
A Syntactic Candidate Ranking Method for

Answering Questions with a Main Content Verb

Abolfazl Keighobadi Lamjiri, Leila Kosseim, Thiruvengadam Radhakrishnan
Department of Computer Science and Software Engineering

Concordia University, Montréal, Canada
{a keigho,kosseim,krishnan}@cse.concordia.ca

Abstract
We present a technique for ranking the candidate
answers of questions that have a main content
verb. This novel ranking method uses the ques-
tion head (the most important noun phrase) as
an anchor for selecting the target subtree in the
parse tree of the candidate sentence. The seman-
tic similarity of the action in the selected subtree
to the action asked by the question is verified us-
ing WordNet::Similarity. For verifying the syn-
tactic similarity of the target subtree to the ques-
tion’s parse tree, syntactic restrictions as well as
word-based measures compute the unifiability of
critical syntactic participants in the trees.

Results show a precision of 48% on the TREC
2003 to 2006 non-copulative questions. This
confirms our hypothesis of the applicability of
a basic syntactic mapping for question answer-
ing. Finally, in order to apply the web redun-
dancy statistics into our linguistic method, we
fed Aranea answers into our linguistic QA sys-
tem. We obtained a slight accuracy improvement
for the selected TREC question sets compared to
using Aranea alone.

Keywords

Question Answering, Syntactic Mapping, Non-copula Verbs

1 Introduction

In this paper, we present a technique for ranking the
candidate answers of questions that have a main con-
tent verb. Researchers in QA have classified questions
based on various features; for example,

• their semantic type: arranged hierarchically in
taxonomies (ex. comparison, definition, spatial
or temporal, procedural, etc.) [3].

• their structure: factoid, that ask for names, dates,
locations, quantities, etc. versus complex ques-
tions, that require syntactic, semantic or contex-
tual processing, relation detection, etc. or ask for
a list of answers, or any important information
about a topic [13].

We categorize questions based on their main verb
type into copulative (that have a ‘to be’ main verb)
such as Q66.2-“Who was the on-board commander of
the submarine?”, versus non-copulative (with main
content verb) questions, such as Q149.2-“The Daily

Question Type #Questions ratio

2003 copulative 171 59.0%
2003 non-copulative 119 41.0%
2004 copulative 149 64.8%
2004 non-copulative 81 35.2%
2005 copulative 230 62.7%
2005 non-copulative 137 37.3%
2006 copulative 264 65.5%
2006 non-copulative 139 34.5%

Total copulatives 814 63.1%
Total non-copulatives 476 36.9%

Table 1: The number of copulative versus non-copulative
questions in each TREC QA question set.

Show parodies what other type of TV program”1. The
initial idea behind this categorization comes from our
previous work in closed-domain [10]. As opposed to
factoid questions, questions posed in a closed domain
are longer and usually tend to be more open-ended
and ask for properties, procedures or conditions [5].
As a result, they usually contain a main content verb,
with critical syntactic subject and object relations. In
our closed domain corpus [10], this type accounts for
70% of the questions. We showed that syntactic anal-
ysis is quite successful for measuring the relatedness of
candidate answers to these non-copulative questions.
In open domain, the distribution of questions is signifi-
cantly different. For example, the TREC QA [22] data
set contains only about 1/3 of non-copulative ques-
tions. Table 1 shows the distribution of questions in
each category for the last four TREC question sets. In
this paper, we show that our syntactic ranking tech-
nique is also applicable to open domain.

Analysis of previous TREC results shows that all
participating QA systems perform slightly better on
copulative questions, practically showing that non-
copulatives are more difficult to answer. To our knowl-
edge, work on categorizing questions based on their
main verb type has not been investigated before.

The syntactic scoring method we present here uses
the question head as an anchor to select a subtree in
the parse tree of the candidate sentence, where the
exact answer will be found. The semantic similar-
ity of the action in the selected subtree to the action
asked in the question is then measured using Word-
Net::Similarity [17]. In order to verify the syntactic

1 Although there are other copula verbs in English, such as
‘look’, ‘feel’, ‘taste’, ‘smell’, ‘sound’, etc., that can be used to
connect the subject to an adjective, we only make a distinc-
tion between ‘to be’ versus non-‘to be’ verbs.

1



similarity of this subtree to the question parse tree,
syntactic restrictions as well as lexical measures com-
pute the unifiability of critical syntactic participants
in the trees. Finally, the noun phrase that is of the ex-
pected answer type in the target subtree is extracted
and returned from the best candidate sentence.

