
Using Selectional Restrictions to
Query an OWL Ontology

Leila Kosseim, Reda Siblini, Christopher J. O. Baker and Sabine Bergler
CLaC Laboratory

Department of Computer Science and Software Engineering
Concordia University

1400 de Maisonneuve Blvd. West
Montreal, Quebec, Canada H3G 1M8

{kosseim, rsibl, baker, bergler}@cs.concordia.ca

Abstract

This paper discusses the linguistic module of an On-
tology Natural Language Interaction System that is based
on semantic restrictions. The system, calledONLI, takes
as input questions in unrestricted natural language, trans-
lates them into nRQL, an extension to theRACER ontology
query language, then generates answers as retrieved by the
RACER ontology reasoning server. Translation into nRQL
is done through a syntactic analysis (with Minipar), then
uses the semantic restrictions imposed by the roles stored
in the ontology to map terms in the question with concepts
and roles in the ontology. The system was evaluated on the
FungalWeb ontology using the mean reciprocal rank (MRR)
measure used in question-answering. With a test set of 36
questions, the systems achieved an MRR of 0.72

1 Introduction

The query of knowledge representation formalisms such
as ontologies is a central requirement of the Semantic Web.
Increasingly we are forced to recognize the importance of
providing simple query access to such knowledge reposi-
tories. Existing tools that allow users to query and reason
over ontologies [1, 2, 3] use custom designed query lan-
guages [4] with complex syntax which are reportedly diffi-
cult for domain experts to master [5]. With this in mind, we
sought to develop a question-answering (QA) system as a
front-end toRACER, the Renamed ABox and Concept Ex-
pression Reasoner [1]. The intended users are experts who
are knowledgeable in the domain, but may have little or no
knowledge of the structure of the ontology. By providing a
QA interface, experts can formulate their queries using nat-
ural language prose. This allows a seemingly transparent

search environment, where the user does not need to for-
mulate different syntaxes depending on the collection they
are searching. Searching a document collection (such as the
Web) or searching an ontology can be seen by the user as
the same task.

In this paper, we present a novel approach to build-
ing a natural language front-end to an ontology that uses
the semantic restrictions imposed by the ontology design
to map terms in the questions to the content of the ontol-
ogy. The question, formulated in unrestricted natural lan-
guage, is mapped into the newRACER Query language syn-
tax and presented to the description logic automated rea-
sonerRACER which returns the query results.

1.1 nRQL as a Knowledge Representation
Query Language

Since the recent establishment of the Ontology Web
Language (OWL), design specifications for Description
Logic (DL) based query languages have been proposed
and existing languages contrasted, highlighting their ad-
vantages and limitations [6]. nRQL emerges as a promi-
nent and highly expressive DL-query language and extends
the existing capabilities ofRACER with a series of query
atoms. nRQL uses a Lisp based syntax and the general
structure of a query is composed of a query head e.g.
retrieve(?x) upon which variables used in the body
are projected e.g. (?x Fungi) , where (retrieve
(?x)(?x Fungi)) queries, for instance, for the concept
Fungi . In this paper, we employ conjunctive queries where
the atoms are simple concept or role assertions and where
the variables in the body of the query match the correspond-
ing individuals in the ontology that satisfy all query condi-
tions. A detailed description of nRQL is given in [7] and
verbose examples are outlined in [8].

1



1.2 The FungalWeb Ontology

The NL interface was developed and tested on the
FungalWeb Ontology [9]. The FungalWeb Ontology is a
prototype bio-ontology, scripted in the OWL formalism.
It is an integrated conceptualization of multiple scientific
domains. These overlapping domains include taxonomies
of fungi and enzyme reaction mechanisms as well enzyme
substrates and industrial specifications describing the
applications and benefits of enzymes. The FungalWeb
Ontology is a large scale ontology comprising 3616
concepts and 11,163 instances related by 142 roles. The
conceptualization was designed so that fungal species,
enzyme names, enzyme product names, enzyme vendor
names an chemical names are modeled as instances. Free
text segments describing enzyme applications, industrial
benefits of enzymes were also modeled as instances. The
following example illustrates the query capability of the
conceptualization e.g. if the user is looking for vendors
selling enzyme products that contain Xylanase, the user
composes the nRQL syntax below:

(retrieve (?x) (AND (AND

(?x ?y <http://a.com/ontology#Sells>)

(?y ?z <http://a.com/ontology#Contains>))

(?z <http://a.com/ontology#Xylanase>)))

The scope of the ontology has been further illustrated in
a series of application scenarios [10, 11] demonstrating the
range of query capabilities afforded by the conceptualiza-
tion.

