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Abstract 
 

The success of a software project is largely 

dependent  upon the quality of the Software 

Requirements Specification (SRS) document, which 

serves as a medium to communicate user requirements 

to the technical personnel responsible for developing 

the software. This paper addresses the problem of 

providing automated assistance for assessing the 

quality of textual requirements from an innovative 

point of view, namely through the use of a decision- 

tree-based text classifier, equipped with Natural 

Language Processing (NLP) tools. The objective is to 

apply the text classification technique to build a system 

for the automatic detection of ambiguity in SRS text 

based on the quality indicators defined in the quality 

model proposed in this paper. We believe that, with 

proper training, such a text classification system will 

prove to be of immense benefit in assessing SRS 

quality. To the authors' best knowledge, ours is the first 

documented attempt to apply the text classification 

technique for assessing the quality of software 

documents. 

 

1. Introduction 
 

Requirements Engineering (RE) is concerned with 

the gathering, analyzing, specifying and validating of 

user requirements that are documented in natural 

language for the most part. Software Requirements 

Specification (SRS) is one of the most important 

artifacts produced during the software development 

lifecycle. The success of a software project is largely 

dependent upon the quality of SRS documentation, 

which serves as an input to the design, coding and 

testing phases. The quality assessment of SRS 

documents often takes considerable time to perform 

manually, as the length of a real-life requirements 

document can range from a few pages to hundreds of 

pages containing numerous words, phrases and 

sentences, each with the  potential to be misinterpreted. 

Consequently, even though manual inspection of 

document quality is the most common method used, it 

is also one of the costliest phases of RE.  

Research Objectives: The aim of our research is to 

provide automated assistance for assessing the quality 

of SRS text. The work presented in this paper is the 

first step toward a larger project aimed at applying 

NLP techniques to the RE process (see Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

The objective of NLP assessment in the context of 

that project can be expressed in terms of three main 

goals: 

G1. This involves automatic NLP-driven quality 

assessment of the textual requirements in the 

requirements gathering and elicitation phase.  

G2. This involves automatic NLP-driven quality 

assessment of the textual requirements in the analysis 

and specification phase, where conceptual static and 

dynamic models are developed from the textual 

requirements. 
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Figure 1. NLP-Based Quality Assessment in 
Requirements Engineering 



G3. This involves graphical visualization and 

animation of the conceptual models extracted from the 

requirements text for the user’s validation and 

feedback. 

The objective of this paper is to report on the first 

step toward the automation of quality evaluation in 

SRS documents (see G1 above) by means of a text 

classification system.  The primary goals are to identify 

the textual ambiguities in the requirements elicitation 

phase before the conceptual modeling of the 

requirements begins, and to   automate the detection of 

ambiguity in SRS documents in terms of reading 

comprehension. Our research aim, as a “proof of 

concept”, was to build a text classification system and 

test its applicability for detecting ambiguity in SRS 

documents. 

Quality of SRS text: The notion of SRS quality is 

derived from the existing guidelines in the literature for 

writing SRS documentation (such as [7, 9, 13, 19, 26, 

and 27]) and from the authors’ experience. Some SRS 

quality characteristics are outlined in the IEEE 

Standard 830-1998 [6], which describes the best 

practices recommended by the IEEE for writing an 

SRS document, and defines the quality characteristics 

of a “good” SRS document. They are: (1) Correct, (2) 

Unambiguous, (3) Complete, (4) Consistent, (5) 

Ranked for importance, (6) Verifiable, (7) Modifiable 

and (8) Traceable. The definition of “unambiguous” set 

by the standard corresponds to an SRS document in 

which each of its statements has only one 

interpretation. The IEEE standard further mentions that 

the inherently ambiguous nature of NL can make the 

text of an SRS document fail to comply with the above 

rule, making it ambiguous, and thereby degrading the 

overall quality of the document. 

Research hypothesis (1):  Our hypothesis is that 

the root cause of errors being introduced into the 

requirements (and the consequent reduction in quality) 

is ambiguity in the text. Here, we define ambiguity as 

the difference between the depiction of an informal 

textual description of the problem (requirement) and 

the description of the solution for the informal domain 

where the intents lie. We affirm that lowering the level 

of ambiguity in the textual requirements document will 

lead to a better quality conceptual description (model) 

of the solution, and also reduce the amount of time 

required for requirements analysis and specification.  

