Resolving Quantifier and Number Restriction to Question OWL
Ontologies

Shamima Mithun, Leila Kosseim, and Volker Haarslev

Concordia University
Department of Computer Science and Software Engineering
E-mail: {s mithun, kosseim, haarslev}@cse.concordia.ca

Abstract

This paper describes an approach to resolve quanti-
fiers and number restrictions in natural language ques-
tions to query ontologies. Incorporating this feature
enables natural language query interfaces to capture a
wider range of user queries. To deal with quantifiers
and number restrictions, we analyzed a corpus of such
questions and derived constraints at the syntactic level
to recognize and parse them. The approach was imple-
mented and evaluated through a system called ONLIT.
Our method has been evaluated by conducting different
experiments using the Mean Reciprocal Rank (MRR)
measure. FExperimental results show that this feature
has been incorporated into ONLIT without degrading
its performance in terms of transforming natural lan-
guage queries into the nRQL queries, but definitely in-
creases the expressivity of the user. To the best of our
knowledge no other natural language interface to query
ontologies can deal with quantifiers and number restric-
tions.

1. Introduction

With the growth of the Semantic Web, knowledge
representation repositories such as ontologies are be-
coming more common. As a result, it becomes in-
creasingly more relevant to support simple query ac-
cess to these complex knowledge repositories. Existing
tools allowing users to query and reason over ontolo-
gies [1, 2, 3] require users to write queries using spe-
cific query languages. Irrespective of languages it is
difficult for common users to write queries especially
conjunctive queries. A conjunctive query is defined as
a formula built from atomic formulae, conjunctions and
existential quantifiers. The use of conjunctions makes
the creation of the query very difficult using any query

languages. On the other hand, it is very straight for-
ward for a user to express queries in natural language.
Many domain experts who contribute to the ontol-
ogy engineering process are limited by time constraints
and have difficulty in writing queries using query lan-
guages. To help these domain experts who may have
little or no knowledge of the structure of the ontol-
ogy, we developed ONLI (Ontology Natural Language
Interaction)[8] and its successor, ONLIT. ONLIT is
a natural language question answering system used as
front-end to the RACER reasoner [3] and RACER’s
query language, nRQL [4]. ONLI* supports queries in
unrestricted natural language. It assumes that the user
is familiar with the ontology domain but is not required
to know how to write queries using the nRQL query
language. The system will transform the user nat-
ural language queries into nRQL query formats. This
natural language ontology-based query is equivalent to
searching the whole domain quickly and efficiently for
an interactive search.

ONLIT can handle three types of queries with quan-
tifiers and number restrictions:

1. unary concept queries with quantifier — e.g. “Find
5 fungi”

2. binary role queries with quantifier — e.g. “Find §
fungi that have been reported to have Pectinase”

3. binary role queries with number restriction — e.g.
“Find all fungi that have been described to have
more than 3 enzymes”

Incorporating quantifiers into unary and binary
query atoms and number restrictions into binary query
atoms enables the system to capture commonly used
natural language queries, and thus supports a wider
range of user queries. To our knowledge, no exist-
ing natural language interfaces to query ontologies
deals with quantifiers and number restrictions. Experi-
mental results show that incorporating quantifiers and

number restrictions did not degrade ONLI*’s perfor-
mance with regard to transforming natural language
queries into the nRQL queries.

2 Background: nRQL Query Atoms

The nRQL is a highly expressive description logic-
based query language for the RACER reasoner. The
nRQL uses a Lisp based syntax and the general struc-
ture of a query is composed of a query head e.g. re-
trieve (?z) upon which variables used in the body are
projected, e.g., (%x Fungi), where (retrieve (?z) (%x
Fungi)), queries for instances of the concept Fungi.
Unary concept query atoms and binary role query
atoms are described as:

Unary Concept Query Atoms Using a unary con-
cept query atom, it is possible to find all instances
of a particular concept, for example:

Find all fungi

nRQL atom: (retrieve (?z) (?x fungi))
or whether a specific instance belongs to a partic-
ular class or concept, for example:

Is Protease an Enzyme?
nRQL atom: (retrieve ()(Protease Enzyme))

Binary Role Query Atoms Binary Role query
atoms search for the relation between pairs of
instances, for example:

What can be used in what?

nRQL atom: (retrieve (?z %y) (?z %y

can_be_used_in))
In this type of query, it is possible to refer to a par-
ticular concept or instance name instead of using
variables, for example:

What is used in baking?

nRQL atom: (retrieve (?x) (%x baking

can_be_used_in))
where baking is a concept name. By using
instance and concept names, various forms of
binary role query atoms can be generated.

In addition, complex query atoms can be created
by combining unary concept query atoms and bi-
nary role query atoms.

