
Toward a Text Classification System for the Quality
Assessment of Software Requirements Written in

Natural Language
Olga Ormandjieva

Department of Computer Science and
Software Engineering
Concordia University

Montreal, Canada

ormandj@cse.concordia.ca

Leila Kosseim
Department of Computer Science and

Software Engineering
Concordia University

Montreal, Canada

kosseim@cse.concordia.ca

Ishrar Hussain
Department of Computer Science and

Software Engineering
Concordia University

Montreal, Canada

h_hussa@cse.concordia.ca

ABSTRACT
Requirements Engineering (RE) is concerned with the gathering,
analyzing, specifying and validating of user requirements that are
documented mostly in natural language. The artifact produced by
the RE process is the software requirements specification (SRS)
document. The success of a software project largely depends on
the quality of SRS documentation, which serves as an input to the
design, coding and testing phases. This paper approaches the
problem of the automatic quality assessment of textual
requirements from an innovative point of view, namely the use of
the Natural Language Processing (NLP) text classification
technique. The paper proposes a quality model for the
requirements text and a text classification system to automate the
quality assessment process. A large study evaluating the
discriminatory power of the quality characteristics and the
feasibility of an annotated tool for the automatic detection of
ambiguities in requirements documentation is presented. The
study also provides a benchmark for such an evaluation and an
upper bound on what we can expect automatic requirements
quality assessment tools to achieve. The reported research is part
of a larger project on the applicability of NLP techniques to assess
the quality of artifacts produced in RE.

Categories and Subject Descriptors
D.2.9 [Management]: Software quality assurance (SQA)

General Terms
Management, Reliability, Experimentation.

Keywords
Requirements Engineering, Quality Assessment, Natural
Language Processing, Human Annotation, Text Classification
Techniques.

1. INTRODUCTION
Software requirements specification (SRS) documents are the
medium used to communicate user requirements to the technical
people responsible for developing the software. Requirements
analysis and validation constitute the key requirements
engineering (RE) activity for understanding the user requirements
gathered, for classifying them and for relating stakeholders’ needs
to possible software requirements. This process often takes a
considerable time to perform manually, as the length of a real-life
requirements document can range from a few pages to hundreds
of pages containing numerous words, phrases and sentences,
where each can potentially be wrongly interpreted. Consequently,
checking for errors manually, although the most common way of
doing so, is also one of the costliest phases of RE. For all these
reasons, Natural Language Processing (NLP) techniques have
been developed to tackle this problem.

This paper addresses a problem related to the automatic
quality assessment of textual requirements documents. Such
(semi-) automatic assessment can reduce the time needed for
requirements analysis and validation in the requirements
specification phase, and ultimately increase the quality of the SRS
documentation. This should help software engineers correctly
understand the problem and develop the right solution for it.

The work presented in the paper is part of a bigger project
aimed at applying NLP techniques to the RE process (see Figure
1). The objective of NLP assessment in the context of that project
can be expressed in terms of three main goals:

G1. Automatic NLP-driven quality assessment of the textual
requirements in the requirements gathering and elicitation
phase.

G2. Automatic NLP-driven quality assessment of the textual
requirements in the analysis and specification phase, where
conceptual static and dynamic models are developed from the
textual requirements.

G3. Graphical visualization and animation of the conceptual
models extracted from the requirements text for the user’s
validation and feedback.

Research hypothesis. The research described in this paper is
concerned with the challenges inherent in understanding the

initial textual requirements (see G1 above) using the NLP text
classification technique. The objective is to identify the textual
ambiguities in the requirements elicitation phase before the
conceptual modeling of the requirements begins. Our hypothesis
is that the root cause of errors being introduced into the
requirements (and the consequent reduction in quality) is
ambiguity in the text. Here, we define ambiguity as the difference
between the depiction of an informal textual description of the
problem (requirement) and the description of the solution for the
informal domain where the intents lie. We affirm that lowering
the level of ambiguity in the textual requirements document will
lead to a better quality conceptual description (model) of the
solution, and also reduce the amount of time required for
requirements analysis and specification.