Although each technique has been investigated in-
dividually in different types of texts [8, 20], to our
knowledge, this novel combination of syntactic and
lexical criteria is unique and new to the field. Some
linguistic QA systems such as LCC [15] transform the
question and the set of candidate answer sentences into
predicate logic form and return the value that satisfies
the constraints on the answer variable. This approach
transforms the text into word tokens and tries to ap-
ply the correct meaning of each token for understand-
ing the text. Therefore, it requires a perfect syntactic
parse tree of sentences as well as disambiguated word
tokens. Additionally, reasoning over these predicates
requires a high amount of world knowledge. As we will
see, our approach however uses syntax while not being
dependent on having a perfect parse tree. Finally, it
can be used to syntactically verify the answers given
by other QA systems.

2 Candidate Answer Extraction

In this section, we review the processes involved in
the information retrieval phase for question answering.
Section 3 will present our linguistic method for the
candidate ranking phase.

2.1 Question Analyzer

The question analyzer module extracts the expected
answer type and a ranked list of question keywords to
be fed to the Lucene IR engine2. Question keywords
will be used to retrieve the documents and passages
relevant to the question, based on the assumption that
relevant passages contain words in common with the
question. The expected answer type is used as a con-
straint for extracting the answer. For example, the
answer type for a question starting with ‘Where’ is a
location. We use the existing work done in the Aranea
QA system [14] to extract the expected answer type.
Aranea is one of the top 5 QA systems in TREC 2002.

Important words are then marked as question key-
words. Two factors contribute in deciding if a word
is important: its part-of-speech and its number of
modifiers. The question analyzer first filters out non-
content words and keeps nouns, verbs, adjectives and
adverbs. Part-of-speech tagging is done through the
Gate infrastructure3, which uses the Brill POS tag-
ger [2], with the Penn Treebank tag set. So, specifi-
cally, we keep words with the following part-of-speech
tags: NN, NNP, NNS, JJ, JJS, VB, VBG, VBN, VBD,
VBZ, RB, RBS. The analyzer then processes impor-
tant parse links provided by the Minipar parser [11]
for identifying the question keywords. To do so, based
on the type of the parse link seen, both the head and
the tail or only the tail is kept:

2 Available at http://lucene.apache.org/
3 General Architecture for Text Engineering, available at
http://www.gate.ac.uk/

• For a nominal complement of a preposition such
as “for convenience” and determiner relation such
as “the network” (shown as ‘pcomp-n’, ‘det’ re-
spectively, in the Minipar notations), only the tail
(‘convenience’ and ‘network’) is marked as a ques-
tion keyword.

• For an adjunct modifier link, a lexical modifier
such as “electric guitar”, a conjunction, a subject
or object links, a noun complement and a passive
verb modifier of a noun such as “the service pro-
vided...” (shown as ‘mod’, ‘lex-mod’, ‘conj’, ‘subj’,
‘obj’, ‘nn’, and ‘vrel’ in Minipar), both head and
tail words are considered.

Finally, the number of modifiers of a word is com-
puted and stored as a feature of that keyword. This
feature will be used later in scoring these keywords.
This strategy is based on the hypothesis that if a word
has more modifiers, it acts as a central idea in the
question and is therefore more important4. For exam-
ple, in the question Q76.4-“What is the title of his all-
time best-selling record?”, the noun ‘record’ has three
modifiers (‘his’, ‘all-time’ and ‘best-selling’). Question
keywords are ranked based on the following heuristic
function:

Scorekw = (#modifiers + 1) × ScorePOS(kw)

where, ScorePOS is assigned as the following: proper
nouns are favored (given a weight value of 6), then
common nouns (2), verbs (1.25), adjectives (1), auxil-
iary verbs (0.7), and finally adverbs and determiners
(0.5). These values were determined experimentally
with our development set (the first 50 non-copulative
questions from the 2005 set). The rationale behind
these values is to boost proper nouns in the list, since
they convey a unique meaning. Verbs on the other
hand are more ambiguous [12] and can have more
synonyms (alternatives for conveying the same mean-
ing), so they are slightly pushed down the list. Ad-
verbs usually relate to verbs, and not the keywords, so
they receive the lowest rank. For example, the follow-
ing ranking is computed for Q98.4-“What organization
has helped to revitalize Legion membership?”:

Legion membership* revit* help* organiz*

Finally, the content words that are not involved in
any syntactic relation of our interest, are added to the
keyword list, with 0 as their number of modifiers. They
will later be used as low-ranked keywords that can
constrain the number of documents returned by IR.

