and ultimately the answer extracted from them, by their quality and precision.
From our experiments, we found that the frequency of a pattern, its length,
the answer sub-phrase score, and the level of semantic similarity between the
main verbs of the pattern and the question are the most indicative factors in
the quality of each pattern. We set up a function to produce a weight for each
pattern over the above major factors; these weights are defined to have values
between 0 and 1. More formally, let Pi be the ith pattern of the pattern set P
extracted for a question-answer pair; we compute each factor as the following:

count(Pi) is the number of times pattern Pi was extracted for a given question
pattern. The most frequent the pattern, the more confidence we have in it
and the better we rank it.

distance measures the distance (number of words) between the answer and the
closest term from q-arguments in the pattern. The smallest the distance,
the more confidence we have in the pattern.

length(Pi) is the length of the pattern Pi measured in words. A shorter pattern
will be given a better rank.

sub phrase score is the score of the candidate answer sub-phrase. The score of
each answer sub-phrase depends on its similarity to the full candidate answer.
Here we have used the simple heuristic method to score a sub-phrase by its
length as number of words that are present in both pi and candidate answer

total number of words in the candidate answer .
semantic sim(VQ, SPi) measures the similarity between the sense expressed in

the candidate pattern (SPi) (through a verb, a noun or an adjective) and
the original verb in the question (VQ). We want to estimate the likelihood
that the two words actually refer to the same fact or event. Here, we use
the weights given to terms in the semantic representation vector of (VQ). As
described in section 4.3, this weight is based on the type of semantic relation

between the terms and VQ as specified in WordNet: 1 pt for the original verb
in the question; 1

2 pt for strict synonyms of the question verb and 1
8 pt for

hyponyms and hypernyms of the question verb.

The final weight for a pattern is based on the combined score of the previous
four factors computed as:

Weight(Pi) = count(Pi)
count(P)

× 1
length(Pi)

× 1
distance

× sub phrase score(used)× semantic sim(VQ, SPi)

Note that this function is not necessarily the optimal way of combining these
contributing factors, nor are the factors complete by any means. However, as long
as long as it produces an acceptable ranking, we can apply it to the patterns.
The error produced by just a simple acceptable ranking function is negligible
compared to the error present in other modules, such as the named entity rec-
ognizer.

Figure 1 shows an example of a question pattern along with its ranked answer
patterns for the question Who was the first man to fly across the Pacific Ocean?.

Weight Answer Pattern

1.00 <QARG1> on <QARG2> <PERSON> | senseOf(fly)

0.59 <QARG1> to <VERB> on <QARG2> <PERSON> | senseOf(fly)

0.43 <PERSON> QARG1 on QARG2 | senseOf(fly)

0.24 <QARG2> to <VERB> on <QARG2> <PERSON> | senseOf(fly)

Fig. 1. Example of ranked answer patterns for the question Who was the first man to
fly across the Pacific Ocean?.

5 Evaluation

We tested our newly created patterns using the 493 questions-answers from
the TREC-11 collection data [22]. We submitted these questions to our Web-QA
system [13, 14]. The system was evaluated with the original hand-crafted refor-
mulation patterns and with learned ones. Then the answers from both runs were
compared. Tables 2, 3 and 4. Tables 2 and 3 show the result of this comparison
based on precision and the number of questions with at least one candidate an-
swer. Table 4 shows the mean reciprocal rank (MRR) for each type of question.
The evaluation shows comparable results in precision and MRR scores with a
slight increase with the generated patterns. Hence, no loss of quality was ex-
perienced, but no manual work is now necessary. Although the results show an
increase in precision and MRR; we actually expected a greater improvement.
However, we believe that the potential improvement is actually greater than
what is shown. For now, the results are limited to the syntax of the patterns
currently implemented in the QA system: the tags in the patterns that are recog-
nized are very limited, preventing a greater granularity of patterns. For example,

currently there is no differentiation between past, past participle, or third per-
son verbs. This makes most of the new reformulated patterns we extracted not
recognizable by the QA component.

