

Automatic Quality Assessment of SRS Text by Means of a Decision-Tree-

Based Text Classifier

Ishrar Hussain, Olga Ormandjieva and Leila Kosseim

Department of Computer Science and Software Engineering

Concordia University

Montreal, Canada

 {h_hussa,kosseim, ormandj}@cse.concordia.ca

Abstract

The success of a software project is largely

dependent upon the quality of the Software

Requirements Specification (SRS) document, which

serves as a medium to communicate user requirements

to the technical personnel responsible for developing

the software. This paper addresses the problem of

providing automated assistance for assessing the

quality of textual requirements from an innovative

point of view, namely through the use of a decision-

tree-based text classifier, equipped with Natural

Language Processing (NLP) tools. The objective is to

apply the text classification technique to build a system

for the automatic detection of ambiguity in SRS text

based on the quality indicators defined in the quality

model proposed in this paper. We believe that, with

proper training, such a text classification system will

prove to be of immense benefit in assessing SRS

quality. To the authors' best knowledge, ours is the first

documented attempt to apply the text classification

technique for assessing the quality of software

documents.

1. Introduction

Requirements Engineering (RE) is concerned with

the gathering, analyzing, specifying and validating of

user requirements that are documented in natural

language for the most part. Software Requirements

Specification (SRS) is one of the most important

artifacts produced during the software development

lifecycle. The success of a software project is largely

dependent upon the quality of SRS documentation,

which serves as an input to the design, coding and

testing phases. The quality assessment of SRS

documents often takes considerable time to perform

manually, as the length of a real-life requirements

document can range from a few pages to hundreds of

pages containing numerous words, phrases and

sentences, each with the potential to be misinterpreted.

Consequently, even though manual inspection of

document quality is the most common method used, it

is also one of the costliest phases of RE.

Research Objectives: The aim of our research is to

provide automated assistance for assessing the quality

of SRS text. The work presented in this paper is the

first step toward a larger project aimed at applying

NLP techniques to the RE process (see Figure 1).

The objective of NLP assessment in the context of

that project can be expressed in terms of three main

goals:

G1. This involves automatic NLP-driven quality

assessment of the textual requirements in the

requirements gathering and elicitation phase.

G2. This involves automatic NLP-driven quality

assessment of the textual requirements in the analysis

and specification phase, where conceptual static and

dynamic models are developed from the textual

requirements.

Interview Client

Elicit
Information

Problem

Text

NLP: Assess
Text Quality

Ambiguous?

Improved
Text

NLP: Static

Analysis

NLP: Dynamic
Analysis

Domain

Model

Path of
Execution

Visualization of
Requirements

Through
Flash Animation

Accepted

by Client?

Write
SRS

Yes

Yes

No

No

<xml doc>

<xml doc>

Interview ClientInterview Client

Elicit
Information

Problem

Text

Problem

Text

NLP: Assess
Text Quality

Ambiguous?Ambiguous?

Improved
Text

Improved
Text

NLP: Static

Analysis

NLP: Dynamic
Analysis

Domain

Model

Domain

Model

Path of
Execution

Path of
Execution

Visualization of
Requirements

Through
Flash Animation

Accepted

by Client?

Accepted

by Client?

Write
SRS

Yes

Yes

No

No

<xml doc>

<xml doc>

Figure 1. NLP-Based Quality Assessment in
Requirements Engineering

G3. This involves graphical visualization and

animation of the conceptual models extracted from the

requirements text for the user’s validation and

feedback.

The objective of this paper is to report on the first

step toward the automation of quality evaluation in

SRS documents (see G1 above) by means of a text

classification system. The primary goals are to identify

the textual ambiguities in the requirements elicitation

phase before the conceptual modeling of the

requirements begins, and to automate the detection of

ambiguity in SRS documents in terms of reading

comprehension. Our research aim, as a “proof of

concept”, was to build a text classification system and

test its applicability for detecting ambiguity in SRS

documents.

Quality of SRS text: The notion of SRS quality is

derived from the existing guidelines in the literature for

writing SRS documentation (such as [7, 9, 13, 19, 26,

and 27]) and from the authors’ experience. Some SRS

quality characteristics are outlined in the IEEE

Standard 830-1998 [6], which describes the best

practices recommended by the IEEE for writing an

SRS document, and defines the quality characteristics

of a “good” SRS document. They are: (1) Correct, (2)

Unambiguous, (3) Complete, (4) Consistent, (5)

Ranked for importance, (6) Verifiable, (7) Modifiable

and (8) Traceable. The definition of “unambiguous” set

by the standard corresponds to an SRS document in

which each of its statements has only one

interpretation. The IEEE standard further mentions that

the inherently ambiguous nature of NL can make the

text of an SRS document fail to comply with the above

rule, making it ambiguous, and thereby degrading the

overall quality of the document.

Research hypothesis (1): Our hypothesis is that

the root cause of errors being introduced into the

requirements (and the consequent reduction in quality)

is ambiguity in the text. Here, we define ambiguity as

the difference between the depiction of an informal

textual description of the problem (requirement) and

the description of the solution for the informal domain

where the intents lie. We affirm that lowering the level

of ambiguity in the textual requirements document will

lead to a better quality conceptual description (model)

of the solution, and also reduce the amount of time

required for requirements analysis and specification.