2.2 Candidate Sentence Selection

The candidate answer extraction module processes the
top n documents that are returned by Lucene and are
found in the PRISE top document list5. Sentences
that contain α percent of the keywords are recorded
as candidate sentences to be ranked by our linguistic
unifier (see Section 3). Since our rather strict unifier
filters out bad answers later on, we chose a low thresh-
old of α = 66% to increase the recall at this stage.

4 It is interesting to note that the PiQASso QA system [1] ranks
question keywords based on their depth in the parse tree.

5 This list is compiled by the TREC organization, running their
IR engine on question keywords and the answer phrase.

2



Fig. 1: Parse structure for the question “How many
members does the American Legion have?”

Experiments with different values of α for this
boolean vector sentence selection show that varying
this threshold only affects candidate ranking and an-
swer extraction running time, but not the quality of
the results. On average, the number of candidates re-
trieved decreases from 55 (with a standard deviation of
23) to 25 (std.dev. 16) when increasing the threshold
from 35% to 75% for our development question set6.

3 Syntactic Unification for Can-

didate Ranking

To rank the candidate sentences returned by the IR,
we compute their syntactic similarity to the question.
Pure linguistic criteria for measuring the similarity
of parse trees impose very strict syntactic constraints
that result in low recall. This problem has been ob-
served by researchers in the field, such as [20]. On the
other hand, statistical systems that learn and score
syntactic links such as [9] and [21] are very lenient in
considering the importance of primary roles (such as
subject and object) over less important roles (such as a
determiner or a modifier). The most interesting effort
towards improving this syntactic measure is weight-
ing the matching links according to their Inverse Doc-
ument Frequency (IDF)7; rare link types have more
information content than frequent relation types and
hence, will contribute more when matching subtrees.
However, this has not solved the recall problem and
parse tree based techniques generally perform poorly
compared to syntactically blind statistical methods.

Statistical approaches in QA inspired us to relax
a strict syntactic mapping. We force critical syntac-
tic roles to eliminate the candidates with no syntactic
consistency with the question, and score the remaining
links for the candidates that pass the first criterion.

3.1 Choosing the Target Subtree

Essentially, we believe that the best subtree in a can-
didate sentence is the one that has a similar verb to
the question’s main verb, and equivalent arguments.
A strong verb similarity should co-occur with an es-
sential entity similarity (question head) match in the
candidate’s parse tree. This suggests that a strong

6 On an Athlon AMD 3500+ 64bit CPU with 4GB of RAM,
the time needed to rank these candidates increases from 110
seconds to 200 seconds per question.

7 Two links match if they have similar head, relation and tail
values.

Fig. 2: The parse structure for the sentence “...said Phil
Budahn, spokesman for the American Legion, which has
2.8 million members.”

seed point is the root of the subtree in the candidate
that contains the question’s head noun phrase.

3.1.1 Finding the Question Head

To choose the question head, we rank all the noun
phrases in the question and pick the one that contains
the most valuable question keywords (with higher
Scorekw value, see Section 2.1). If this head phrase
is found in the candidate sentence, it becomes an an-
chor to find the relevant verb. We then move up from
this noun phrase in the candidate parse tree to reach
the first parent verb. For example, in the question
Q98.5-“How many members does the American Legion
have?”, two noun phrases exist (the double lined nodes
in Figure 1). The noun phrase ‘American Legion’ is
chosen as the question head, since it has the highest
Scorekw value. In the candidate sentence, “...said Phil
Budahn, spokesman for the American Legion, which
has 2.8 million members.”, this anchor is found in the
left subtree of the verb ‘have’ (Figure 2). Moving up
from this anchor skips the noun node ‘spokesman’ and
marks the verb node ‘have’ as the root of the target
subtree. This root will then be used as the seed point
for starting the unification. In such long candidate sen-
tences, using an anchor reduces the candidate verbs to
the ones that include the question head (or a reference
to it).

3.1.2 Semantic Similarity of Verbs

Since the main action specified in a non-copulative
question is typically realized by a verb, our first step
is to verify the semantic relatedness of the question’s
main verb to the candidate’s target verb.