We have applied a goal-oriented approach to define 

the hierarchical decomposition of the ambiguity 

concept into quantifiable characteristics (indicators) 

affecting the quality of the text from different 

viewpoints. The NLP text classification technique was 

employed to build a system for the automatic detection 

of ambiguity in requirements documents in terms of 

the quality indicators defined in the quality model.  

Research hypothesis (2):  We understand that none 

of the previous work has tested the applicability or 

performance of using a text classification system to 

automate the detection of textual ambiguities in SRS 

documents. Thus, our second research hypothesis was 

that a decision-tree-based text classifier, trained with 

and tested against human annotated samples, can best 

emulate human decisions taken while detecting 

ambiguity in SRS documents. 

To the authors’ knowledge, ours is the first 

documented attempt to apply the NLP text 

classification technique to software requirements 

quality assessment. We believe that the research results 

reported in this paper not only prove our concept for 

practical use, but also introduce some profound 

analyses of this topic that can fuel further 

investigations among the research community. 

The paper is organized as follows: Section 2 

discusses various viewpoints regarding the quality of 

SRS textual documentation. The underlying quality 

model is introduced in section 3. Our text classification 

system and its performance analysis are presented in 

section 4. A critique of our research results in 

comparison to related work is given in section 5. 

Finally, our conclusions and guidelines for future work 

are outlined in section 6.  

 

2. Views on Quality of SRS Text 
 

The research described in this paper is concerned 

with the challenges inherent in the reading 

comprehension of the initial textual requirements (see 

G1, section 1). Reading comprehension can typically 

be analyzed from two broad viewpoints: the literal 

meaning of a text (or surface understanding) and its 

interpretation (or conceptual understanding). In the 

context of our work, we use the term “surface 

understanding” to denote how easy or how difficult it 

is to understand the facts stated in the document, 

without judging its design or implementation concerns 

in terms of any software engineering concept. By 

contrast, we use the term “conceptual understanding” 

to denote how much a developer or a requirements 

engineer would gain in the analysis and specification 

of a system by carefully reading/examining its problem 

texts only. The increasing difficulty at this level of 

understanding represents possible failure to identify the 

precise meaning of the text (interpretation), which is 

also referred to in Meyer’s work [19] and in the IEEE 

Standard [6] and is defined as ambiguity.  

In our work, we use the term “ambiguity” in its 

more general sense—the characteristics of the 

language used in an SRS document that make its 

content difficult to interpret or to realize in the 



software development process. Ambiguity can exist in 

different forms within the NL texts of an SRS 

document. Consider the following two examples: 

(1) Most commonly, the orders are matched in 

price/time priority: The order with the better 

price has a higher priority than an order with a 

worse price  [15]. 

(2) Design a program that allows a network 

operator to plan changes in every parameter of 

every cell in the network. These planned 

changes should be verified for consistency and 

correctness and then applied to the network in 

the least disturbing way [12]. 

In example (1), it is impossible to evaluate what is 

meant by a “better” price or a “worse” price, since such 

interpretations are highly subjective. Moreover, the 

text does not explain by how much the “priority” will 

change with an increase or decrease in price. Thus, 

example (1) is ambiguous, since we cannot deduce its 

true meaning based on this text. Example (1) 

demonstrates ambiguity at the level of surface 

understanding. Several surface factors can be involved 

at this level, e.g. the length of sentences, ambiguous 

adjectives and adverbs, passive verbs, etc. 

In example (2), the text does not specify how to 

verify the changes to the cells for consistency or 

correctness. So, we find example (2) to be ambiguous 

as well, since the feature it describes cannot be 

realistically implemented in an analysis  model, let 

alone design or executable code, due to lack of 

information. In [19], Meyer defined such a 

phenomenon as “silence”. In his paper [19], he details 

the areas of natural language (NL) where a human 

specifier is most prone to making mistakes. His 

comprehensive study presents a thorough description 

of such mistakes by classifying them into seven 

distinct categories: silence, over-specification, 

contradiction, ambiguity, forward reference and 

wishful thinking. Note that, like the “silence” shown in 

example (2), each of these seven sins can make the text 

so ambiguous that it cannot be realized in any analysis 

model.  