We have applied a goal-oriented approach to define

the hierarchical decomposition of the ambiguity

concept into quantifiable characteristics (indicators)

affecting the quality of the text from different

viewpoints. The NLP text classification technique was

employed to build a system for the automatic detection

of ambiguity in requirements documents in terms of

the quality indicators defined in the quality model.

Research hypothesis (2): We understand that none

of the previous work has tested the applicability or

performance of using a text classification system to

automate the detection of textual ambiguities in SRS

documents. Thus, our second research hypothesis was

that a decision-tree-based text classifier, trained with

and tested against human annotated samples, can best

emulate human decisions taken while detecting

ambiguity in SRS documents.

To the authors’ knowledge, ours is the first

documented attempt to apply the NLP text

classification technique to software requirements

quality assessment. We believe that the research results

reported in this paper not only prove our concept for

practical use, but also introduce some profound

analyses of this topic that can fuel further

investigations among the research community.

The paper is organized as follows: Section 2

discusses various viewpoints regarding the quality of

SRS textual documentation. The underlying quality

model is introduced in section 3. Our text classification

system and its performance analysis are presented in

section 4. A critique of our research results in

comparison to related work is given in section 5.

Finally, our conclusions and guidelines for future work

are outlined in section 6.

2. Views on Quality of SRS Text

The research described in this paper is concerned

with the challenges inherent in the reading

comprehension of the initial textual requirements (see

G1, section 1). Reading comprehension can typically

be analyzed from two broad viewpoints: the literal

meaning of a text (or surface understanding) and its

interpretation (or conceptual understanding). In the

context of our work, we use the term “surface

understanding” to denote how easy or how difficult it

is to understand the facts stated in the document,

without judging its design or implementation concerns

in terms of any software engineering concept. By

contrast, we use the term “conceptual understanding”

to denote how much a developer or a requirements

engineer would gain in the analysis and specification

of a system by carefully reading/examining its problem

texts only. The increasing difficulty at this level of

understanding represents possible failure to identify the

precise meaning of the text (interpretation), which is

also referred to in Meyer’s work [19] and in the IEEE

Standard [6] and is defined as ambiguity.

In our work, we use the term “ambiguity” in its

more general sense—the characteristics of the

language used in an SRS document that make its

content difficult to interpret or to realize in the

software development process. Ambiguity can exist in

different forms within the NL texts of an SRS

document. Consider the following two examples:

(1) Most commonly, the orders are matched in

price/time priority: The order with the better

price has a higher priority than an order with a

worse price [15].

(2) Design a program that allows a network

operator to plan changes in every parameter of

every cell in the network. These planned

changes should be verified for consistency and

correctness and then applied to the network in

the least disturbing way [12].

In example (1), it is impossible to evaluate what is

meant by a “better” price or a “worse” price, since such

interpretations are highly subjective. Moreover, the

text does not explain by how much the “priority” will

change with an increase or decrease in price. Thus,

example (1) is ambiguous, since we cannot deduce its

true meaning based on this text. Example (1)

demonstrates ambiguity at the level of surface

understanding. Several surface factors can be involved

at this level, e.g. the length of sentences, ambiguous

adjectives and adverbs, passive verbs, etc.

In example (2), the text does not specify how to

verify the changes to the cells for consistency or

correctness. So, we find example (2) to be ambiguous

as well, since the feature it describes cannot be

realistically implemented in an analysis model, let

alone design or executable code, due to lack of

information. In [19], Meyer defined such a

phenomenon as “silence”. In his paper [19], he details

the areas of natural language (NL) where a human

specifier is most prone to making mistakes. His

comprehensive study presents a thorough description

of such mistakes by classifying them into seven

distinct categories: silence, over-specification,

contradiction, ambiguity, forward reference and

wishful thinking. Note that, like the “silence” shown in

example (2), each of these seven sins can make the text

so ambiguous that it cannot be realized in any analysis

model.

Another point of view regarding reading

comprehension deals with the impact the scope

(sentence or passage) of ambiguity has on the overall

understanding of the text. For instance, our example

(2) demonstrates ambiguity at the conceptual

understanding level, because it suffers from a lack of

information (silence). Such ambiguity usually exists

within a passage comprising more than one sentence or

paragraph. Thus, a single sentence may not be enough

to identify the text as ambiguous. By contrast, the kind

of ambiguity introduced in example (1) is limited to

the scope of a single sentence.

Stakeholders involved in the use and development

of a system should be able to understand an SRS at

both the surface and conceptual levels. Thus, writing

SRS documents which are unambiguous, both at the

surface level and at the conceptual level, is critical in

the software lifecycle. If not detected early, such

ambiguities can lead to misinterpretations in the course

of requirements engineering or at a subsequent phase

of the software development lifecycle, causing an

escalation in the cost of software development. The

research reported in this paper targets an automatic

assessment of SRS text by means of a classifier to

automatically flag ambiguous and unambiguous texts

at both the surface and conceptual levels within their

corresponding scopes at an early stage of the

requirements elicitation process, which can save a

great deal of aggravation, not to mention cost. For this

purpose, we had to identify the discriminating features

of the text that characterize the quality of an SRS text

from different viewpoints. The next section introduces

the underlying hierarchical quality model which

depicts the decomposition of ambiguity into

measurable features compiled directly from the text.