To do this, we use WordNet::Similarity [17]. This
package provides six similarity measures which use in-
formation found in an is-a, has-part, is-made-of, and
is-an-attribute-of relations in a hierarchy of concepts
(or synsets) and quantify how much concept A is sim-
ilar to concept B. Three measures are based on the in-
formation content (IC) of the least common subsumer
(LCS) of concepts A and B. IC is a measure of the
specificity of a concept, and the LCS of concepts A
and B is the most specific concept that is an ancestor
of both A and B. The lin and jcn [17] measures aug-
ment the IC of the LCS with the sum of the ICs of

3



concepts A and B themselves. The lin measure scales
the IC of the LCS by this sum, while jcn takes the
difference of this sum and the IC of the LCS.

The other three similarity measures are based on
path lengths between a pair of concepts: lch (Lea-
cock and Chodorow), wup (Wu and Palmer), and path.
Among these six measures, Leacock and Chodorow
(lch) worked best for verbs in our development set.
This measure basically finds the shortest path between
two concepts, and scales that value by the maximum
path length found in the is-a hierarchy in which they
occur. We proceed with unification for the candidates
that have a target verb with a similarity value more
than 1.8 to the question’s main verb.

Finally, we check whether the target verb relates
the same entities as the question’s main verb. A fuzzy
statistical method evaluates the similarity of the two
subject subtrees, and likewise for object or modifier sub-
trees, if any. We will look at this method in detail in
the following section.

3.2 Unifying Two Subtrees

To unify two phrases (subject, object or modifier sub-
trees) marked by the linguistic method as the argu-
ments of verbs, we apply a heuristic that uses two
measures: the number of overlapping words based on
a bag-of-words approach and the number of overlap-
ping links.

These similarity scores are summed to produce the
final score of a candidate sentence:

Similarity(V erbq, V erbT )+Σi:Counterpart SubtreeScore(Qi, Ti)

where, Q is the question, T , the target subtree, and

Score(Qi, Ti) = β × WordOverlap + (1 − β) × LinkOverlap

is the unification score of two counterpart subtrees.
The parameter β shows the relative importance of each
feature: β = 1

2
assigns equal importance to either fea-

ture, while β = 1

3
(our configuration) considers the

link-overlap to be twice as important as the bag-of-
words feature. Note that the absolute value of the
final score is not important since the scores are used
only to rank the candidates.

Each subtree can be seen as a paraphrase, since
its focus is an entity (noun) that possibly has some
modifiers. For example, the noun phrase ‘the Amer-
ican Legion’ in the question “How many members
does the American Legion have?”(Figure 1) appears
as “spokesman for the American Legion” in the an-
swer sentence, depicted in Figure 2. Here, a score of
12.5 is returned by matching the words (‘the’, ‘Amer-
ican’ and ‘Legion’) and 2.0 for the matching links in
the subject subtrees.

The reason we relax our linguistic constraints at this
stage is that we are focusing on a sentence that conveys
a similar event or state to the question; only a clue
about similarity of its verb arguments is sufficient to
conclude that its verb modifies the same entities as
the question. Syntactic differences of verb arguments
(subtrees) should not critically affect our judgment.

By analyzing a few unification cases, we realized
that matching different types of links should have
a variable contribution to the final unification score.
Compare a modifier (‘mod’) link matching in the can-
didate “wireless network” as opposed to a determiner

Category Minipar Relation weight

Lexical modifier lex-mod 1.0
Adjective/Nominal mod mod,pnmod,pcomp-n,nn 0.5
(pre)Determiner (pre)det 0.25
Possessives gen 0.25

Table 2: Weights of different syntactic links used in scor-
ing the similarity of two phrases.

(‘det’) link in the candidate “a network” matching
with the phrase “... a wireless network ...” in the
question. The first case shows a stronger similarity
since it narrows down the meaning of the noun (‘net-
work’). To account for this, we weight links differ-
ently: i.e., a lexical modifier link has the highest weight
because it connects two proper nouns, while a deter-
miner has the lowest score. Table 2 shows the classes
of equivalent links we selected and the values we ob-
tained experimentally for each class. These values can
also be learned given a tagged set of equivalent, but
syntactically different phrases, such as an appropri-
ately selected subset of the Equivalent sentence pairs
with minor differences in content from the Microsoft
Research Paraphrase corpus8.

For the previous example (Figure 2), the value of the
LinkOverlap feature will therefore be 1.0+0.25 = 1.25
(for the lexical modifier and the determiner link).