Another point of view regarding reading 

comprehension deals with the impact the scope 

(sentence or passage) of ambiguity has on the overall 

understanding of the text. For instance, our example 

(2) demonstrates ambiguity at the conceptual 

understanding level, because it suffers from a lack of 

information (silence). Such ambiguity usually exists 

within a passage comprising more than one sentence or 

paragraph. Thus, a single sentence may not be enough 

to identify the text as ambiguous. By contrast, the kind 

of ambiguity introduced in example (1) is limited to 

the scope of a single sentence. 

Stakeholders involved in the use and development 

of a system should be able to understand an SRS at 

both the surface and conceptual levels. Thus, writing 

SRS documents which are unambiguous, both at the 

surface level and at the conceptual level, is critical in 

the software lifecycle.  If not detected early, such 

ambiguities can lead to misinterpretations in the course 

of requirements engineering or at a subsequent phase 

of the software development lifecycle, causing an 

escalation in the cost of software development. The 

research reported in this paper targets an automatic 

assessment of SRS text by means of a classifier to 

automatically flag ambiguous and unambiguous texts 

at both the surface and conceptual levels within their 

corresponding scopes at an early stage of the 

requirements elicitation process, which can  save a 

great deal of aggravation, not to mention cost. For this 

purpose, we had to identify the discriminating features 

of the text that characterize the quality of an SRS text 

from different viewpoints. The next section introduces 

the underlying hierarchical quality model which 

depicts the decomposition of ambiguity into 

measurable features compiled directly from the text. 

 

3. Underlying Quality Model 
 

The challenge in defining a quality model for SRS 

text originates in the subjective nature of NL 

ambiguity. To surmount this, we have applied a goal-

oriented approach to address objective and 

discriminating linguistic features upon which both 

surface and conceptual levels of ambiguity depend. For 

this purpose, we have developed separate specific 

guidelines and examples of what is to be considered 

ambiguous in terms of surface and conceptual 

understanding respectively. The guidelines indicate 

what to look for in a text, but do not give any strict 

instructions. They were developed by taking into 

account previous work in the field, such as [7, 9, 13, 

19, 26, and 27]. For example, in terms of surface 

understanding, the following phenomena could render 

a passage ambiguous: 

- Long sentences. A long sentence can be identified 

by many commas or semi-colons, several main 

verbs or clauses in a sentence, the use of 

parentheses, etc. 

- Introduction of many concepts in a single 

sentence. 

- Grammatical errors or heavy syntactical 

constructions. 

- Numerous adjectives and adverbs. 

- Numerous verbs in the passive voice. 

In terms of conceptual understanding, Meyer’s 

seven sins [13] were considered as indicators of 



ambiguity. By contrast, if a directive phrase was found 

in a passage, e.g. “for example”, “note:”, “e.g.”, “such 

as”, “(IMAGE)”, “(TABLE)”, it would render the 

passage less ambiguous. 

Our initial quality model reported in [20] 

considered both surface and conceptual understanding 

indicators. Conversely, the features influencing 

ambiguity in conceptual understanding of the SRS 

documents required domain knowledge and deeper 

semantic analysis, for which available NLP tools are 

inefficient. We, therefore, focused our objective on 

developing the system for detecting ambiguity solely at 

the level of surface understanding; the corresponding 

quality model is given in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Underlying Quality Model  

 

Ideally, assessing the linguistic quality of an SRS 

document should be performed automatically, or at 

least assisted in that task by automated means. In [20], 

we have presented a study investigating the feasibility 

of an annotated tool for automatic assessment of 

quality in SRS documents. The results were sufficient 

for us to believe that an automatic system can be built 

to emulate the decision-making process of the human 

annotators and to automatically classify requirements 

documents.  

 

4. Decision-Tree-Based Text Classifier 
 

Our work targets the automatic assessment of 

textual requirements in terms of their ambiguity by 

means of a text classification system to actually flag 

ambiguous and unambiguous texts.  

Text classification is a technique to classify text 

contents or documents into two or many groups based 

on different characteristics. It is being used for e-mail 

classification and spam detection [11], clustering and 

organizing documents [14], information extraction [24] 

and retrieval [10, 29] etc. A text classifier generally 

uses an implementation of a machine learning 

algorithm. In a supervised training method, values of 

discriminating features of the classes, which the 

classifier uses to classify documents, are collected 

from a large number of documents. Then, with the aid 

of the machine learning algorithm, the classifier is 

‘trained’ based on the feature values of the documents, 

which belong to all the different classes. Thus, when a 

new unclassified document is supplied to the classifier, 

it is able to classify the document into a class based on 

its feature values. 