During the development of the FungalWeb Ontology
there was a need for domain experts to interact directly with
the conceptualisation. The Ontoligent Interactive Query
Tool (OntoIQ) [12] was subsequently developed to provide
browse and click query functionality to the ontology using
nRQL. OntoIQ is useful in the context of ontology devel-
opment and has been able to identify challenges in the on-
tology query paradigm that could be overcome by Natural
Language Query access to nRQL.

2 Previous Work on querying ontologies

Natural language interfaces to databases have been a sig-
nificant research focus, especially during the 70s and 80s
(e.g, [13, 14, 15]). However, only recently has the topic
of natural language interfaces to ontologies been seriously
investigated. Earlier work has been on restricted language
or simplified English (e.g. [16]) where constraints are im-
posed on the expressiveness of the user’s prose. For exam-
ple, [17, 18] use the Attempto Controlled English (ACE)
to query the semantic Web. The interface imposes some
structure on the user’s input to guide the entry but does not

restrict the user with an excessively formalistic language.
Each ACE query is translated into a discourse representa-
tion structure that is then translated into an N3-based se-
mantic web querying language (RDQL), which allows their
execution. Their work shows that these kinds of interfaces
are simple to use and provide superior retrieval performance
to traditional logic-based approaches when used by a casual
user. However, to provide an easier to use interface, un-
restricted language seems morenatural, especially for the
occasional user.

Few systems however allow questions in unrestricted En-
glish. AquaLog [19] and its successor PowerAqua [20], for
example, are ontology-driven QA systems, which take an
ontology and a natural language question as an input and
return answers drawn from semantic data compliant with
the input ontology. AquaLog was tested on the KMi ontol-
ogy on academic life. Its linguistic module makes use of
the Gate package [21] and uses several metrics to compute
the similarity between terms in the question and terms in
the ontology based on string-based algorithms and Word-
Net. This paper presents a system similar to AquaLog and
PowerAqua, but relies on semantic restrictions to improve
its linguistic module.

3 The ONLI Natural Language Interface

3.1 Overview

The system consists of 3 main modules in addition to a
web user interface that allows the user to interact with the
system. The question is first processed by the Minipar [22]
general purpose syntactic parser. The resulting dependency
parse tree is then analysed to extract all predicate-argument
structures that will be mapped to the concepts and roles of
the selected ontology. The mapping is done using the selec-
tional restrictions imposed by the ontology. The result is a
set of mappings along with their confidence score. The next
module of the system then generates nRQL queries using
hand-made transformation rules, and executes the highest
scoring query over the ontology. Let us now describe each
module in detail.

3.2 Syntactic Analysis

Initially, the user’s question is parsed to identify its syn-
tactic constituents. For this, we use the general purpose an
freely available Minipar parser [22].

Predicates and noun phrases contain the main semantic
information of the question. These will thus be extracted
from the question and mapped to roles, concepts or in-
stances in the ontology. Roles in the FungalWeb ontology
can be binary, relating two concepts to each other; or unary,
relating one instance to a concept. Therefore, from the parse

2



Figure 1. MINIPAR parse tree for the sentence
What vendors sell enzyme products that can be em-
ployed in baking bread?

tree of a question, all sets of predicates along their argu-
ments are extracted and represented into a predicate struc-
ture made of the triplet argument-predicate-argument.

In the parse tree, these predicate structures may be
realized by many grammatical relations: a verb with its
subject (deep or surface) and object (direct or not), a adjec-
tive modifying a noun, a noun-noun compound, a passive
verb modifying a noun . . . or may need to be extracted
from more complex verb phrases (e.g. an inverted auxil-
iary is it sold?). To be more concrete, consider the question:

What vendors sell enzyme products that can be employed
in baking bread?