Question type Nb of Nb of questions Precision
questions with a correct answer of candidate list

in the top 5 candidates

who 52 20 0.571
what 266 42 0.500
where 39 8 0.533
when 71 11 0.687
how + adj/adv 53 5 0.277
which 12 0 0

Total 493 92 0.538

Table 2. Results for each question category with the original hand-crafted patterns

Question type Nb of Nb of questions Precision
questions with a correct answer of candidate list

in the top 5 candidates

who 52 24 0.648
what 266 42 0.552
where 39 11 0.578
when 71 18 0.720
how + adj/adv 53 6 0.462
which 12 0 0

Total 493 113 0.646

Table 3. Results for each question category with the generated patterns

6 Conclusion and Future Work

We presented a method for acquiring reformulations patterns automatically
based on both syntactic and semantic features. The experimental evaluation
of our reformulations shows that using new generated patterns does not increase
the precision and MRR significantly compared to hand-crafted rules, but do
eliminate the need for human intervention.

As opposed to several other approaches that reinforce their candidate answers
by looking on the Web; our approach is less strict as it looks for reinforcement
of the semantic relation between the arguments, rather than looking only for
lexically similar evidence. In this respect, our approach is much more tolerant and
allows us to find more evidence. On the other hand, as we look for evidence that
fit a certain pattern with many possible words fitting the pattern, rather that a

Question Type Frequency Hand-crafted patterns Automatic patterns
MRR Precision MRR Precision

who 52 (10.4%) 0.301 0.571 0.396 0.648
what 266 (53.2%) 0.229 0.500 0.317 0.552
where 39 (7.8%) 0.500 0.533 0.348 0.578
when 71 (14.2%) 0.688 0.687 0.643 0.720
how + adj/adv 53 (10.6%) 0.194 0.277 0.310 0.462
which 12 (2.4%) 0 0 0 0

Table 4. The results based on question categories.

strict string match, we are more sensitive to mistakes and wrong interpretations.
Indeed, we are only interested in finding a word that carries a similar sense
without doing a full semantic parse of the sentence. Negations and other modal
words may completely change the sense of the sentence, and we will not catch
it. When looking in a very large corpus such as the Web, this may lead to more
noise than a strict lexical string match approach. However, if we perform the
QA task on a much smaller corpus, such as in closed-domain QA, looking for
semantic equivalences may be more fruitful.

The current implementation only looks at semantic relations holding between
two arguments. However, it can easily be extend to consider variable-size rela-
tions. However, as more constraints are taken into account, the precision of the
candidate list is expected to increase, but recall is expected to decrease. An care-
ful evaluation would be necessary to ensure that the approach does not introduce
too many constraints and consequently filters out too many candidates.

Our approach to checking syntactic and morpho-suyntactic variations (as
described in section 4.4) is very crude: we only check for the presence or absence
of a similar a stem with no respect to syntax. A more precise approach should
be used; see the work of [23–25] for example.

Finally, to improve the quality of the patterns, we suggest a systematic evalu-
ation and adjustment of the parameters that take part in weighting the patterns;
for example, the size of the windows and the sub-phrase scoring.

Acknowledgments

This project was financially supported by the Natural Sciences and Engineering Re-

search Council of Canada (NSERC) and Bell University Laboratories (BUL). The au-

thors would also like to thank the anonymous referees for their valuable comments.