To build our classifier we needed an annotated 

corpus for the purpose of training and testing.  

 

4.1. Annotated Corpus 
 

To our knowledge, no standard corpus of SRS 

documents has been collected for this task. We 

therefore built our own for the annotation process 

extracted from 25 different problem descriptions (each 

from a different domain) related to SRS. The problem 

descriptions were collected from the ACM’s OOPSLA 

Designfest, available online at 

http://designfest.acm.org/. Annotating an entire 

problem description of several pages, would be 

difficult and not particularly informative if we later 

wish to identify specific features for an automatic 

classification task.  We therefore chose to split up our 

collection of problem descriptions into smaller 

segments that derived two different sets of corpora: the 

discourse-level corpus and the sentence-level corpus. 

For our discourse-level corpus, we extracted 165 

passages from our collection of 25 problem 

descriptions, where each passage contained 140.22 

words on average. Our sentence-level corpus consisted 

of 1211 sentences, all extracted from our collection of 

25 problem descriptions. Each of the extracted 

sentences contained 19.1 words on average. 

To perform the manual classification, we asked four 

annotators (two professors and two graduate students) 

to annotate the samples as “Ambiguous” or 

“Unambiguous” in terms of surface understanding and 

conceptual understanding. All the annotators had 

software engineering backgrounds, but from different 

fields of computer science with significant exposure to 

dealing with SRS documents.  

All the passages and sentences of the corpora were 

annotated into two distinct categories — “ambiguous” 

and “unambiguous”, using a standard scoring 

procedure and employing a median voter model [3]. 

The corpora can be used for the purpose of training 

and/or testing future text classifiers in this field. Figure 

3 illustrates the steps of our corpus annotation process. 

The details on the annotation methodology and the 

analysis of the reliability of the annotations are 

discussed in [20]. The results of the inter-annotator 
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agreement and the reliability of the annotations were 

sufficient to lead us to believe that an automatic system 

can be built to emulate the decision-making process of 

human annotators, and to automatically classify SRS 

documents.  
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Figure 3. Corpus Annotation 

 

In addition, analysis of the above-mentioned results 

indicated a positive correlation between the surface and 

conceptual understanding of the text, and a negative 

correlation between the understanding and the time 

required to analyze a text. The above confirmed our 

premise that lowering the level of surface ambiguity 

would lead to a better conceptual understanding of the 

requirements and reduce the time needed for 

requirements analysis. 

 

4.2. Features Extraction   
 

We have successfully devised NLP-driven feature 

extractor tools that extract discriminating features of 

the SRS text influencing ambiguity in surface 

understanding. The tools can output data files (in 

standard ARFF format), each representing an annotated 

corpus in terms of feature vectors. The file can be used 

to train any machine learning algorithm to develop a 

classifier. 

 

4.3. Algorithm 
 

We chose the C4.5 decision-tree learning algorithm 

[22] for the classification task. The two main reasons 

for this choice were: (1) Decision-trees can allow 

backtracking from a leaf to derive the cause of a 

particular classification, and C4.5 (revision 8), with its 

post-pruning feature, was the best open-source 

decision-tree learning algorithm available to us; (2) 

The size of the documentation was not large enough 

for training neural network algorithms, which would 

have yielded better results. For our next experiment, 

we used the machine learning workbench, called Weka 

[28] that provided a Java-based implementation of the 

C4.5 (revision 8) algorithm, along with the necessary 

framework for training and evaluating our classifier.  

We developed a decision-tree-based text classifier 

that works at both sentence and discourse levels of an 

SRS text and detects ambiguity in surface 

understanding (see sections 4.4 and 4.5). The classifier 

can also be trained with new training data, which 

makes it robust in dealing with unseen samples of SRS 

in future. The classifier attained an impressive 

accuracy, high enough to be applicable in a practical 

semi-automated environment. This eventually proves 

our research hypothesis (1) of the usability of a text 

classifier in detecting ambiguity in SRS documents. 