MINIPAR will generate the dependency tree shown in
Figure 1. From this structure, two predicate structures must
be extracted: the predicatesell and its argumentsenzyme
productandvendors, and the predicateemployand its argu-
mentsenzyme productsandbaking bread. These 2 predicate
structures are shown below:

arg1 pred arg2
vendor sell enzyme product
enzyme product employ baking bread

Although not shown in Figure 1, in the parse tree, the
predicatesell introduces ani relation (a relation between
the main clause and the inflectional phrase). Similarly to
the predicateemploythat also introduces ani relation. Ar-
guments can participate in different types of grammatical
relations. vendor is a subject, the argumentenzymeis an
obj1 , while productis anobj2 andbreadis anobj .

Given this variety of syntactic realisations, in order to
extract the predicate structures for each question, 19 hand-
crafted rules were developed. These rules take into account

Question Predicate Structure
What enzyme can be
used in baking bread?

(arg1:enzyme, pred: use ,
arg2: baking bread )

Find an enzyme that can
be used in baking bread.

(arg1: �, pred: �,
arg2: enzyme)
(arg1: �, pred: use ,
arg2: baking bread )

Is protease an enzyme? (arg1: protease , pred: �,
arg2: enzyme)

What is used in baking
bread?

(arg1: �, pred: use ,
arg2: baking bread )

Table 1. Examples of predicate structures

the grammatical relation and the syntactic category of each
word as extracted from the Minipar tree. For example:

• If a noun is being modified by a relative clause, then
this relative clause is treated as a new predicate struc-
ture with the noun as one of its arguments.

• If a word is an adjective or noun it can be treated as
a predicate if it participates in a grammatical relation
Pred related to ato beclause. In this case any noun-
noun modifier (nn) is treated as an argument to this
predicate and any subjects to verbto be is treated as
the other argument.

To develop these rules, we analysed the output of Mini-
par on a set of 180 training questions (see section 4). The
rules are applied recursively to embedded structures to find
all predicate structures from the question.

The argument slot of a predicate structure may be left
empty if the argument was elided in the question or if a
relative determiner was used and Minipar could not identify
its antecedent. An empty argument slot will be replaced by
a variable name in the final nRQL query (see section 3.4).

The predicate slot may also be empty. Such empty pred-
icates occur if the predicate is in the first position in the
question (e.g.Find enzymes, Give enzymes.) or is a verb
to-be. Such predicates are treated differently, because they
will map to a unary concept rather than to a binary role.

Table 1 shows other examples of questions along with
their predicate structures.

3.3 Ontology Mapping

Once all predicate structures have been extracted from
the question, we attempt to match each constituent of the
structure to variables, concepts, instances or roles in the on-
tology. This can be seen as a classical categorization prob-
lem, in particular, Word Sense Disambiguation. Indeed, the
task here is to find a function to map the linguistic expres-
sions to particular senses (concepts, instances or roles in the
ontology).

3



Domain Concept Role Range Concept
substrate is activated

by enzyme
enzyme

enzyme can be used commercial
enzyme
product

fungi grows on
substrate

substrate

industrial and
environmental
process

is using commercial
enzyme
product

industrial and
environmental
process

is using fungi

industrial and
environmental
process

is using enzyme

. . . . . . . . .

Table 2. Examples of roles and their domain
and range in the FungalWeb ontology

To select the correct mapping we were inspired by the se-
lectional restriction-based disambiguation approach used in
word-sense disambiguation [23]. Indeed, in a text, a pred-
icate often imposes semantic constraints on its arguments
which allow to disambiguate its sense, and in turn, the sense
of its arguments. For example, in its transitive form, the
verb drink imposes that its direct object be aliquid. The
correct sense of an ambiguous direct object can therefore
be identified through this semantic constraint. With an on-
tology, this same strategy can be used as the roles in the
ontology impose constraints on the domain and range of the
concepts they can relate. In turn, correctly identifying the
concepts or instances involved in the question can help us
identify an ambiguous role.

For example, Table 2 shows selected roles in the Fun-
galWeb ontology along with their corresponding domain
and range concepts. As the table shows, a concept for
an argument may not be semantically compatible with all
roles. For example, if the predicate has been mapped to the
role grows on substrate , then the arguments must
map to either the concepts (or instances of)fungi or
substrate .

For each predicate structure, the result of the semantic
analysis is a list of possible roles, concepts, and instances
in the ontology along with a confidence measure. For effi-
ciency reasons, predicates are only mapped to roles, while
the arguments are mapped to concepts and instances. Empty
arguments in the predicate structure are mapped to vari-
ables.