3. The ONLI" Question Answering Sys-
tem

ONLI™ takes user input in natural language, trans-
lates the input into nRQL query format, submits the

query to RACER, and presents the RACER output
to the user after transforming it into natural lan-
guage. The architecture of ONLIT consists of: Syntac-
tic Analysis, Ontology Mapping, and Query Interface
to RACER. A full description can be found in [8].

3.1. Syntactic Analysis

Using the Minipar parser [9], the user question
is parsed to recognize syntactic constituents; mainly
predicates and noun phrases. From the parse tree,
predicates and their arguments are extracted and rep-
resented into a predicate-argument structure made of
the triplet: <argument, predicate, argument>.

For example, for “Which vendor sells enzyme prod-
ucts?”, the predicate-argument structure produced
will be: <argl:vendor pred:sell arg2:Enzyme Product>
where, argl and arg2 represent the arguments and pred
represents the predicate.

3.2. Ontology Mapping

This module tries to match each constituent of the
structure to roles, concepts and instances in the on-
tology. Predicates are mapped to roles, arguments
are mapped to concepts and instances, and empty ar-
guments are mapped to variables. As predicates do
not contain much domain terminology, WordNet [12]
is used to match the predicates with the ontology role
by unifying its stem with the role of the ontology.
For mapping arguments, lexical similarity measures are
used based on n-gram overlap. Since arguments (noun
phases) tend to be much more domain specific (e.g.,
enzyme names, fungi names), a general purpose lexi-
cal resource such as WordNet cannot be used to match
arguments.

3.3. Query Interface to RACER

The next module generates nRQL queries using the
mapped roles, concepts, and instances and submits
this nRQL query to RACER. The nRQL supports the
<argument, predicate, argument> triple format query
where an argument could be a concept, an instance or
a variable and a predicate could be a role or be empty.
For a particular predicate structure, different nRQL
queries can be generated with their associated confi-
dence level. The best scoring nRQL queries are sent
to RACER. At the end, this module transforms the
answers retrieved from RACER into natural language,
using templates, and presents these to the user.

4. Quantifiers and Number Restrictions

The ONLI system supports queries using unary con-
cept query atoms and binary role query atoms e.g.,
“Find all fungi”, “Find all fungi that have been re-
ported to have Pectinase”, where the first query is a
unary concept query and the second query is a binary
role query. To make ONLI more flexible, we incorpo-
rated quantifiers and number restrictions into ONLI™.
To understand quantifiers and number restrictions let
us first illustrate what we are addressing: quantifiers
are linguistic expressions like some, few and cardinal
values (e.g., 3, 5). Quantifiers are applicable to both
types of queries: unary concept queries and binary role
queries. For example, “Find 5 fungi” is a unary con-
cept query with a quantifier and “Find 5 fungi that
have been reported to have Pectinase” is a binary role
query with a quantifier. Number restrictions are lin-
guistic expressions such as more than, less than, which
are only applicable to binary role queries. For example,
“Find all fungi that have been reported to have more
than 2 enzymes” is a binary role query with number
restriction. This section discusses how ONLIT deals
with quantifiers and number restrictions.

4.1. Quantifiers
Queries

in Unary and Binary

The addition of quantifier handling to unary and
binary queries enables ONLI* to handle queries like:
“Find 5 fungi” or “Find 5 fungi that have been re-
ported to have Pectinase” or “Find some vendors who
are selling enzyme products that can be used in bak-
ing bread”, where the first query is a unary concept
query with a quantifier, the second query is a binary
role query with a quantifier, and the third query is a
complex query with a quantifier.

To deal with quantifiers in unary and binary queries,
ONLIT extracts the quantifier value from the user
query and post-processes query results based on it. The
system needs to recognize quantifiers from the parsed
tree during the Syntactic Analysis phase (Section 3.1).
To do this, we analyzed a corpus of 36 questions and
identified that all quantifiers are attached to an argu-
ment (noun phrase) and this argument is linked to a
predicate (verb). For example, for the binary query
with a quantifier “Find 2 vendors who sell enzyme
products” the generated parse tree is shown in Figure
1. In the parse tree, the cardinality value 2 (noun) is
syntactically related to the noun vendor and this noun
is itself related to the verb find (same relations hold for
unary queries with quantifiers). As a result, the system
will accept this value as a quantifier.

! vendor (N) /‘,

Figure 1. Minipar parse tree for the ques-
tion Find 2 vendors who sell enzyme products.

To identify quantifiers, several syntactic links are
used, notably numerals and determiners. Then ONLI™
uses the quantifier value 2 to prune the list of query
results. If the ontology does not have enough instance
names that match the query then the system will show
all available instances. For example, if the ontology
has only one vendor name that matches with the query
requirement, then the system will show that instance
only. In ONLI™, we mapped the values for quantifiers
other than cardinal values as: some to at least 1, few
and a few to at least 1 and at most to 5, but this can
be changed by the user.