The details are given below. 

 

4.4. The Sentence Classifier 
 

We have developed the sentence classifier using the 

C4.5 decision-tree learning algorithm (see section 4.3). 

The classifier has a training module, which can be 

trained using the sentence level training data and can 

dynamically generate a decision-tree based on the data. 

This decision-tree-based classifier automatically 

classifies a sentence into ambiguous or unambiguous 

in terms of surface understanding.  

Our sentence-level Feature Extractor tool extracts 

features required for detecting ambiguity in a sentence. 

It counts the frequency of occurrences of valid features 

and ambiguous keywords only in each of the sentences 

of our corpus and stores them in the training data file. 

The training data file also holds the corresponding 

annotation of each sentence. Figure 4 illustrates the 

steps of the classification: 
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Figure 4. Steps of Sentence-level Classification 

 

We experimented with the sentence classifier by 

training the classifier with different combinations of 

sentence level features and testing its performance, as 

compared to that of human annotation. The results 

revealed high performance accuracy, in sufficient 

degree for the classifier to be applicable in practical 

fields (see section 4.6). 

Our results with this initial experiment affirm that 

the task of detecting ambiguity in terms of surface 

understanding is indeed achievable by means of 

currently available NLP tools and text classification 

techniques. The accuracy of our sentence classifier 

establishes its applicability in practical fields, where 

ambiguity is detected at the sentence level. But, since 

our primary concern was to detect ambiguity at the 

discourse level, we continued with our work of 

building the ultimate classifier that could best emulate 

the decisions of our human annotators by classifying a 

discourse based on its ambiguity at the level of surface 

understanding. 

4.5. The Discourse Classifier 
 

We built the discourse-level classifier using our 

sentence classifier. Figure 5 illustrates the process. 

Here, the sentence classifier was used to count the 

number of ambiguous sentences in each of the 

instances (passages) in our corpora, and classify an 

instance based on the density of ambiguous sentences 

(along with two other discourse features, which were 

ignored by our classification algorithm on the basis of 

our training data file) and the corresponding annotation 

of the instance. 

We then experimented with the discourse classifier 

by training it with different discourse level features, 

and testing its performance against that of human 

annotation. The results show high performance 

accuracy, affirming that the approach of using a text 

classifier is applicable in practical fields for detecting 

ambiguous passages in SRS documents (see section 

4.6). 
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Figure 5.  Discourse-level Classification using the Sentence Classifier 



4.6 Performance Evaluation 
 

The performance of a system can be evaluated from 

different perspectives. For evaluating the performance 

of our system we chose to compare the performance of 

our discourse-level classifier to the human 

performance. 

For this purpose, we compared the level of 

agreement of the classifier and that of each of the 

annotators with the gold standard (decided by the 

annotations of Annotator3, see [20] for more details). 

Figure 6 shows that the classifier emulates the 

annotations of Annotator3 successfully by fitting its 

decision-tree properly with the annotator’s annotation 

and attaining a high “substantial” level of agreement 

when training and testing were done on the same 

corpus, and also when 10-fold-cross-validation was 

performed (Cohen’s [2] kappa index 0.7572 and 

0.7203, respectively).  

This result is also considerably higher than the 

average level of agreement human annotators had with 

Annotator3 (Kappa index 0.5426 on average, denoting 

a “moderate” level of agreement). As the discourse-

level classifier system aims to be a part of the 

requirements elicitation and analysis process, where its 

outputs are expected to be verified by an experienced 

requirements analyst, we can endorse its performance 

to be fully adequate for the purpose. 

The above results of the performance analysis 

thoroughly prove our research hypothesis (2) affirming 

that the approach of using a text classifier is applicable 

in practical fields for detecting ambiguous passages in 

SRS documents. Although our work is fully 

concentrated in detecting ambiguities at the level of 

surface understanding, it will facilitate our future work 

of detecting conceptual ambiguities by improving the 

quality of the SRS text. 