Approach. We have developed a quality model for requirements
quality assessment derived from the existing guidelines in the
literature for writing SRS documentation (such as
[6,8,10,15,18,19]) and from the authors’ experience. The quality
of the requirements text is analyzed from two different points of
view, namely surface (literal) understanding and conceptual
(modeling) understanding. The objective is to apply the NLP text
classification technique to build a system for the automatic
detection of ambiguity in requirements documents based on the
quality indicators defined in the quality model. We believe that,
with proper training, such a text classification system will prove
to be of immense benefit in detecting ambiguities in a software
requirements text.

For this task, a body of requirements documents was built up
and annotated for ambiguity from the point of view of both a
surface and a conceptual understanding. We present a study in
which the feasibility of (semi)-automatic tools is evaluated by
assessing how difficult the task of ambiguity assessment of
textual requirements really is, and how the use of automatic tools
compares to human performance. Experiments have been
performed and quality data have been statistically analyzed to
demonstrate the feasibility of using the quality model, and to
provide quantitative bases for interpreting the surface
understanding data and deciding whether or not a requirements
document is of acceptable quality. To the authors’ knowledge,
this is the first attempt in the literature to apply the NLP text

classification technique to software requirements quality
assessment.

The paper is organized as follows: Section 2 introduces the
proposed quality model for SRS textual documentation. The
experimental study on quality assessment and the discussion of
the research results are outlined in section 3. A critique of our
research results in comparison to related work is given in section
4. Finally, our conclusions and directions for future work are
outlined in section 5.

2. QUALITY MODEL
Stakeholders involved in the use and development of a system
should be able to understand the requirements text at both the
surface and conceptual levels. Writing requirements that are
unambiguous at both levels is critical in the software life cycle. If
not detected early, ambiguities can lead to misinterpretations at
the time of requirements analysis and specification, or at a later
phase of the software development life cycle, causing an
escalation in the cost of requirements elicitation and software
development. Detecting ambiguities at an early stage of the
requirements elicitation process can therefore save a great deal
aggravation, not to mention cost.

Comprehension of the requirements text describing a problem
and its domain can typically be divided into two broad levels: the
literal meaning (or surface understanding) and the interpretation
(or conceptual understanding). In the context of our work, we
consider surface understanding and conceptual understanding to
be the two main factors on which the quality of a text depends.
The decomposition of the above two factors into the
corresponding quality criteria is shown in Figure 2.

We use the term “surface understanding” to represent how
easy or how difficult it is to understand the facts stated in the
document, without judging its design or implementation concerns
in terms of any software engineering concept. Reading at this
level means understanding the facts stated in the document. It
allows us to answer basic questions such as who, what, when and
where. Several surface factors can be involved at this level of
understanding; e.g. sentence length, ambiguous adjectives and
adverbs, passive verbs, etc., and all the features necessary for a
surface understanding can be categorized into two major sets,
based on their scope of effectiveness: (1) Sentence-level features;
and (2) Discourse-level features.

By contrast, we use the term “conceptual understanding” to
represent how much a developer would gain in designing or
implementing a system by carefully reading/examining its
problem texts only. The conceptual level involves interpretation
of the document: understanding what is meant or implied, rather
than what is stated. This includes making logical links between
facts or events, drawing inferences and trying to represent the
content more formally. This level of understanding involves
deeper factors, such as the “seven sins of the specifier” described
by Meyer [15]. His comprehensive study presents a thorough
description of such mistakes by classifying them into seven
distinct categories or “sins”, as he calls them. These sins are
reproduced in Table 1.

Interview Client
Elicit

Information
Problem

Text

NLP: Assess
Text Quality

Ambiguous?

Improved
Text

NLP: Static
Analysis

NLP: Dynamic
Analysis

Domain
Model

Path of
Execution

Visualization of
Requirements

Through
Flash Animation

Accepted
by Client?

Write
SRS

Yes

Yes

No
No

<xml doc>

<xml doc>

Interview ClientInterview Client
Elicit

Information
Problem

Text
Problem

Text

NLP: Assess
Text Quality

Ambiguous?Ambiguous?