3. Underlying Quality Model

The challenge in defining a quality model for SRS

text originates in the subjective nature of NL

ambiguity. To surmount this, we have applied a goal-

oriented approach to address objective and

discriminating linguistic features upon which both

surface and conceptual levels of ambiguity depend. For

this purpose, we have developed separate specific

guidelines and examples of what is to be considered

ambiguous in terms of surface and conceptual

understanding respectively. The guidelines indicate

what to look for in a text, but do not give any strict

instructions. They were developed by taking into

account previous work in the field, such as [7, 9, 13,

19, 26, and 27]. For example, in terms of surface

understanding, the following phenomena could render

a passage ambiguous:

- Long sentences. A long sentence can be identified

by many commas or semi-colons, several main

verbs or clauses in a sentence, the use of

parentheses, etc.

- Introduction of many concepts in a single

sentence.

- Grammatical errors or heavy syntactical

constructions.

- Numerous adjectives and adverbs.

- Numerous verbs in the passive voice.

In terms of conceptual understanding, Meyer’s

seven sins [13] were considered as indicators of

ambiguity. By contrast, if a directive phrase was found

in a passage, e.g. “for example”, “note:”, “e.g.”, “such

as”, “(IMAGE)”, “(TABLE)”, it would render the

passage less ambiguous.

Our initial quality model reported in [20]

considered both surface and conceptual understanding

indicators. Conversely, the features influencing

ambiguity in conceptual understanding of the SRS

documents required domain knowledge and deeper

semantic analysis, for which available NLP tools are

inefficient. We, therefore, focused our objective on

developing the system for detecting ambiguity solely at

the level of surface understanding; the corresponding

quality model is given in Figure 2.

Figure 2. Underlying Quality Model

Ideally, assessing the linguistic quality of an SRS

document should be performed automatically, or at

least assisted in that task by automated means. In [20],

we have presented a study investigating the feasibility

of an annotated tool for automatic assessment of

quality in SRS documents. The results were sufficient

for us to believe that an automatic system can be built

to emulate the decision-making process of the human

annotators and to automatically classify requirements

documents.

4. Decision-Tree-Based Text Classifier

Our work targets the automatic assessment of

textual requirements in terms of their ambiguity by

means of a text classification system to actually flag

ambiguous and unambiguous texts.

Text classification is a technique to classify text

contents or documents into two or many groups based

on different characteristics. It is being used for e-mail

classification and spam detection [11], clustering and

organizing documents [14], information extraction [24]

and retrieval [10, 29] etc. A text classifier generally

uses an implementation of a machine learning

algorithm. In a supervised training method, values of

discriminating features of the classes, which the

classifier uses to classify documents, are collected

from a large number of documents. Then, with the aid

of the machine learning algorithm, the classifier is

‘trained’ based on the feature values of the documents,

which belong to all the different classes. Thus, when a

new unclassified document is supplied to the classifier,

it is able to classify the document into a class based on

its feature values.

To build our classifier we needed an annotated

corpus for the purpose of training and testing.

4.1. Annotated Corpus

To our knowledge, no standard corpus of SRS

documents has been collected for this task. We

therefore built our own for the annotation process

extracted from 25 different problem descriptions (each

from a different domain) related to SRS. The problem

descriptions were collected from the ACM’s OOPSLA

Designfest, available online at

http://designfest.acm.org/. Annotating an entire

problem description of several pages, would be

difficult and not particularly informative if we later

wish to identify specific features for an automatic

classification task. We therefore chose to split up our

collection of problem descriptions into smaller

segments that derived two different sets of corpora: the

discourse-level corpus and the sentence-level corpus.

For our discourse-level corpus, we extracted 165

passages from our collection of 25 problem

descriptions, where each passage contained 140.22

words on average. Our sentence-level corpus consisted

of 1211 sentences, all extracted from our collection of

25 problem descriptions. Each of the extracted

sentences contained 19.1 words on average.

To perform the manual classification, we asked four

annotators (two professors and two graduate students)

to annotate the samples as “Ambiguous” or

“Unambiguous” in terms of surface understanding and

conceptual understanding. All the annotators had

software engineering backgrounds, but from different

fields of computer science with significant exposure to

dealing with SRS documents.

All the passages and sentences of the corpora were

annotated into two distinct categories — “ambiguous”

and “unambiguous”, using a standard scoring

procedure and employing a median voter model [3].

The corpora can be used for the purpose of training

and/or testing future text classifiers in this field. Figure

3 illustrates the steps of our corpus annotation process.