The classifier can also be trained with new training 

data, which makes it robust to deal with unseen 

samples of SRS in future. The classifier attained an 

impressive accuracy, high enough to be applicable in a 

practical semi-automated environment. This ultimately 

proves our hypothesis of the usability of a text 

classifier in detecting ambiguity in SRS documents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Performance Evaluation of Discourse-level Classifier that uses the Sentence Classifier 
Compared to Human Annotators in Terms of Their Level of Agreement with Annotator3 

 

4.7 Prototype 
 

A small prototype (written in Java) has been 

developed to demonstrate the use of our classifier. We 

used the annotated corpus of this study to train the text 

classification prototype that can automatically classify 

SRS documents based on their probable defects at the 

level of surface understanding only. The system can 

label a discourse as ambiguous, and, at the same time, 

identify the sentences that are responsible for making it 

so.  

The prototype named Requirements Specification 

Ambiguity Checker (ReqSAC) is platform 

independent, and can be executed online, or from 

within the Rational XDE environment. This ensures 

future usability of the system. The UI also features on-

the-fly text editing to correct errors and enhance the 

quality of the SRS, using the same linguistic features 

that our annotators used to detect errors at the level of 
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surface understanding.  Figure 7 shows a snapshot of 

the main window of the prototype.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Related Work 
 

Many studies have previously addressed the issue of 

detecting ambiguities in requirements documents, and 

several approaches have been proposed.  Although 

they are often similar in the types of tools they use, 

these approaches are sometimes radically different in 

the way they attempt to detect ambiguities.  

The use of manual inspection still seems to be the 

most popular way to detect and resolve ambiguities. A 

leading study, and one of the earliest in this field, was 

conducted by Bertrand Meyer [19], who stressed that 

natural language requirements specifications are 

inherently ambiguous, and that the use of formal 

specifications is absolutely necessary to resolve these 

ambiguities. Meyer’s approach to detecting such 

ambiguities was to inspect each word, phrase and 

sentence manually.  For their part, Kamsties et al. [9] 

proposed a specific methodology of human inspection 

to resolve ambiguity. While they argue in favor of 

manual inspections, their work demonstrates a 

dependence on formal specifications, e.g. UML 

models, especially for detecting ambiguities related to 

the problem domain. Their study concludes that “one 

cannot expect to find all ambiguities in a requirements 

document with realistic resources” – even with such 

complete human involvement.  Manual detection is 

typically the most accurate approach; however, it is 

also the most expensive. We also note that Letier et al. 

[16] propose the use of formal specifications to 

validate requirements. 

The work of Ambriola et al. [1] attempts to validate 

NL Specification with the help of the user after 

deriving a conceptual model automatically from the 

requirements specifications using their tool, which they 

call Circe. This tool is funded by IBM and is now 

available as a plug-in for Eclipse. Although Circe is in 

general use, it still does not consider the existence of 

ambiguities at the level of surface understanding. This 

could corrupt their conceptual model, making errors 

extremely difficult for a user to detect from the model 

at a later point. 

Many other studies attempt to reduce the problems 

associated with unrestricted NL by limiting the scope 

of the language. Some use a new NL-like sublanguage, 

as in [4, 18], but this is not truly NL. Others propose 

restricting the grammar to consider only a subset of NL 

when writing requirements specification [5, 8, 23, and 

25].  However, although using a restricted language 

does simplify the task of detecting ambiguities, it 

imposes severe constraints on the software engineer’s 

freedom of expression. 

Recently, researchers have attempted to deal with 

unrestricted language by using techniques developed in 

NL processing (NLP). Tools such as part-of-speech 

taggers, syntactic parsers and named-entity taggers 

have achieved very respectable accuracy, which means 

that they can be used for real-world texts. Osborne et 

al. [21], for example, try to detect ambiguities in SRS 

documents through syntax. They use a syntactic parser 

to derive all possible sentence parsing trees. If a 

sentence generates more than one parsing tree, then it 

is considered ambiguous. The problem with this 

approach is that what is possible at the syntactical level 

may not be plausible at the interpretation level. 

Discourse or world-knowledge constraints may 

eliminate a possible syntactical interpretation, leaving a 

sentence with multiple syntactical parses which are 

unambiguous to the human reader. 

Another interesting tool, that of Wilson et al. [26, 

27], uses nine quality indicators for requirements 

specification: Imperatives, Continuances, Directives, 

Options, Weak Phrases, Size, Specification Depth, 

Readability and Text Structure. However, results 

derived from using their tool reveal only the frequency 

counts of those indicators in different samples, without 

taking the crucial decision of whether or not a sample 

is ambiguous. 