3.3.1 Mapping predicates

Because predicates do not exhibit much domain terminol-
ogy, we can use general purpose lexical resources to match

them to roles in the ontology. To map a predicate of the
question to a role in the ontology, we try to unify its stem
(identified by Minipar) with a role of the ontology. For this,
we use a measure of semantic similarity.

To compute the semantic distance between a predicate
and a candidate role, we use WordNet::Similarity [24, 25].
This package uses WordNet and, by default, the path length
between 2 words to compute their semantic relatedness.
The predicate in the sentence should be a correct English
term, however, the name of the role in the ontology is not
restricted to be available in WordNet. In fact, many role
names in the FungalWeb ontology do not correspond to
English verbs, they are often multi-word terms (e.g.is
activated by enzyme ). In the case of multi-word
terms, we add the appropriate words to the role to form a
complete sentence If a role name is given, then we parse the
sentence and use the head of the sentence to be compared
using WordNet similarity to the retrieved predicate.

If the semantic similarity returns zero, then a default
small value (ε) of 0.001 is used, so as not to rule out any
mapping.

3.3.2 Mapping arguments

Once the predicate is matched to a set of possible roles, we
try to match its arguments to a variable, or a concept or an
instance in the domain and range of this role. This is where
semantic restrictions come into play.

If the argument is empty, then a new variable is created as
a placeholder, but the domain and range of the role already
mapped are kept as constraints to the variable.

If the argument is not empty, then we need to map it
to a concept or an actual instance. Because NPs tend to
be much more domain specific (e.g. enzyme names, sub-
strate names, . . . ), general purpose lexical resources such
as WordNet cannot be used to match NPs. Instead, we use
a measure of lexical similarity.

To score the lexical relatedness between an argument and
a concept or an instance, we use the inverse of the edit dis-
tance – the minimal number of characters needed to make
the 2 strings identical. The lexical score is also normalised
to be within 0 and 1.

If the argument matches a concept and an instance we
give the matched instance a slightly higher score over the
matched concept. If the lexical similarity returns zero, then
we use the sameε value.

The Cartesian product of all possible mappings for the
predicate and all possible mappings for the arguments is
then computed. The overall score of the final mapping is
computed as the product of the individual mappings. Ta-
ble 3 shows an example.

4



constituent mapping score
pred:sell role: sells 1
arg1:vendor concept:

vendor name
× 0.498

arg2:enzyme product concept:
commercial
enzyme
product

× 0.66

0.328
pred:sell role:

producing
enzyme for

0.333

arg1:vendor concept:
vendor name

× 0.498

arg2:enzyme product concept:
industrial
processes

× 0.01

0.001

Table 3. Examples of semantic mapping
for the predicate structure arg1:vendor --
pred:sell -- arg2:enzyme product

3.3.3 Variables Co-referencing

Once a set of possible mapping is built for each predicate
structure of the question, we need to make sure that vari-
ables that should refer to the same entities actually do. This,
in effect, allows us to process the predicate structures of a
question as a single semantic unit, rather than a conjunction
of unrelated predicate structures.

To identify which variables should co-refer to the same
entities, we use the semantic constraints we set when we
used the semantic relations to bound our variables (see sec-
tion 3.3.2). If the constraints of two variables can be unified,
then we consider the variables to co-refer. Since we already
know the possible concepts that this variable could belong
to, we gave the variable name the concept id, so referring
to the same variable and thus the same id leads us to create
the relationship between the predicate structure. This strat-
egy seems to work with the current size of the FungalWeb
ontology, but may not scale up to a larger ontology. In this
case, a deeper analysis of the question is probably needed.

For each question, the list of the possible mappings is
finally ranked according to the overall confidence score and
the best 101 are sent to be translated to nRQL.

3.4 Querying with a Reasoner

The reasoner query module is responsible for creating
the nRQL query and sending them to theRACER reasoner.
In the current state of the project, only two types of nRQL
queries have been considered: unary concept queries and
binary role queries.