The details on the annotation methodology and the

analysis of the reliability of the annotations are

discussed in [20]. The results of the inter-annotator

Quality Characteristics
(Factors of Surface Understanding)

Sentence-level
Features

Discourse-level
Features

Ambiguous

Keywords

Syntactic

Features

Ambiguous
Adjectives

Ambiguous
Adverbs

Ambiguous
Deteminers

Ambiguous
Modals

Word
Frequency

Parentheses

Passive
Verbs

Fragment

Words per

sentence

Unique Words
(hapax-legomena)

Frequency of
Ambiguous
Sentences

agreement and the reliability of the annotations were

sufficient to lead us to believe that an automatic system

can be built to emulate the decision-making process of

human annotators, and to automatically classify SRS

documents.

Online

Source

Problem

Descriptions

25

Passages

165

Sentences

1211

Annotation

Guideline
Human

Annotators

Sentence

Annotation

Discourse

Annotation

Ambiguous

Sentences

Unambiguous

Sentences

Sentence-level

Corpus

Ambiguous

Passages

Unambiguous

Passages

Discourse-level

Corpus

Online

Source

Online

Source

Problem

Descriptions

25

Problem

Descriptions

25

Passages

165

Passages

165

Sentences

1211

Sentences

1211

Annotation

Guideline
Human

Annotators

Annotation

Guideline
Human

Annotators

Annotation

Guideline

Annotation

Guideline
Human

Annotators
Human

Annotators

Sentence

Annotation

Sentence

Annotation

Discourse

Annotation

Discourse

Annotation

Ambiguous

Sentences

Unambiguous

Sentences

Sentence-level

Corpus

Ambiguous

Sentences

Unambiguous

Sentences

Sentence-level

Corpus

Ambiguous

Passages

Unambiguous

Passages

Discourse-level

Corpus

Ambiguous

Passages

Unambiguous

Passages

Discourse-level

Corpus

Figure 3. Corpus Annotation

In addition, analysis of the above-mentioned results

indicated a positive correlation between the surface and

conceptual understanding of the text, and a negative

correlation between the understanding and the time

required to analyze a text. The above confirmed our

premise that lowering the level of surface ambiguity

would lead to a better conceptual understanding of the

requirements and reduce the time needed for

requirements analysis.

4.2. Features Extraction

We have successfully devised NLP-driven feature

extractor tools that extract discriminating features of

the SRS text influencing ambiguity in surface

understanding. The tools can output data files (in

standard ARFF format), each representing an annotated

corpus in terms of feature vectors. The file can be used

to train any machine learning algorithm to develop a

classifier.

4.3. Algorithm

We chose the C4.5 decision-tree learning algorithm

[22] for the classification task. The two main reasons

for this choice were: (1) Decision-trees can allow

backtracking from a leaf to derive the cause of a

particular classification, and C4.5 (revision 8), with its

post-pruning feature, was the best open-source

decision-tree learning algorithm available to us; (2)

The size of the documentation was not large enough

for training neural network algorithms, which would

have yielded better results. For our next experiment,

we used the machine learning workbench, called Weka

[28] that provided a Java-based implementation of the

C4.5 (revision 8) algorithm, along with the necessary

framework for training and evaluating our classifier.

We developed a decision-tree-based text classifier

that works at both sentence and discourse levels of an

SRS text and detects ambiguity in surface

understanding (see sections 4.4 and 4.5). The classifier

can also be trained with new training data, which

makes it robust in dealing with unseen samples of SRS

in future. The classifier attained an impressive

accuracy, high enough to be applicable in a practical

semi-automated environment. This eventually proves

our research hypothesis (1) of the usability of a text

classifier in detecting ambiguity in SRS documents.

The details are given below.

4.4. The Sentence Classifier

We have developed the sentence classifier using the

C4.5 decision-tree learning algorithm (see section 4.3).

The classifier has a training module, which can be

trained using the sentence level training data and can

dynamically generate a decision-tree based on the data.

This decision-tree-based classifier automatically

classifies a sentence into ambiguous or unambiguous

in terms of surface understanding.

Our sentence-level Feature Extractor tool extracts

features required for detecting ambiguity in a sentence.

It counts the frequency of occurrences of valid features

and ambiguous keywords only in each of the sentences

of our corpus and stores them in the training data file.

The training data file also holds the corresponding

annotation of each sentence. Figure 4 illustrates the

steps of the classification:

Ambiguous

Sentences

Unambiguous

Sentences

Sentence-level

Corpus

POS Tagger

+

Syntax Parser

Frequency Counter of

Ambiguous Keywords

& Valid Features

Sentence-level Feature Extraction

Sentence-level

Training Data

File

Training

U
na

m
bi

gu
ou

s

Se
nt

en
ce

s

A
m

biguous

Sentences

Sentence

Classifier

Unclassified

Sentences

Ambiguous

Sentences

Unambiguous

Sentences

Sentence-level

Corpus

Ambiguous

Sentences

Unambiguous

Sentences

Sentence-level

Corpus

POS Tagger

+

Syntax Parser

Frequency Counter of

Ambiguous Keywords

& Valid Features

Sentence-level Feature Extraction

POS Tagger

+

Syntax Parser

Frequency Counter of

Ambiguous Keywords

& Valid Features

Sentence-level Feature Extraction

Sentence-level

Training Data

File

Sentence-level

Training Data

File

TrainingTraining

U
na

m
bi

gu
ou

s

Se
nt

en
ce

s

A
m

biguous

Sentences

Sentence

Classifier

Unclassified

Sentences

U
na

m
bi

gu
ou

s

Se
nt

en
ce

s

U
na

m
bi

gu
ou

s

Se
nt

en
ce

s

A
m

biguous

Sentences
A
m

biguous

Sentences

Sentence

Classifier

Sentence

Classifier

Unclassified

Sentences

Unclassified

Sentences

Figure 4. Steps of Sentence-level Classification

We experimented with the sentence classifier by

training the classifier with different combinations of

sentence level features and testing its performance, as

compared to that of human annotation. The results

revealed high performance accuracy, in sufficient

degree for the classifier to be applicable in practical

fields (see section 4.6).