3.2.1 Equivalent Copulative Structures

The above linguistic verb selection does not work well
with sentences that have copulative verbs. Copula-
tive questions such as Q117.1-“What kind of plant
is kudzu?” or Q144.5-“What is the divisions offi-
cial song?” have a particular structure: they con-
vey a state and their argument structure is more flex-
ible. Although these questions are syntactically simi-
lar, their answers come in different structures: ‘ANS1’
in “ANS1 is a member of the bean family which has...”
has a subjective role while ‘ANS2’ in “The divisions
official song is ANS2” comes in the predicate of a rel-
ative clause (‘pred’ subtree in Minipar). This phe-
nomenon led us to allow toggling of subject and pred-
icate arguments when unifying copulative structures.

3.2.2 Inter-type Syntactic Mapping

When the question or the answer sentence is copu-
lative while the other one has a non-copulative main
verb, they cannot be mapped to each other without
syntactic modification or semantic reasonning. The
answer to the non-copulative question Q109.2-“How
many countries does it operate in?” about “Telefonica
of Spain” is answered by the propositional attachment
in the copulative sentence “Telefonica is the largest
supplier of telecommunications services in the Spanish
and Portuguese speaking world with operations in 17
countries and over 62 million customers.”.

Multiple mapping cases can happen in this situa-
tion; for example, the answer to a copulative question
might appear as a noun modifier or a propositional at-
tachment in a non-copulative sentence. Manual mod-
eling of all possible mapping cases is difficult and will

8 Available at http://research.microsoft.com/research/

4



Fig. 3: Precision and recall of the Lucene IR engine at
the document level for the TREC non-copulative questions.

not cover many cases. This should be done automati-
cally and with a larger data set in order to significantly
improve the results. For this reason, we leave this task
as future work.

4 Evaluation

To evaluate our scoring approach, we first computed
the accumulated error in extracting candidate answer
sentences (the first phase). Since these are the sen-
tences sent to the unifier (the ranking phase), they
impose an upper bound on the final result.

4.1 Candidate Extraction Results

Figure 3 shows the precision and recall of the Lucene
IR engine for the 426 non-copulative questions in the
TREC 2003 to 2006 data sets (50 non-copulative ques-
tions from TREC 2005 were kept for development).
Precision and recall at the document level (at level 35)
are around 10% and 53% respectively9 (except for the
2003 where most participants performed significantly
more poorly). The ‘#cand/100’ bar shows the num-
ber of candidates that are selected for each question
(divided by 100). The more candidates extracted, the
harder the ranking task.

Figure 4 shows the effect of the α parameter in sen-
tence selection on precision and recall at the sentence
level for our development set (see Section 2.1). We
accept a slight error in precision by choosing α = 0.65
for this parameter in favor of passing more candidates
to the unifier and higher recall. On average, around
45 candidates are passed to the unifier for ranking.
Figure 4 shows the effect of the parameter α on sen-
tence selection recall and the baseline question answer-
ing accuracy (MRR). The IR-Sentence column in this
Figure shows the percentage of questions that have at
least one correct answer in their candidate set (candi-
date answer extraction recall). Sentence recall and the
number of candidate sentences are the two factors that
create an upper bound on the expected accuracy of our
unifier. Note that sentence level recall (IR-Sentence)
drops to around 44% from 53% at the document level
(shown in Figure 3).

9 Compared to the state of the art in IR for open domain QA
systems (86.1% [7]), our IR method has space for improve-
ment.

Fig. 4: Effect of the α parameter on candidate answer
extraction recall and the number of candidate sentences se-
lected for the TREC question sets.

4.2 Candidate Ranking Accuracy

Candidate sentences should be ranked based on their
syntactic and semantic similarity to the question.
Before evaluating the performance of our ranking
method, we looked at the baseline for this task. We
considered the baseline to be the accuracy resulted by
randomly selecting one candidate from the candidate
set as the answer. The accuracy of a question answer-
ing system is reported as the Mean Reciprocal Rank-
ing (MRR) score which is equal to the inverse of the
position of the first correct answer in the list [22].

The theoretical baseline for this task is the preci-
sion of randomly selecting a candidate as the answer:
MRR = 1

x
Σx

i=1

1

i
where x is the number of candidate

answers. On average, we have 2 correct answers in a
set of x = 44 candidates; so we can assume one cor-
rect answer in a set of 22 candidates. This results in
a theoretical baseline MRR of 16.7%. However, the
experimental baseline ranking accuracy is 11.2%, be-
cause of high deviation in the size of candidate sets.