Fabbrini et al. [7] and Gnesi et al. [13] address the 

issue by proposing a tool called “QuARS: Quality 

Analyzer for Requirements Specification”.  QuARS 

syntactically parses the sentences using the MINIPAR 

parser [17], then it combines both lexical (part-of-

speech tags) and syntactical information to detect 

Figure 7.  A Snapshot of the ReqSAC Client 

 



specific ambiguity indicators of poor-quality 

requirements specification. In their paper, however, the 

quality indicators seem to be mostly based on a list of 

handpicked specific keywords, rather than on more 

general classes of words. At every stage of processing, 

QuARS requires the use of a different “modifiable” 

keyword dictionary, which seems to be manually 

created and modified, for a particular stage of 

processing and for a specific problem domain, by the 

requirements engineer. Their idea seems to be 

dependent on using these special dictionaries, the 

relevance and practical usefulness of which are 

uncertain. Again, their quality measurement metrics 

are not well enough defined to characterize a text as 

ambiguous. 

As discussed, researchers have previously attempted 

to flag ambiguous texts using various (semi-) 

automatic methods.  However, these methods have 

typically been evaluated anecdotally or on a small 

scale. To our knowledge, no one has attempted a 

formal evaluation of their results and a comparison to 

human evaluations.   Our work provides a benchmark 

for evaluation of the feasibility of such a task by 

analyzing how difficult it really is to perform and how 

the automatic tools developed can compare to human 

performance, and an upper bound on what we can 

expect automatic tools to achieve. 

 

6. Conclusions and Future Work 
 

This paper addresses the problem of detecting 

ambiguities in SRS documents. Acknowledging the 

fact that none of the previous work has tested the 

applicability or performance of using a text 

classification system to automate such detection 

process, the research results proved our hypothesis by 

affirming that the approach of using a text classifier is 

applicable in practical fields for detecting ambiguous 

passages in SRS documents. The work also 

encompassed some important related topics, e.g. how 

difficult it is to manually detect ambiguity in SRS 

documents and how the automatic tools developed can 

compare to human performance. 

To prove our concept, we developed a text 

classification system that can detect ambiguity in an 

SRS document by classifying its passages as 

ambiguous or unambiguous.  The system yields high 

performance accuracy demonstrating  86.67% accuracy 

under the critical conditions of using 10-fold-cross-

validation technique [20]. When comparing whether its 

results agreed with the decisions of an expert, it was 

found to outperform human annotators with average 

expertise in detecting ambiguities. It can also be 

affirmed that the system will perform better in practical 

fields with the inclusion of new training data. We also 

built a prototype of this system to demonstrate its 

practical usage. 

Our work strictly concentrated on detecting surface 

understanding ambiguities, while avoiding the 

detection of ambiguities which are at the level of 

conceptual understanding. The reason behind this was 

that to date, efficient resources capable of performing 

semantic analysis or holding domain knowledge, 

required for detecting the presence of the features in 

text that degrades conceptual understanding of an SRS 

document, have been unavailable. This also re-

affirmed the claims of Meyer [19] and Kamsties et al 

[9] that ambiguities of SRS text may not be detected 

without the aid of formalism. Thus, we proposed that 

our NLP-driven quality assessment project would deal 

with detecting ambiguity at the level of conceptual 

understanding by introducing a level of formalism 

(with domain model generation and simulating the path 

of execution) and following a semi-automated 

approach with continual feedback of the client (see 

Figure 1). The reported research results, which are part 

of a larger project (see section 1), successfully 

establish its approach to detecting ambiguities that are 

at the level of surface understanding, and, thus, 

facilitating the processes of semi-automated analysis, 

to be performed by upcoming modules. We strongly 

believe our system, with the potential to clean up 

ambiguities at the level of surface understanding, will 

not only serve the aforesaid project, but also be useful 

as a standalone application working in conjunction 

with the requirements specification writing tools. The 

prototype of this system is, therefore, implemented to 

run both as a standalone application and from within 

the Rational XDE environment. 

Our future work will focus on introducing more 

training data to improve its efficiency in dealing with 

unseen SRS texts, and on including a collocation 

extractor with our keyword generation tool. Finally, we 

look forward to its successful integration with the 

module that detects ambiguity in conceptual 

understanding.  
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