Our results with this initial experiment affirm that

the task of detecting ambiguity in terms of surface

understanding is indeed achievable by means of

currently available NLP tools and text classification

techniques. The accuracy of our sentence classifier

establishes its applicability in practical fields, where

ambiguity is detected at the sentence level. But, since

our primary concern was to detect ambiguity at the

discourse level, we continued with our work of

building the ultimate classifier that could best emulate

the decisions of our human annotators by classifying a

discourse based on its ambiguity at the level of surface

understanding.

4.5. The Discourse Classifier

We built the discourse-level classifier using our

sentence classifier. Figure 5 illustrates the process.

Here, the sentence classifier was used to count the

number of ambiguous sentences in each of the

instances (passages) in our corpora, and classify an

instance based on the density of ambiguous sentences

(along with two other discourse features, which were

ignored by our classification algorithm on the basis of

our training data file) and the corresponding annotation

of the instance.

We then experimented with the discourse classifier

by training it with different discourse level features,

and testing its performance against that of human

annotation. The results show high performance

accuracy, affirming that the approach of using a text

classifier is applicable in practical fields for detecting

ambiguous passages in SRS documents (see section

4.6).

Ambiguous

Sentences

Unambiguous

Sentences

Sentence-level

Corpus

Sentence-level

Feature

Extraction

Sentence-level

Training Data

File

Ambiguous

Passages

Unambiguous

Passages

Discourse-level

Corpus

Training

Sentence

Extraction

from

Passages

Sentence

Classifier

Count

Ambiguous

Sentences

U
na

m
bi

gu
ou

s
Pa

ss
ag

es

A
m

biguous

Passages

Discourse

Classifier

Unclassified

Passages

TrainingDiscourse-level

Training Data

File
Features Extraction at Discourse-level

(Only 2 Discourse Features)

Ambiguous

Sentences

Unambiguous

Sentences

Sentence-level

Corpus

Ambiguous

Sentences

Unambiguous

Sentences

Sentence-level

Corpus

Sentence-level

Feature

Extraction

Sentence-level

Feature

Extraction

Sentence-level

Training Data

File

Sentence-level

Training Data

File

Ambiguous

Passages

Unambiguous

Passages

Discourse-level

Corpus

Ambiguous

Passages

Unambiguous

Passages

Discourse-level

Corpus

TrainingTraining

Sentence

Extraction

from

Passages

Sentence

Extraction

from

Passages

Sentence

Classifier

Sentence

Classifier

Count

Ambiguous

Sentences

Count

Ambiguous

Sentences

U
na

m
bi

gu
ou

s
Pa

ss
ag

es

A
m

biguous

Passages

Discourse

Classifier

Unclassified

Passages

U
na

m
bi

gu
ou

s
Pa

ss
ag

es

U
na

m
bi

gu
ou

s
Pa

ss
ag

es

A
m

biguous

Passages
A
m

biguous

Passages

Discourse

Classifier

Discourse

Classifier

Unclassified

Passages

Unclassified

Passages

TrainingTrainingDiscourse-level

Training Data

File

Discourse-level

Training Data

File
Features Extraction at Discourse-level

(Only 2 Discourse Features)

Features Extraction at Discourse-level

(Only 2 Discourse Features)

Figure 5. Discourse-level Classification using the Sentence Classifier

4.6 Performance Evaluation

The performance of a system can be evaluated from

different perspectives. For evaluating the performance

of our system we chose to compare the performance of

our discourse-level classifier to the human

performance.

For this purpose, we compared the level of

agreement of the classifier and that of each of the

annotators with the gold standard (decided by the

annotations of Annotator3, see [20] for more details).

Figure 6 shows that the classifier emulates the

annotations of Annotator3 successfully by fitting its

decision-tree properly with the annotator’s annotation

and attaining a high “substantial” level of agreement

when training and testing were done on the same

corpus, and also when 10-fold-cross-validation was

performed (Cohen’s [2] kappa index 0.7572 and

0.7203, respectively).

This result is also considerably higher than the

average level of agreement human annotators had with

Annotator3 (Kappa index 0.5426 on average, denoting

a “moderate” level of agreement). As the discourse-

level classifier system aims to be a part of the

requirements elicitation and analysis process, where its

outputs are expected to be verified by an experienced

requirements analyst, we can endorse its performance

to be fully adequate for the purpose.