Improved
Text

Improved
Text

NLP: Static
Analysis

NLP: Dynamic
Analysis

Domain
Model

Domain
Model

Path of
Execution

Path of
Execution

Visualization of
Requirements

Through
Flash Animation

Accepted
by Client?
Accepted
by Client?

Write
SRS

Yes

Yes

No
No

<xml doc>

<xml doc>

Figure 1. NLP-Based Quality Assessment in the
Requirements Engineering.

Table 1. Meyer’s seven sins of the specifier [15].

Noise The presence in the text of an element that does
not carry information relevant to any feature of
the problem.

Silence The existence of a feature of the problem that is
not covered by any element of the text.

Over-
specification

The presence in the text of an element that does
not correspond to a feature of the problem, but
to a feature of a possible solution.

Contradiction The presence in the text of two or more elements
that define a feature of the system in an
incompatible way.

Ambiguity1 The presence in the text of an element that makes
it possible to interpret a feature of the problem
in at least two different ways.

Forward
Reference

The presence in the text of an element that uses
features of the problem not defined until later in
the text.

Wishful
Thinking

The presence in the text of an element that
defines a feature of the problem in such a way
that a candidate solution cannot realistically be
validated with respect to this feature.

Ideally, the linguistic quality of a requirements document should
be assessed automatically, or at least helped by automation. In
fact, a great deal of research has been conducted with that goal in
mind (see section 4). However, before automating the process, it
was important to study our quality model and determine whether
or not automation would be feasible. The details of that study are
presented in section 3.

1 Meyer’s use of the term ambiguity in [15] is different from the way

ambiguity is used in our work. In our case, we use it in a broader sense.

3. QUALITY ASSESSMENT FEASIBILITY:
A STUDY
To evaluate the feasibility of our quality assessment approach, we
asked four human annotators to manually classify requirements
documents based on the text quality indicators (see Figure 2), and
then we measured the extent to which they agreed or disagreed
with our approach. These indicators were selected consulting
similar studies of [5,6,8,10,15,18,19]. Our premise was that, if
humans agree statistically on the quality of requirements texts,
then the quality model truly measures what it is supposed to
measure; namely, the quality of the textual description of the
requirements. By contrast, if the human annotators cannot
statistically agree on a classification, then the automation would
be difficult to achieve and it would not be possible to evaluate the
results of the automatic classification. The details of the study are
given below.

3.1 Design of the experiment
To perform the manual classification, we asked four annotators to
read and categorize a set of requirements documents. All the
annotators had a software engineering background, but in
different fields of computer science. We gave them specific
guidelines based on our quality model and clear examples of what
was to be considered ambiguous, looking at surface understanding
and conceptual understanding separately. The annotators were to
score all the passages of our documentation (on a scale from 0 to
10, the higher the score, the less ambiguous the passage). The
annotation guidelines indicated what to look for in a passage, but
did not give any strict instructions on the scoring, in order to give
the annotators the freedom to score as they saw fit. The
annotation task took about 7 hours of effort per person for both
surface understanding and conceptual understanding. On average,
it took 2.5 minutes to rank each passage. Considering that each
passage contains, on average, 189 words, the task was a time-
consuming one.

Figure 2. Quality model for software requirements text.

3.2 Discussion of the results
To analyze the results, we first translated all the scores of the
annotators into a binary decision: “U” (unambiguous) or “A”
(ambiguous), according to the standard interpretation. The
translated grades of “U” and “A” were then used to compute the
gold standard as the majority vote for each passage after
removing undecided votes. The results of the gold standard
computation are shown in Table 1. Of the 165 passages, 153
(92.7%) were classified as “U” (unambiguous) for surface
understanding, 12 (7.3%) as “A” (ambiguous) and there were no
undecided votes. For conceptual understanding, 138 (83.6%) of
the 165 samples were unambiguous, 27 (16.4%) were ambiguous
and there were no undecided votes. As one would expect,
conceptual understanding seems harder to achieve than surface
understanding.

Table 2. The gold standard.