If only the top ranked candidate is considered
in scoring (as applied recently in TREC QA eval-
uations), the probability of picking the correct an-
swer is MRR1= 1

22
= 4.5%, while experiments show

MRR1=5.0%. Apparently, this baseline decreases as
we relax the candidate selection threshold (lower α
threshold).

Figure 5 shows the accuracy of our QA system com-
pared to Aranea [14], a competitive open domain QA
system. The column labeled ‘Unifier Precision’ shows
the unifier’s accuracy when the error in the IR’s output
is excluded from the final result. The results show a
high performance for the candidate ranking algorithm
especially for non-copulative questions (twice as high
compared to copulatives). Low accuracy for the ques-
tions without a main content verb shows the important
role of the main verb in our method.

The ‘Aranea’ column shows that it tends to work
slightly better on copulative questions. Our analysis
of the previous TREC submissions also shows that this
is a trend in the field, indicating that non-copulative
questions are typically harder to answer.

Most current open domain QA systems use redun-
dancy from the Web and the corpus to rank their
candidate answers. By combining such a list with
the syntactically ranked candidate answer list re-

5



Fig. 5: Precision (MRR1) of the unifier and the modified
Aranea on TREC factoid questions.

turned by our QA system, we have a chance to ap-
ply one’s information to the other. To test this,
we used the statistical Aranea QA system again.
This time, the output of Aranea was used to im-
prove our IR result (m documents from the result of
AranAnswers AND QuestionKeywords were added
to the regular keyword document list) and provided
the expected answer type.

4.3 Analysis

To better understand where the system goes wrong, we
manually analyzed the errors in the 139 non-copulative
questions from TREC 2006. As we mentioned earlier,
lack of query expansion prevents our system to ex-
tract candidates that have different wordings from the
question. Low IR recall causes more than 40% of the
error by missing their candidate answers to start the
unification with (see Figure 3).

The most frequent error source is when the answer
to a non-copulative question is given in a copulative
sentence (9 cases or 6.5%). As we mentioned earlier,
many major syntactic differences can exist when map-
ping a copulative question on a non-copulative answer
and vice versa. Manual modeling of multiple mapping
cases is difficult and will not cover many cases. This
should be done automatically and in large scale in or-
der to significantly improve the results.

The lcs semantic similarity measure does not return
a correct value for main verbs in eight the correct an-
swer sentences. We do not specify the sense of verbs,
while WordNet::Similarity has the capability of accept-
ing the sense numbers in order to compute a more pre-
cise semantic relation between verbs.

Improving the semantic named entity tagger will
help answering eight more questions by boosting their
unification score. An ‘Organization’ tag for the sen-
tence “Crumb, who founded the volunteer Hospice of
Clallam County...” for example would help move
this candidate for Q120.3-“What organization did she
found?” about ‘Rose Crumb’ to the first rank. Three
questions needed resolving the date of an event by
adding the year the article is written in, to the answer.
Answers found by our system for three questions were
correct, but are not included in the judgement file.
And finally, a bad parse tree for the correct candidate
resulted in missing three more questions.

In conclusion, improving the inter-type syntactic
mapping strategy, word sense disambiguation for im-
proving the semantic similarity measure and using a

more precise named entity tagger would improve our
overall QA accuracy considerably.

5 Related Work

Most current TREC type question answering systems
return the noun phrase in proximity of the question
keywords seen in a candidate sentence that is of the
expected answer type. Performing a statistical anal-
ysis in a set of web snippets afterwards indicates the
most redundant answer to be most probably correct.
The weakness of QA systems that incorporate parsing
is that they rely on exact matching of relations, re-
sulting in high precision while recall stays drastically
low.

With one of the best performing QA systems in the
TREC 2004 track, the university of Singapore QA [20]
uses the Jaccard coefficient to test pairwise similar-
ity of frames marked by the ASSERT predicate argu-
ment recognizer. This coefficient ignores stop-words
and uses the bag-of-words feature for scoring. In addi-
tion to bag-of-words however, we keep stop words and
find the common syntactic links (ex. “his red car”
versus “the car at his red door”; we gave this syntac-
tic feature twice as much contribution in the subtree
(ARG) scoring by (1 − β) = 2/3).