The above results of the performance analysis

thoroughly prove our research hypothesis (2) affirming

that the approach of using a text classifier is applicable

in practical fields for detecting ambiguous passages in

SRS documents. Although our work is fully

concentrated in detecting ambiguities at the level of

surface understanding, it will facilitate our future work

of detecting conceptual ambiguities by improving the

quality of the SRS text.

The classifier can also be trained with new training

data, which makes it robust to deal with unseen

samples of SRS in future. The classifier attained an

impressive accuracy, high enough to be applicable in a

practical semi-automated environment. This ultimately

proves our hypothesis of the usability of a text

classifier in detecting ambiguity in SRS documents.

Figure 6. Performance Evaluation of Discourse-level Classifier that uses the Sentence Classifier
Compared to Human Annotators in Terms of Their Level of Agreement with Annotator3

4.7 Prototype

A small prototype (written in Java) has been

developed to demonstrate the use of our classifier. We

used the annotated corpus of this study to train the text

classification prototype that can automatically classify

SRS documents based on their probable defects at the

level of surface understanding only. The system can

label a discourse as ambiguous, and, at the same time,

identify the sentences that are responsible for making it

so.

The prototype named Requirements Specification

Ambiguity Checker (ReqSAC) is platform

independent, and can be executed online, or from

within the Rational XDE environment. This ensures

future usability of the system. The UI also features on-

the-fly text editing to correct errors and enhance the

quality of the SRS, using the same linguistic features

that our annotators used to detect errors at the level of

Using Sentece Classifier Compared To Human
(When Gold Standard was decided by Annotator3 's Score)

Perfect

Substantial

Moderate

Fair

Slight

0.448
0.528

0.757
0.720

0.543

0.652

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ra

in
in

g
+

T
e

s
ti
n

g

S
a

m
e

 C
o

rp
u

s

1
0

-f
o

ld
-c

ro
s
s
-

v
a

li
d

a
ti
o

n

A
v
e

ra
g

e

A
n

n
o

ta
to

r1

A
n

n
o

ta
to

r2

A
n

n
o

ta
to

r4

Results of Experiment B

(Agreement of Classifier)

Agreement of Human Annotators with Annotator3

surface understanding. Figure 7 shows a snapshot of

the main window of the prototype.

5. Related Work

Many studies have previously addressed the issue of

detecting ambiguities in requirements documents, and

several approaches have been proposed. Although

they are often similar in the types of tools they use,

these approaches are sometimes radically different in

the way they attempt to detect ambiguities.

The use of manual inspection still seems to be the

most popular way to detect and resolve ambiguities. A

leading study, and one of the earliest in this field, was

conducted by Bertrand Meyer [19], who stressed that

natural language requirements specifications are

inherently ambiguous, and that the use of formal

specifications is absolutely necessary to resolve these

ambiguities. Meyer’s approach to detecting such

ambiguities was to inspect each word, phrase and

sentence manually. For their part, Kamsties et al. [9]

proposed a specific methodology of human inspection

to resolve ambiguity. While they argue in favor of

manual inspections, their work demonstrates a

dependence on formal specifications, e.g. UML

models, especially for detecting ambiguities related to

the problem domain. Their study concludes that “one

cannot expect to find all ambiguities in a requirements

document with realistic resources” – even with such

complete human involvement. Manual detection is

typically the most accurate approach; however, it is

also the most expensive. We also note that Letier et al.

[16] propose the use of formal specifications to

validate requirements.

The work of Ambriola et al. [1] attempts to validate

NL Specification with the help of the user after

deriving a conceptual model automatically from the

requirements specifications using their tool, which they

call Circe. This tool is funded by IBM and is now

available as a plug-in for Eclipse. Although Circe is in

general use, it still does not consider the existence of

ambiguities at the level of surface understanding. This

could corrupt their conceptual model, making errors

extremely difficult for a user to detect from the model

at a later point.

Many other studies attempt to reduce the problems

associated with unrestricted NL by limiting the scope

of the language. Some use a new NL-like sublanguage,

as in [4, 18], but this is not truly NL. Others propose

restricting the grammar to consider only a subset of NL

when writing requirements specification [5, 8, 23, and

25]. However, although using a restricted language

does simplify the task of detecting ambiguities, it

imposes severe constraints on the software engineer’s

freedom of expression.

Recently, researchers have attempted to deal with

unrestricted language by using techniques developed in

NL processing (NLP). Tools such as part-of-speech

taggers, syntactic parsers and named-entity taggers

have achieved very respectable accuracy, which means

that they can be used for real-world texts. Osborne et

al. [21], for example, try to detect ambiguities in SRS

documents through syntax. They use a syntactic parser

to derive all possible sentence parsing trees. If a

sentence generates more than one parsing tree, then it

is considered ambiguous. The problem with this

approach is that what is possible at the syntactical level

may not be plausible at the interpretation level.

Discourse or world-knowledge constraints may

eliminate a possible syntactical interpretation, leaving a

sentence with multiple syntactical parses which are

unambiguous to the human reader.

Another interesting tool, that of Wilson et al. [26,

27], uses nine quality indicators for requirements

specification: Imperatives, Continuances, Directives,

Options, Weak Phrases, Size, Specification Depth,

Readability and Text Structure. However, results

derived from using their tool reveal only the frequency

counts of those indicators in different samples, without

taking the crucial decision of whether or not a sample

is ambiguous.