References

1. Aceves-Pérez, R., nor Pineda, L.V., Montes-y-Gòmez, M.: Towards a Multilin-
gual QA System based on the Web Data Redundancy. In: Proceedings of the
3rd Atlantic Web Intelligence Conference, AWIC 2005. Lecture Notes in Artificial
Intelligence, No. 3528, Lodz, Poland, Springer (2005)

2. Hermjakob, U., Echihabi, A., Marcu, D.: Natural language based reformulation
resource and wide exploitation for question answering. [22]

3. Ravichandran, D., Hovy, E.: Learning surface text patterns for a question answer-
ing system. In: Proceedings of ACL-2002, Philadelphia (2002)

4. Agichtein, E., Gravano, L.: Snowball: Extracting Relations from Large Plain-Text
Collections. In: Proceedings of the 5th ACM International Conference on Digital
Libraries. (2000)

5. Agichtein, E., Lawrence, S., Gravano, L.: Learning search engine specific query
transformations for question answering. In: Proceedings of WWW10, Hong Kong
(2001) 169–178

6. Soubbotin, M., Soubbotin, S.: Patterns of potential answer expressions as clues
to the right answers. In: Proceedings of The Tenth Text Retrieval Conference
(TREC-X), Gaithersburg, Maryland (2001) 175–182

7. Brill, E., Lin, J., Banko, M., Dumais, S., Ng, A.: Data-Intensive Question Answer-
ing. [19] 393–400

8. Lawrence, S., Giles, C.L.: Context and Page Analysis for Improved Web Search.
IEEE Internet Computing 2 (1998) 38–46

9. Rivachandram, D., Hovy, E.: Learning Surface Text Patterns for a Question An-
swering System. In: Proceeding of ACL Conference, Philadephia (2002) 41–47

10. Kwok, C.C.T., Etzioni, O., Weld, D.S.: Scaling question answering to the web. In:
World Wide Web. (2001) 150–161

11. Radev, D.R., Qi, H., Zheng, Z., Blair-Goldensohn, S., Zhang, Z., Fan, W., Prager,
J.M.: Mining the web for answers to natural language questions. In: CIKM. (2001)
143–150

12. Duclaye, F., Yvon, F., Collin, O.: Using the Web as a Linguistic Resource for
Learning Reformulations Automatically. In: LREC’02, Las Palmas, Spain (2002)
390–396

13. Kosseim, L., Plamondon, L., Guillemette, L.: Answer formulation for question-
answering. In: Proceedings of The Sixteenth Canadian Conference on Artificial
Intelligence (AI’2003), Halifax, Canada, AI-2003 (2003)

14. Plamondon, L., Lapalme, G., Kosseim, L.: The QUANTUM Question-Answering
System at TREC-11. [22]

15. Cunningham, H.: GATE, a General Architecture for Text Engineering. Computers
and the Humanities 36 (2002) 223–254

16. Ramshaw, L., Marcus, M.: Text chunking using transformation-based learning.
In: Proceedings of the Third ACL Workshop on Very Large Corpora, MIT (1995)
82–94

17. NIST: Proceedings of TREC-8, Gaithersburg, Maryland, NIST (1999)
18. NIST: Proceedings of TREC-9, Gaithersburg, Maryland, NIST (2000)
19. NIST: Proceedings of TREC-10, Gaithersburg, Maryland, NIST (2001)
20. Plamondon, L., Lapalme, G., Kosseim, L.: The QUANTUM Question Answering

System. [22]
21. Porter, M.: An algorithm for suffix stripping. Program 14 (1980) 130–137
22. NIST: Proceedings of TREC-11, Gaithersburg, Maryland, NIST (2002)
23. Jacquemin, C.: Spotting and discovering terms through natural language process-

ing. MIT Press, Cambridge, Mass. (2001)
24. Ferro, J.V., Barcala, F.M., Alonso, M.A.: Using syntactic dependency-pairs con-

flation to improve retrieval performance in spanish. In: CICLing. (2002) 381–390
25. Ribadas, F.J., Vilares, M., Vilares, J.: Semantic similarity between sentences

through approximate tree matching. In Jorge S. Marques, N.P.d.l.B., Pina, P.,
eds.: Pattern Recognition and Image Analysis. Volume 3523 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin-Heidelberg-New York (2005) 638–646