 Unambiguous
(U)

Ambiguous
(A) Undecided

Surface
Understanding 92.7% 7.3% 0%

Conceptual
Understanding 83.6% 16.4% 0%

The purpose of the annotation was to find out whether or not
humans are able to agree on a classification scheme to determine
if the task is amenable to automation. To compute inter-annotator
agreement, we used the Kappa index, introduced by Cohen [3].
Figure 3 shows the results of this analysis, revealing how strongly
each annotator agrees with the majority decision, i.e. the gold
standard. Here, the average Kappa simply reflects the strength of
the gold standard itself.

According to the interpretation of Kappa values given by Landis
et al. [11], on average, the annotators tend to agree with the gold
standard to a “Substantial” degree on both the surface and
conceptual levels. For annotators 2 and 4, however, the Kappa
values indicate a “Moderate” level of agreement. Overall, the
Kappa statistic shows that annotators tend to agree with one
another, which proves the feasibility of the quality assessment of
requirements text proposed in this paper.

The results are sufficient for us to believe that an automatic
system can be built to emulate the decision-making process of the
human annotators and to automatically classify requirements
documents. However, a high level of precision should not be
expected in this task. The average inter-annotator agreement
indicated by the kappa values of 0.66 for surface understanding
and 0.64 for conceptual understanding should be seen as upper
bounds on the accuracy of any classifier.

In addition, the analysis indicates a positive correlation
between the surface and conceptual understanding of the text, and
a negative correlation between the understanding and the time
required to analyze a text. The above confirms our hypothesis that
lowering the level of surface ambiguity would lead to a better
conceptual understanding of the requirements and reduce the time
needed for requirements analysis. This emphasizes the
importance of our research results in the RE field.

3.3 Toward a text classification system
Our current research objective, as a “proof of concept” and thus
part of our feasibility study, was to build a text classification
system that could classify sentences as “ambiguous” or
“unambiguous”, in terms of surface understanding. Although our
ultimate target was to build a classifier that can classify a
discourse in terms of its ambiguity, we focused on building a
similar classifier at sentence level to assess the achievability of
automating the task of ambiguity detection at the more limited
scope of the sentence.

We have succeeded in extracting the values of almost all
possible quality indicators from all our samples. We developed a
sentence-level Feature Extractor tool written in Java which
extracts the values of features (indicators) likely to make a
sentence “ambiguous” or “unambiguous”, in terms of surface
understanding (see “Indicators of Difficulty in Surface
Understanding”). The Feature Extractor tool then feeds the
sentences one-by-one to the Stanford Parser [9] for POS tagging
and syntax parsing. The values of the indicators mentioned above
are then counted for each sentence. We chose the C4.5 decision
tree learning algorithm for the classification task. The two main
reasons for this choice were: (1) Decision trees can allow
backtracking from a leaf to derive the cause of a particular
classification, and C4.5 (revision 8), with its post-pruning feature,
was the best open-source decision tree learning algorithm
available to us; (2) The size of the documentation was not large
enough for training neural network algorithms, which would have
yielded better results.

We have determined the discriminating power of the surface
understanding indicators, and have developed a classifier to
actually flag ambiguous and unambiguous texts at the surface
level (see Figures 4, 5).

It should be noted that the tree in Figure 4 was dynamically
generated, which means that, with the introduction of new
training data, the classifier is able to generate new decision trees.
The accuracy of our sentence classifier establishes its
applicability in practical fields, where ambiguity is detected at
sentence level.

Figure 3. Pairwise inter-annotator agreement with the
gold standard.