1This threshold was set arbitrarily.

concept1 role concept2
(?x <concept1 >) (?y <concept2 >) (?y ?x <role >)

variable1 role variable2
(retrieve (?y ?x) (?y ?x <Role >))

variable� concept
(retrieve (?x) (?x <concept >))

Table 4. Examples of predicate structure pat-
terns and corresponding nRQL queries

A unary concept query tries to find instances of a partic-
ular concept (e.g.Find all enzymes⇒ (retrieve (?x)
(?x enzyme)) ) or to determine if an entity is an instance
of a concept (e.g.Is Protease an Enzyme?⇒ (retrieve
() (Protease Enzyme)) ). A unary concept query
can therefore have one of the two forms:

1. (retrieve (?x) (?x <concept >))
2. (retrieve () ( <instance > <concept >))

A binary role query searches for the binding between
2 concepts or instances (e.g.What can be used in what?
⇒ (retrieve (?y ?x) (?y ?x can be used
in)) ). A binary role can specify particular concepts or
instances instead of specifying a variable. For example,
What can be used in baking?⇒ (retrieve (?x) (?x
<Baking > can be used in)) , or Can Protease be
used in baking?⇒ (retrieve () ( <Protease >
<Baking > can be used in)) . A binary role query
can therefore take the 4 following forms:

3. (retrieve (?y ?x)(?y ?x <role >))
4. (retrieve (?x)(?x <instance > <role >))
5. (retrieve (?x)( <instance > ?x <role >))
6. (retrieve ()( <instance > <instance > <role >))

In order to create the nRQL queries from the map-
pings, we created cases for all possible combinations of the
argument-predicate-argument triplet. An argument could
have a variable, an instance, or a concept and the predi-
cate could be a empty or not. That leads us to 18 different
combinations, and for each combination, a hand made rule
is created to produce one or more appropriate nRQL state-
ments. Table 4 shows a sample of these patterns and the
corresponding nRQL expression.

For example, from the question in section 3.2What
vendors sell enzyme products that can be employed in
baking bread?, 2 predicate structures were extracted:

arg1:vendor
pred:sell
arg2:enzyme product

5



and

arg1:vendor
pred:sell
arg2:enzyme product

The corresponding highest ranking ontological matches are:

concept:vendor name
role:sells
concept:commercial enzyme product

and

concept:commercial enzyme product
role:can be used in
instance:baking

The first triplet corresponds to the case ofconcept1
role concept2 shown in Table 4 which creates 3 nRQL
statements:

1. (?x <vendor name >))
2. (?y <commercial enzyme product >))
3. (?y ?x <sells >)

The second triplet corresponds to the case ofconcept
role instance which creates 2 nRQL statements:

1. (?y <commercial enzyme product >))
2. (?y <baking > <can be used in >))

Notice how the two triplets are related using the variable
y , which co-refer to the same conceptcommercial enzyme
product). Individual nRQL expressions are then connected
with anAND operator.

4 Evaluation

To develop and test the system, we used a corpus of 206
pairs of questions and their associated nRQL queries. The
material was created by 4 different casual users in order not
to be influenced by the writing style of one particular per-
son. The users were all knowledgeable in the domain and
the content of the ontology, but did not necessarily know its
structure and role names.

¿From the original 206 question-query pairs, 26 were
discarded because they involved issues we do not consider
(e.g. quantifiers, see section 5). From the 180 remaining,
80% randomly selected pairs were used to develop the sys-
tem (develop the syntactic rules, . . . ) and the 20% remain-
ing were used for the evaluation.

We thus evaluated the prototype using 36 questions and
compared the system-generated results with the correspond-
ing queries as gold-standard. The comparison was based on
query equivalence. If the generated query was not equiv-
alent to the one in the gold-standard, it was considered
wrong. For each question, the system generates a set of
possible queries ranked in order for confidence. For each
questionq, we therefore computed the final score as the re-
ciprocal rank of their first correct answer. If none of the gen-
erated queries was equivalent to the gold-standard, a score
of 0 was given. Otherwise, the score is equal to the recipro-
cal of its rank. For example, if a question generated 4 ranked
queries, and the3rd one is correct, the question received a
score of13 . The overall system score is the averageRR(q)
for all questionsq. This methodology is called the mean-
reciprocal rank (MRR) score as used in question-answering
[26].

For all 36 questions, the MRR was 0.72. Out of the
36 questions, 24 were found at rank 1; 6 questions ranked
between 2 and 10, and 6 were not found in the top 10
answers. Out of the 6 questions that were not translated
properly, 3 were not parsed correctly by Minipar, 2 did not
match correctly the actual instance in the ontology, and 1
contained a hidden relation.