Katz and Lin [8] have a ternary subject-verb-object
scheme and use predicate logic; the constraint sat-
isfaction to find an answer that satisfies the syntac-
tic/semantic constraints is binary while we use a fuzzy
scoring schema. Applicability of their comprehen-
sive state-of-the-art method is shown successfully on
five questions. Breaking the text into small grains in
predicate-logic form is less feasible to apply in large
scale and open-domain:

Salvo et al., in [4] introduce a hierarchical knowl-
edge representation for Meaning Entailment: a sen-
tence is entailed by a paragraph if its context graph
can be unified with that of the paragraph. A cost func-
tion determines the goodness of a unification. Unified
nodes must be at the same level in the hierarchy, and
the cost of unifying nodes at higher levels dominates
those of the lower levels. Nodes in both hierarchies
are checked for subsumption in a top-down manner:
The hierarchy level H0 consists of verbs that unify if
they are synonyms based on WordNet and their con-
stituent phrases at H1 level unify. Hierarchy set H2

corresponds to word-level nodes. As it can be seen,
syntax is used only at the topmost level H0. As we
will see later, subject and object relations are consid-
ered to be critical in our matching algorithm.

On the other hand, PiQASso [1] and An-
swerFinder [16] compute the match between a question
and a candidate answer using a metric which com-
putes the overlap in their dependency relations. A
similar work by Nyberg [6] introduces a light-weight
fuzzy unification as an extension to their earlier work,
JAVELIN; here, counterpart syntactic links and their
head and tail tokens contribute to the final match
score. Unlike PiQASso, syntactic links are weighted
so that a matching ‘subject’ link has higher contribu-
tion than a ‘determiner’ link. For this linguistic work
however, no evaluation result is provided.

In a popular statistical method to unify parse trees,

6



Raina et al. [19] learn weights for matching subtree
at the source and destination nodes: matching of the
modifier of two verb nodes may contribute less to the
unification score than matching of their subjects. The
algorithm given by Punyakanok basically selects the
matching that results in the minimum Edit Distance
in [18]. They experimentally determine weights and
penalty values for delete, insert and change operations
in a labeled tree-matching algorithm.

6 Conclusion and Future Work

In this paper we presented a method that imposes sim-
ple linguistic constraints to select only the candidates
that refer to the same event that the question asks for.
At the same time, candidate sentences are syntacti-
cally chunked. A heuristic measure then computes the
similarity of each chunk in a candidate to its counter-
part in the question. The similarity of the verb and its
entities show high resemblance of that candidate to the
question. The final answer is extracted and returned
from the top ranked candidate.

We evaluated this algorithm on TREC 2003 to 2006
QA question sets and showed that our unification
based scoring method achieves an accuracy of 47%
for non-copulative factoid questions, while around one
third of TREC questions are non-copulative.

Although we have a relatively low accuracy at the
sentence extraction level, optimizing this phase will
make the ranking task more difficult by extracting
more candidates. Based on our closed domain exper-
iments, however, we believe that using linguistic fea-
tures brings robustness towards having a larger candi-
date set [10].

Special attention should be given to parsing the
question; for example, converting the question to affir-
mative form or using more than one parser to detect
incorrectly parsed questions. We are currently study-
ing the combination of answer redundancy prevalent in
open domain QA with our linguistic method to obtain
higher performance in TREC questions. We catego-
rized the questions based on the main verb type and
showed that our QA method is specialized to answer
questions that have a main content verb. Defining or
learning more linguistic features for the question in or-
der to categorize and feed questions based on the spe-
cialty of different QA systems might give an ultimate
solution to tackle the question answering problem.

Acknowledgement

This research was financially supported by a grant from
NSERC and Bell University Laboratories.

References

[1] G. Attardi, A. Cisternino, F. Formica, M. Simi, and
A. Tommasi. PiQASso: Pisa Question Answering Sys-
tem. In Proc. of the TREC-12 Conference, pages 599–607,
Gaithersburg, MD, 2001.

[2] E. Brill. A Simple Rule-based Part of Speech Tagger. In
Proc. of the Third ANLC, pages 152 – 155, Italy, 1992.

[3] J. Burger and et al. Issues, Tasks and Program Structures
to Roadmap Research in Question Answering. 2001.

[4] R. de Salvo Braz, R. Girju, V. Punyakanok, D. Roth, and
M. Sammons. An Inference Model for Semantic Entailment
in Natural Language. In AAAI05, pages 261–286, Illinois,
USA, 2005.