Fabbrini et al. [7] and Gnesi et al. [13] address the

issue by proposing a tool called “QuARS: Quality

Analyzer for Requirements Specification”. QuARS

syntactically parses the sentences using the MINIPAR

parser [17], then it combines both lexical (part-of-

speech tags) and syntactical information to detect

Figure 7. A Snapshot of the ReqSAC Client

specific ambiguity indicators of poor-quality

requirements specification. In their paper, however, the

quality indicators seem to be mostly based on a list of

handpicked specific keywords, rather than on more

general classes of words. At every stage of processing,

QuARS requires the use of a different “modifiable”

keyword dictionary, which seems to be manually

created and modified, for a particular stage of

processing and for a specific problem domain, by the

requirements engineer. Their idea seems to be

dependent on using these special dictionaries, the

relevance and practical usefulness of which are

uncertain. Again, their quality measurement metrics

are not well enough defined to characterize a text as

ambiguous.

As discussed, researchers have previously attempted

to flag ambiguous texts using various (semi-)

automatic methods. However, these methods have

typically been evaluated anecdotally or on a small

scale. To our knowledge, no one has attempted a

formal evaluation of their results and a comparison to

human evaluations. Our work provides a benchmark

for evaluation of the feasibility of such a task by

analyzing how difficult it really is to perform and how

the automatic tools developed can compare to human

performance, and an upper bound on what we can

expect automatic tools to achieve.

6. Conclusions and Future Work

This paper addresses the problem of detecting

ambiguities in SRS documents. Acknowledging the

fact that none of the previous work has tested the

applicability or performance of using a text

classification system to automate such detection

process, the research results proved our hypothesis by

affirming that the approach of using a text classifier is

applicable in practical fields for detecting ambiguous

passages in SRS documents. The work also

encompassed some important related topics, e.g. how

difficult it is to manually detect ambiguity in SRS

documents and how the automatic tools developed can

compare to human performance.

To prove our concept, we developed a text

classification system that can detect ambiguity in an

SRS document by classifying its passages as

ambiguous or unambiguous. The system yields high

performance accuracy demonstrating 86.67% accuracy

under the critical conditions of using 10-fold-cross-

validation technique [20]. When comparing whether its

results agreed with the decisions of an expert, it was

found to outperform human annotators with average

expertise in detecting ambiguities. It can also be

affirmed that the system will perform better in practical

fields with the inclusion of new training data. We also

built a prototype of this system to demonstrate its

practical usage.

Our work strictly concentrated on detecting surface

understanding ambiguities, while avoiding the

detection of ambiguities which are at the level of

conceptual understanding. The reason behind this was

that to date, efficient resources capable of performing

semantic analysis or holding domain knowledge,

required for detecting the presence of the features in

text that degrades conceptual understanding of an SRS

document, have been unavailable. This also re-

affirmed the claims of Meyer [19] and Kamsties et al

[9] that ambiguities of SRS text may not be detected

without the aid of formalism. Thus, we proposed that

our NLP-driven quality assessment project would deal

with detecting ambiguity at the level of conceptual

understanding by introducing a level of formalism

(with domain model generation and simulating the path

of execution) and following a semi-automated

approach with continual feedback of the client (see

Figure 1). The reported research results, which are part

of a larger project (see section 1), successfully

establish its approach to detecting ambiguities that are

at the level of surface understanding, and, thus,

facilitating the processes of semi-automated analysis,

to be performed by upcoming modules. We strongly

believe our system, with the potential to clean up

ambiguities at the level of surface understanding, will

not only serve the aforesaid project, but also be useful

as a standalone application working in conjunction

with the requirements specification writing tools. The

prototype of this system is, therefore, implemented to

run both as a standalone application and from within

the Rational XDE environment.

Our future work will focus on introducing more

training data to improve its efficiency in dealing with

unseen SRS texts, and on including a collocation

extractor with our keyword generation tool. Finally, we

look forward to its successful integration with the

module that detects ambiguity in conceptual

understanding.

8. References

[1] Ambriola, V. & Gervasi, V. (1997). “Processing natural

language requirements”. Proceedings of Automated Software

Engineering (ASE'97): 12th IEEE International Conference,

November, pp. 36–45.

[2] Cohen, J. (1960). “A coefficient of agreement for nominal

scales”. Educational and Psychological Measurement, 20,

pp. 37–46.

[3] Congleton, R.D. (2004). “The Median Voter Model”.

Encylopedia of Public Choice: Volume II (eds. Charles. K.

Rowley and Friedrich Schneider), pp. 382–387.

[4] Cyre, W. R. (1995) “A Requirements Sublanguage for

Automated Analysis”. International Journal of Intelligent

Systems, 10 (7), July, pp. 665–689.

[5] Denger, C., Berry, D. & Kamsties, E. (2003) "Higher

Quality Requirements Specifications through Natural

Language Patterns". Proceedings of SWSTE, IEEE

International Conference on Software-Science, Technology

& Engineering, p. 80.

[6] The Institute of Electrical and Electronics Engineers, Inc.