Hidden relationships involve deeper reasoning, For
example, in Which proteins are known to act on p-
aminophenol?the relationact on relates a substrate to
an enzyme, but the question is looking for a protein, so we
need to recognise that an enzyme is a protein, which means
we must also check the subsumption hierarchy of the ontol-
ogy for is a relations. Hidden relationships were not con-
sidered in the system analysis.

5 Conclusion and Future Work

In this paper we have described a system that acts as
natural language interface system for a domain ontology.
The interface takes as input questions in unrestricted
language and translates them into nRQL queries that are
then run over the RACER reasoner. The linguistic analysis
of the questions is based on a syntactic parse from which a
set of predicate structures is extracted, which are mapped
to the correct ontology entities using semantic restrictions
imposed by the ontology structure. We tested the interface
on the FungalWeb ontology, with real questions composed
by four different casual users, and obtained an MRR of 0.72.

Further work includes a more robust evaluation of the
system with larger, more diverse ontologies and a larger
test collection. We presume that the semantic restrictions
approach worked well in our case because each role was
not used in many contexts, but as roles can relate a larger

6



number of domains and ranges, the approach may not scale
up if the semantic and lexical mappings do not hold.

In addition, several linguistic phenomena are not taken
into account. For example, conjunctions and disjunctions
within noun phrases, as well as quantifiers (some, three, . . . )
are simply ignored. For example,Find three fungi that have
been reported to have Pectinasewill be considered equiva-
lent toFind all fungi that have been reported to have Pecti-
nase. In the case of conjunctions or disjunctions (e.gWhat
fungi have been reported to have Pectinase and/or Cellu-
lase?), the system will not be able to recognize and deal
appropriately with the issue. In the case of quantifiers, the
system will ignore the quantifier and will search for all pos-
sible answers.

Another drawback is our limitation to use noun phrases
that are lexically close to the vocabulary used in the ontol-
ogy for concepts and instances. Mapping of noun phrases
can only be performed at the lexical level because a gen-
eral purpose semantic lexicon for general English is not
helpful for domain specific terminology. In the biology do-
main, terminology plays a central role, and several domain-
dependant synonyms are typically used to refer, for exam-
ple, to enzymes or proteins. Without a dictionary of the
domain, only lexical matches can be made. In our experi-
ment, this did not cost a lower performance, but if we use a
larger ontology or a larger pool of users, the lexical similar-
ity alone may not scale up.

Acknowledgments

This project was financially supported by Genome
Québec. Many thanks to Mike Carrick for this help in build-
ing the question set.

References

[1] Haarslev, V., M̈oller, R.: RACER System Description.
In Goŕe, R., Leitsch, A., Nipkow, T., eds.: Proceedings
of International Joint Conference on Automated Rea-
soning (IJCAR-2001), Sienna, Italy, Springer-Verlag,
Berlin (2001) 701–705

[2] Pellet: http://www.mindswap.org/2003/pellet/. (last
accessed 2006-01-16)

[3] FaCT: http://www.cs.man.ac.uk/ horrocks/fact/. (last
accessed 2006-01-16)

[4] Wessel, M., Molle, R.: A high performance semantic
web query answering engine. In: Proceedings of the
2005 International Workshop on Description Logics
(DL2005), Whistler, Canada (2005)

[5] Smith, B., Ceusters, W., Klagges, B., Kohler, J., Ku-
mar, A., Lomax, J., Mungall, C., Neuhaus, F., Rector,

A., Rosse, C.: Relations in biomedical ontologies.
Genome Biology6 (2005)

[6] Glimm, B., Horrocks, I.R.: Query answering systems
in the semantic web. In Bechhofer, S., Haarslev, V.,
Lutz, C., Moeller, R., eds.: CEUR Workshop Proceed-
ings of KI-2004 Workshop on Applications of De-
scription Logics (ADL 04), Ulm, Germany (2004)

[7] Haarslev, V., Moeller, R., Wessel, M.: Querying the
semantic web with racer + nrql. In Bechhofer, S.,
Haarslev, V., Lutz, C., Moeller, R., eds.: CEUR Work-
shop Proceedings of KI-2004 Workshop on Applica-
tions of Description Logics (ADL 04), Ulm, Germany
(2004)