Pair-wise Agreement with The Gold Standard
(values of Kappa indices)

Perfect

Substantial

Moderate

Fair

Slight

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

S
ur

fa
ce

C
on

ce
pt

ua
l

S
ur

fa
ce

C
on

ce
pt

ua
l

S
ur

fa
ce

C
on

ce
pt

ua
l

S
ur

fa
ce

C
on

ce
pt

ua
l

S
ur

fa
ce

C
on

ce
pt

ua
l

Annotator1 Annotator2 Annotator3 Annotator4 Average Pairwise
Kappa

Again, we chose the C4.5 (revision 8) decision-tree learning
algorithm for building the discourse-level classifier. The classifier
requires that three feature values be extracted from a passage of
unknown status, so that it can predict its classification as the
nominal values: “ambiguous” or “unambiguous”. The decision
tree generated by the aforementioned C4.5 algorithm after
training is shown in the following figure:

The tree contains the single feature,
“ambiguous_sent_per_sentence” (i.e. the density of ambiguous
sentences, or the number of ambiguous sentences, divided by the
total number of sentences in a section) at its root. No other feature
is included in the tree by the C4.5 algorithm, affirming that this
feature alone is sufficient for the classification task. We
embedded the C4.5 decision-tree learner with our discourse
classifier to keep the learning process dynamic, and to check the
applicability of the other, comparatively weaker, classification
features every time, when learning from new training data.

On this initial experiment, the discourse classifier resulted in
an accuracy of 86.67% agreeing with the human annotations
(when trained and tested with 10-fold-cross-validation method).
These results affirm that it is indeed possible to detect ambiguity
in terms of surface understanding by means of currently available
NLP tools and text classification techniques.

4. RELATED WORK
Many studies have previously addressed the issue of detecting
ambiguities in requirements documents, and several approaches
have been proposed. Although they are often similar in the types
of tools they use, these approaches are sometimes radically
different in the way they attempt to detect ambiguities.

The use of manual inspection still seems to be the most
popular way to detect and resolve ambiguities. A leading study,
and one of the earliest, in this field was conducted by Bertrand
Meyer [15], who stressed that natural language requirements
specifications are inherently ambiguous, and that the use of
formal specifications is absolutely necessary to resolve these
ambiguities. Meyer’s approach to detecting such ambiguities was
to inspect each word, phrase and sentence manually. For their
part, Kamsties et al. [8] proposed a specific methodology of
human inspection to resolve ambiguity. While they argue in favor
of manual inspections, their work demonstrates a dependence on
formal specifications, e.g. UML models, especially for detecting
ambiguities related to the problem domain. Their study concludes
that “one cannot expect to find all ambiguities in a requirements
document with realistic resources” – even with such complete
human involvement. Manual detection is typically the most
accurate approach; however, it is also the most expensive. We
also note that Letier et al. [12] propose the use of formal
specifications to validate requirements.

The work of Ambriola et al. [1] attempts to validate NL
Specification with the help of the user after deriving a conceptual
model automatically from the requirements specifications using
their tool, which they call Circe. This tool is funded by IBM and
is now available as a plug-in for Eclipse. Although Circe is in
general use, it still does not consider the existence of ambiguities
at the level of surface understanding. This could corrupt their

 Figure 4. Decision Tree generated by the C4.5 algorithm for Sentence Classification

Figure 5. Decision tree generated by the C4.5 learning
algorithm after training with discourse-level feature

l

conceptual model, making the errors extremely difficult for a user
to detect from the model later on.

Many other studies attempt to reduce the problems associated
with unrestricted NL by limiting the scope of the language. Some
use a new NL-like sublanguage, as in [4,11,14], but this is not
truly NL. Others propose restricting the grammar to consider only
a subset of NL when writing a requirements specification
[4,5,7,17]. However, although using a restricted language does
simplify the task of detecting ambiguities, it imposes severe
constraints on the software engineer’s freedom of expression.

Recently, researchers have attempted to deal with unrestricted
language by using techniques developed in NL processing (NLP).
Tools such as part-of-speech taggers, syntactic parsers and
named-entity taggers have achieved very respectable accuracies,
which means that they can be used for real-world texts. Osborne
et al. [16], for example, try to detect ambiguities in SRS
documents through syntax. They use a syntactic parser to derive
all possible sentence parsing trees. If a sentence generates more
than one parsing tree, then it is considered ambiguous. The
problem with this approach is that what is possible at the
syntactical level may not be plausible at the interpretation level.
Discourse or world-knowledge constraints may eliminate a
possible syntactical interpretation, leaving a sentence with
multiple syntactical parses which are unambiguous to the human
reader.