(1998). IEEE recommended practice for software

requirements specifications (IEEE Std 830-1998), October,

New York.

[7] Fabbrini, F., Fusani, M., Gnesi, S. & Lami, G. (2001).

“An Automatic Quality Evaluation for Natural Language

Requirements”. In Proceedings of the 7th International

Workshop on Requirements Engineering: Foundation for

Software Quality REFSQ'01, Interlaken, June pp. 4–5.

[8] Fantechi, A., Gnesi, S., Ristori, G., Carenini, M.,

Vanocchi, M. & Moreschini, P. (1994) “Assisting

requirement formalization by means of natural language

translation”. Formal Methods in System Design, vol. 4, 243–

263.

[9] Kamsties, E., Berry, D.M. & Paech, B. (2001). “Detecting

Ambiguities in Requirements Documents Using

Inspections”. In Proceedings of the First Workshop on

Inspection in Software Engineering (WISE'01), July, Paris,

68–80.

[10] Kleinberg, J. (1999). “Authoritative sources in

hyperlinked environment”. Journal of the ACM, 46(5), 604–

632.

[11] Kolcz, A. & Alspector, J. (2001) “SVM-based filtering

of e-mail spam with content-specific misclassification costs”.

In Workshop on Text Mining, IEEE ICDM-2001, IEEE Press,

Piscataway, NJ.

[12] Kriens, P. (1996). CellKeeper, a Cellular Network

Manager. OOPSLA DesignFest®, 1996. Last retrieved on

July 18, 2007 from http://designfest.acm.org/Problems/

CellKeeper/CellKeeper_96.htm

[13] Gnesi, S., Lami, G., Trentanni, G., Fabbrini, F., &

Fusani, M. (2005). “An Automatic Tool for the Analysis of

Natural Language Requirements”. International Journal of

Computer Systems Science and Engineering, Special issue on

Automated Tools for Requirements Engineering, 20(1),

Leicester, UK: CRL Publishing.

[14] Larsen, B. & Aone, C. (1999). “Fast and effective text

mining using linear-time document clustering”. Proceedings

of ACM SIGKDD-1999, pp. 16–22, August, San Diego.

[15] Layda, T. (2000). Order Matcher for an Electronic Stock

Market. OOPSLA DesignFest®. Last retrieved on July 18,

2007 from designfest.acm.org/Problems/ OrderMatcher/

OrderMatcher_00.htm

[16] Letier, E., Kramer, J., Magee, J. & Uchitel, S. (2005).

“Monitoring and Control in Scenario-Based Requirements

Analysis”. Proceedings the 27th International Conference on

Software Engineering, St. Louis.

[17] Lin, D. (1998). “Dependency-based Evaluation of

MINIPAR”. Workshop on the Evaluation of Parsing

Systems, Granada, Spain, May.

[18] Lu, R., Jin, Z. & Wan, R. (1995) “Requirement

Specification in Pseudo-Natural Language in PROMIS”.

Proceedings of 19th International Computer Software and

Applications Conference (COMPSAC'95), 96–101.

[19] Meyer, B. (1985) “On Formalism in Specifications”.

IEEE Software, 2(1), January 1985, 6–26.

[20]] Hussain, I. (2007). “Using Text Classification System

to Automate Ambiguity Detection in SRS Documents”.

Master’s Thesis, Computer Science and Software

Engineering Department, Concordia University, Montreal,

Canada, August.

[21] Osborne, M. & MacNish, C.K. (1996) “Processing

natural language software requirement specifications”.

Proceedings of ICRE'96: 2nd IEEE International Conference

on Requirements Engineering, IEEE Press, 229–236.

[22] Quinlan, J.R. (1993). C4.5: Programs for machine

learning. San Mateo, CA: Morgan Kaufmann.

[23] Rolland, C. & Proix, C. (1992). “A Natural Language

Approach For Requirements Engineering”. Proceedings of

the 4th International Conference CAiSE'92 on Advanced

Information Systems Engineering, LNCS 593, Manchester,

UK, pp. 257–277.

[24] Spertus, E. (1997). “Smokey: Automatic recognition of

hostile messages”. Proceedings of IAAI-97, Providence,

July, pp. 1058–1065.

[25] Tjong, S.F., Hallam, N. & Hartley, M. (2006).

“Improving the Quality of Natural Language Requirements

Specifications through Natural Language Requirements

Patterns”. Proceedings of the 6th IEEE International

Conference on Computer and Information Technology, (CIT

'06), September,.

[26] Wilson, W. (1997) “Writing Effective Requirements

Specifications”. In USAF Software Technology Conference,

Utah, April.

[27] Wilson, W., Rosenberg, L. & Hyatt, L. (1996)

“Automated Quality Analysis of Natural Language

Requirement Specifications”. Proceedings of the 14th Annual

Pacific Northwest Software Quality Conference, Portland.

[28] Witten, I. H. & Frank, E. (2005). Data mining: Practical

machine learning tools and techniques (2nd ed.). San

Francisco, CA: Morgan Kaufman.

[29] Zhang, Z. & Varadarajan, B. (2006) “Utility scoring of

product reviews”. Proceedings of ACM CIKM-2006,

Arlington, pp. 51–57.