[8] nRQL: The new racer query language.
(www.cs.concordia.ca/haarslev/racer/racer-
queries.pdf)

[9] Shaban-Nejad, A., Baker, C.J., Butler, G., Haarslev,
V.: The FungalWeb Ontology: Semantic Web Chal-
lenges in Bioinformatics and Genomics. In: 4th In-
ternational Semantic Web Conference (ISWC). Lec-
ture Notes in Computer Science 3729, Galway, Ireland
(2004) 1063–1066

[10] Baker, C., Witte, R., Shaban-Nejad, A., Butler, G.,
Haarslev, V.: The fungalweb ontology: Application
scenarios. In: Eighth Annual Bio-Ontologies Meet-
ing, co-located with ISMB 2005, Detroit, Michigan
(2005)

[11] Baker, C., Shaban-Nejad, A., Xu, S., Haarslev, V.,
Butler, G.: Semantic web infrastructure for fungal
enzyme biotechnologists. Journal of Web Semantics:
Special Edition on Semantic Web for the Life Sciences
(2006) in press.

[12] Baker, C., Xu, S., Butler, G., Haarslev, V.: Ontoligent
interactive query tool. In: Proceedings of Canadian
Semantic Web Working Symposium. (2006) in press.

[13] Androutsopoulos, I., Ritchie, G., Thanisch, P.: Nat-
ural language interfaces to databases–an introduction.
Journal of Language Engineering1 (1995) 29–81

[14] Copestake, A., Sparck-Jones, K.: Natural language in-
terfaces to databases. Knowledge engineering Review
5 (1990) 225–249

[15] Clifford, J.: Natural language querying of historical
databases. Computational Linguistics14 (1988) 10–
34

[16] Decker, S., Erdmann, M., Fensel, D., Studer, R.: ON-
TOBROKER: Ontology Based Access to Distributed

7



and Semi-Structured Information. In Meersman, R.,
ed.: Database Semantics: Semantic Issues in Multi-
media Systems, Proceedings TC2/WG 2.6 8th Work-
ing Conference on Database Semantics (DS-8), Ro-
torua, New Zealand, Kluwer Academic Publishers
(1999) 351–369

[17] Bernstein, A., Kaufmann, E., Fuchs, N.E.: Talking
to the Semantic Web - A Controlled English Query
Interface for Ontologies. AIS SIGSEMIS Bulletin2
(2005) 42–47

[18] Bernstein, A., Kaufmann, E., Gohring, A., Kiefer, C.:
Querying ontologies: A controlled english interface
for end-users. In: Proceedings of the 4th International
Semantic Web Conference. (2005) 112–126

[19] Lopez, V., Pasin, M., Motta, E.: Aqualog: An
ontology-portable question answering system for the
semantic web. In: Proceedings European Semantic
Web Conference (ESWC), Crete (2005) 546–562

[20] Lopez, V., Motta, E., Uren, V.: Poweraqua: Fishing
the semantic web. In: Proceedings European Semantic
Web Conference (ESWC), Montenegro (2006)

[21] Cunningham, H.: GATE, a General Architecture for
Text Engineering. Computers and the Humanities36
(2002) 223–254

[22] Lin, D.: Dependency-based evaluation of MINIPAR.
In: Proceedings of the Workshop on the Evaluation of
Parsing Systems, Granada, Spain (1998)

[23] Resnik, P., Yarowsky, D.: A perspective on word sense
disambiguation methods and their evaluation (1997)

[24] Pedersen, T., Patwardhan, S., Michelizzi, J.: Word-
net::similarity - measuring the relatedness of concepts.
In: Proceedings of the Nineteenth National Confer-
ence on Artificial Intelligence (AAAI-04), San Jose,
California (2004)

[25] Patwardhan, S., Banerjee, S., Pedersen, T.: Using
measures of semantic relatedness for word sense dis-
ambiguation. In: Proceedings of the Fourth Interna-
tional Conference on Intelligent Text Processing and
Computational Linguistics (CICLING-2003). (2003)

[26] Voorhees, E.: Overview of the TREC 2001 Ques-
tion Answering Track. In: Proceedings of The Tenth
Text REtrieval Conference (TREC-X), Gaithersburg,
Maryland (2001) 157–165

8