[5] H. Doan-Nguyen and L. Kosseim. Using Terminology and
a Concept Hierarchy for Restricted Domain Question An-
swering. In Research on Computing Science, Special issue
on Advances in Natural Language Processing, pages 183–
194, 2006.

[6] B. V. Durme, Y. Huang, A. Kupsc, and E. Nyberg. To-
wards light semantic processing for Question Answering. In
Proc. of the HLT-NAACL 2003 Workshop on Text Mean-
ing, pages 54–61, NJ, USA, 2003.

[7] S. Harabagiu, A. Hickl, J. Williams, J. Bensley, K. Roberts,
Y. Shi, and B. Rink. Question Answering with LCC’s
CHAUCER at TREC 2006. In Proc. of the TREC 2006
Conference, pages 283–292, Gaithersburg, MD, 2006.

[8] B. Katz and J. Lin. Selectively Using Relations to Improve
Precision in Question Answering. In Proc. of the EACL
2003 Workshop on NLP for Question Answering, pages
50–60, Hungary, 2003.

[9] M. Kouylekov and H. Tanev. Document filtering and rank-
ing using syntax and statistics for open domain question
answering. In Proc. of ESSLLI 2004 Workshop on Com-
bining Shallow and Deep Processing for NLP, pages 21–30,
Nancy, France, 2004.

[10] A. K. Lamjiri, L. Kosseim, and T. Radhakrishnan. A Hy-
brid Unification Method for Question Answering in Closed
Domains. In Proc. of the 3rd International KRAQ’07
Workshop, pages 36–42, Hyderabad, India, 2007.

[11] D. Lin. Principle-based Parsing without Overgeneration.
In Proc. of ACL-93, pages 112–120, Ohio, USA, 1993.

[12] D. Lin. Review of WordNet: An Electronic Lexical
Database. The MIT Press, 1998.

[13] J. Lin. The role of information retrieval in answering com-
plex questions. In COLING/ACL 2006 Poster Sessions,
pages 523–530, Sydney, Australia, July 2006.

[14] J. Lin and B. Katz. Question Answering from the Web Us-
ing Knowledge Annotation and Knowledge Mining Tech-
niques. In Proc. of CIKM’03, pages 116 – 123, Louisiana,
USA, 2003. ACM.

[15] D. Moldovan, S. Harabagiu, R. Girju, P. Morarescu, F. La-
catusu, A. Novischi, A. Badulescu, and O. Bolohan. LCC
Tools for Question Answering. In Proc. of the TREC-11
Conference, Gaithersburg, MD, 2002.

[16] D. Molla and M. Gardiner. AnswerFinder - Question An-
swering by combining lexical, syntactic and semantic in-
formation. In Proc. of Australasian Language Technology
Workshop (ALTW), pages 9–16, Sydney, 2004.

[17] T. Pedersen, S. Patwardhan, and J. Michelizzi. Word-
Net::Similarity - Measuring the Relatedness of Concepts.
In Proc. of he Nineteenth National Conference on Artifi-
cial Intelligence, pages 1024–1025, San Jose, USA, 2004.

[18] V. Punyakanok, D. Roth, and W. tau Yih. Natural Lan-
guage Inference via Dependency Tree Mapping: An Appli-
cation to Question Answering. In Computational Linguis-
tics, Vol. 6, No. 9, pages 1–10, 2004.

[19] R. Raina, A. Haghighi, C. Cox, J. Finkel, J. Michels,
K. Toutanova, B. MacCartney, M.-C. de Marneffe, C. D.
Manning, and A. Y. Ng. Robust Textual Inference using
Diverse Knowledge Sources. In Proc. of the First PASCAL
Challenge, pages 57–60, UK, 2005.

[20] R. Sun, J. Jiang, Y. F. Tan, H. Cui, T.-S. Chua, and M.-Y.
Kan. Using Syntactic and Semantic Relation Analysis in
Question Answering. In Proc. of the TREC-13 Conference,
Gaithersburg, MD, 2004.

[21] H. Tanev, M. Kouylekov, B. Magnini, M. Negri, and
K. Simov. Exploiting Linguistic Indices and Syntactic
Structures for Multilingual Question Answering: ITC-irst
at CLEF 2005. In CLEF-2005 Working Notes, pages 21–
23, Vienna, Austria, 2005.

[22] E. Voorhees and D. Tice. The TREC-8 Question Answering
Track Evaluation. In Proc. of the TREC-8 Conference,
pages 83–106, Gaithersburg, MD, 1999.

7