Another interesting tool is that of Wilson et al. [18,19], which
uses nine quality indicators for requirements specification:
Imperatives, Continuances, Directives, Options, Weak Phrases,
Size, Specification Depth, Readability and Text Structure.
However, results derived from using their tool show only the
frequency counts of those indicators in different samples, without
taking the crucial decision of whether or not a sample is
ambiguous.

Fabbrini et al. [6,10] address the issue by proposing a tool
called “QuARS: Quality Analyzer for Requirements
Specification”. QuARS syntactically parses the sentences using
the MINIPAR parser [13], then it combines both lexical (part-of-
speech tags) and syntactical information to detect specific
ambiguity indicators of poor-quality requirements specification.
In their paper, however, the quality indicators seem to be mostly
based on specific keywords, rather than on more general classes
of words. At every stage of processing, QuARS requires the use
of a different “modifiable” dictionary, which seems to be
manually created and modified for a particular stage of processing
and for a specific problem domain by the requirements engineer.
Their idea seems to be dependent on using these special
dictionaries, the relevance and practical usefulness of which are
uncertain. Again, their quality measurement metrics are not well
enough defined to characterize a text as ambiguous.

As discussed, researchers have previously attempted to flag
ambiguous texts using various (semi-) automatic methods.
However, these methods have typically been evaluated
anecdotally or on a small scale. To our knowledge, no one has
attempted a formal evaluation of their results and a comparison to
human evaluations. Our study (see section 3) evaluates the
feasibility of such a task by analyzing how difficult it really is to
perform and how the automatic tools developed can compare to
human performance. Our work provides a benchmark for such an

evaluation and an upper bound on what we can expect automatic
tools to achieve.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a hierarchical quality model for the
decomposition of software requirements text quality into
measurable features that would be collected directly from the text.
The quality model targets the automatic assessment of textual
requirements in terms of their ambiguity. A study investigating
the feasibility of the quality characteristics and of an annotated
tool for automatic detection of ambiguity in requirements
documents is also presented. The results show that the quality
assessment task is difficult for humans, but there is substantial
agreement on the chosen quality indicators, both at the level of
surface understanding and at the level of conceptual
understanding. We have developed a classifier to actually flag
ambiguous and unambiguous texts at the surface level of
understanding. The above demonstrates the feasibility of our
quality assessment approach.

A thorough analysis of the annotators’ data led to the
following conclusions:

1) Most of the indicators in our quality model are very good at
detecting ambiguity at the level of surface understanding, which
proves that they are objective indicators of surface understanding.
All these indicators can be extracted automatically from the text
using a POS tagger and a parser.

2) We found virtually no conceptual characteristic that would
be extractable by currently available NLP tools for discriminating
ambiguities of conceptual understanding. This may be due to the
subjective nature of the conceptual understanding process, which
requires expertise in RE. Therefore, more studies will be required
to identify objective indicators for SRS conceptual understanding
criteria. This will be addressed in our future work in this
direction.

Our future work includes the development of a system for the
conceptual understanding of requirements text. We believe that
such a classifier would be very beneficial to software RE. The
ability to detect serious ambiguities in the requirements text at a
very early stage of requirements elicitation could significantly
reduce both expense and aggravation, and could help avoid very
costly misinterpretations. The tool should not only work in a
standalone mode, but should be incorporated into a formal model-
building system for NLP-based quality assessment in the RE
phase. A thorough evaluation of the accuracy of the text
classification system needs to be performed with a large set of
requirement documents, and the results compared to human
performance. We plan to tackle this in our future work.

6. REFERENCES
[1] Ambriola, V., Gervasi, V., "Processing natural language

requirements," In proceedings of Automated Software
Engineering (ASE'97): 12th IEEE International Conference,
November 1-5, 1997, pp. 36-45, 1997.

[2] Carletta, J., "Assessing agreement on classification tasks:
The kappa statistic," Computational Linguistics, 22(2), 1996,
pp. 249–254.

[3] Cohen, J., “A coefficient of agreement for nominal scales,”
Educational and Psychological Measurement, 20, 1960, pp.
37-46.

[4] Cyre, W. R., “A Requirements Sublanguage for Automated
Analysis,” International Journal of Intelligent Systems, 10
(7), pp. 665-689, July 1995.

[5] Denger, C., Berry, D., Kamsties, E., "Higher Quality
Requirements Specifications through Natural Language
Patterns," SWSTE, p. 80, IEEE International Conference on
Software-Science, Technology & Engineering, 2003.

[6] Fabbrini, F., Fusani, M., Gnesi, S., and Lami, G., “An
Automatic Quality Evaluation for Natural Language
Requirements,” Proceedings of the Seventh International
Workshop on Requirements Engineering: Foundation for
Software Quality REFSQ'01, Interlaken, Switzerland, June
4-5, 2001.

[7] Fantechi, A., Gnesi, S., Ristori, G., Carenini, M., Vanocchi,
M., and Moreschini, P., “Assisting requirement formalization
by means of natural language translation,” Formal Methods
in System Design, vol. 4, pp. 243-263, 1994.

[8] Kamsties, E., Berry, D.M., and Paech, B., “Detecting
Ambiguities in Requirements Documents Using
Inspections,” p. 68-80 in Proceedings of the First Workshop
on Inspection in Software Engineering (WISE'01), Paris,
France, July 23, 2001.

[9] Klein, D. and Manning, C. D., “Accurate Unlexicalized
Parsing”, Proceedings of the 41st Meeting of the Association
for Computational Linguistics, 2003.

[10] Lami, G., Gnesi, S., Fabbrini, F., Fusani, M., and Trentanni,
G., “An Automatic Tool for the Analysis of Natural
Language Requirements,” published as Technical Report
2004-TR-40, Consiglio Nazionale delle Ricerche, Instituto di
Scienza e Tecnologie dell'Informazione 'A. Faedo', 2004.

[11] Landis, J.R. and Koch, G.G., “The measurement of observer
agreement for categorical data,” Biometrics, 33, 1977, pp.
159-174.

[12] Letier, E., Kramer, J., Magee, J. and Uchitel, S., "Monitoring
and Control in Scenario-Based Requirements Analysis,"
Proceedings ICSE 2005 - 27th International Conference on
Software Engineering, ACM Press, St. Louis, Missouri,
USA, May 2005.

[13] Lin, D., “Dependency-based Evaluation of MINIPAR,” In
Workshop on the Evaluation of Parsing Systems, Granada,
Spain, May, 1998.

[14] Lu, R., Jin, Z., and Wan, R., “Requirement Specification in
Pseudo-Natural Language in PROMIS,” In proceedings of
19th International Computer Software and Applications
Conference (COMPSAC'95), pp. 96-101, 1995.

[15] Meyer, B., “On Formalism in Specifications,” IEEE
Software, 2(1): pp. 6-26, January 1985.

[16] Osborne, M. and MacNish, C.K., “Processing natural
language software requirement specifications,” In
Proceedings of ICRE'96: 2nd IEEE International Conference
on Requirements Engineering, pp. 229-236. IEEE Press,
1996.

[17] Rolland, C. and Proix, C., “A Natural Language Approach
For Requirements Engineering,” Proceedings of the Fourth
International Conference CAiSE'92 on Advanced
Information Systems Engineering, vol. 593 of Lecture Notes
in Computer Science, pp. 257-277, Manchester, United
Kingdom, 1992.

[18] Wilson, W., “Writing Effective Requirements
Specifications," USAF Software Technology Conference,
Utah, 1997.

[19] Wilson, W., Rosenberg, L. and Hyatt, L., “Automated
Quality Analysis of Natural Language Requirement
Specifications,” 14th Annual Pacific Northwest Software
Quality Conference, Portland, 1996.Bowman, B., Debray, S.
K., and Peterson, L. L. Reasoning about naming systems.
ACM Trans. Program. Lang. Syst., 15, 5 (Nov. 1993), 795-
825.