Note however, that from our development corpus,
Minipar was unable to generate a correct parse tree
for these 2 questions: “Give me 4 commercial enzyme
products that are being sold by Biocatalysts Co.” and
“What enzyme is being used in exactly 2 pulp and
paper manufacturing industry”. Since the heuristics
are based on syntactic constraints, ONLIT was there-
fore not able to correctly translate these questions into
nRQL.

4.2. Number Restriction on Binary Role
Query Atoms

ONLI™T extends the binary role query atoms handled
by ONLI with number restrictions. For example, “Find
all fungi that have been described to have more than 3
enzymes”. In this example, we are putting a constraint
or a number restriction more than 3 on the range of the
role describe_to_have which is enzyme. We considered 9
types of number restrictions: less than, less than equal
to, more than, greater than, greater than equal to, at
least, at most, and exactly with a cardinality value. We
also consider some as number restriction, which does

not require any cardinality value (some is implicitly
greater than 0).

To deal with number restrictions on binary roles
ONLIT first analyzes the parsed question in the Syn-
tactic Analysis phase. Then it extracts the number
restriction used in the query and its associated cardi-
nality value and represents it as a triplet structure:

<modifier, cardinality, object>
where modifier specifies number restriction type, cardi-
nality describes the cardinal value, and object describes
which argument is modified by the number restriction.

For example, for the query:

“Find all fungi that have been reported to have less
than 2 enzymes”

the following modifier-cardinality-object structure will
be generated:

<modifier:less cardinality:2 object:enzymes>

To extract these structures, we analyzed a corpus of
42 questions and concluded that the cardinality value
(zero in the case of the number restriction some) is typ-
ically attached to a set of predefined expressions using
number restrictions (e.g., less_than) with an argument
(e.g.,enzyme); and this argument is attached to a pred-
icate (e.g., have).

These syntactic relations are shown in Figure 2. In
the parse tree, the cardinality value 2 is related to the
number restriction “less than” and the noun “enzyme”
is related to the verb “have”.

Figure 2. Minipar parse tree for the ques-
tion Find all fungi that have been reported to have
less than 2 enzymes.

However, here again, the syntactic constraints cover
all cases seen in the development corpus, but when
Minipar is not able to parse the question correctly,
then ONLI™ is not able to translate the query properly.
For example, for the number restricted query “Find all
fungi that have been reported to have at most 2 en-
zymes” the argument enzymes will not be attached to
the predicate reported to have. In this case, Minipar
will generate two separate sub-trees, where the argu-
ment is in one tree while the predicate is in the other.
As a result, the argument will not be attached to the
verb which is required for our heuristic.

Once the system has extracted the required informa-
tion from the user query, it generates an nRQL query
corresponding to that number restriction type. For ex-
ample,

“Find all fungi that have been reported to have less
than 2 enzymes”

will be translated into the nRQL query:

(retrieve(?x) (and(and(?x fungi)(?y enzyme))(?x (at-
most 2 reported_to_have ?7y))))

where, at-most is the nRQL equivalent keyword for less
than, and 2 is the cardinality value. A direct mapping
scheme is used to convert number restriction types to
nRQL keywords.

Finally, this newly created query is executed by
RACER and its results are returned. If a quantifier
is attached with this number restricted query, ONLI™
will post-process results retrieved from RACER and
output the corresponding number of matches.

5. Evaluation

To evaluate the quantifier and number restriction
approach, we tested our system with 30 pairs of ques-
tions and their associated nRQL queries for two ge-
nomic related ontologies, the FungalWeb [13] and
the MutationMiner ontology [15]. For evaluation, the
nRQL queries generated by ONLI™ were compared for
query equivalence with the gold standard queries cre-
ated manually. For comparison, the system-generated
queries are ranked according to their confidence score.
Then, for each question the reciprocal rank of the first
correct answer is computed. If none of the generated
query from the system generated query list is equiva-
lent to the gold standard, a score of 0 was given. Oth-
erwise the score is equal to the reciprocal of the rank
of the first correct answer. The final result is the av-
erage reciprocal score of all questions. This measure is
known as mean-reciprocal rank (MRR) score which is
a standard measure for question answering [14].

5.1. The FungalWeb and the Mutation-
Miner Ontologies

The two ontologies used in the evaluation are Fun-
galWeb and MutationMiner. The FungalWeb ontology,
specified in OWL-DL [5], models conceptualization of
multiple domains. It represents knowledge about the
fungal taxonomy, enzymology, and industrial enzyme
application [13]. This conceptualization enables one to
model fungal species, enzyme names, enzyme product
name, vendor name as instances of this integrated do-
main.

The MutationMiner ontology [15], also specified us-
ing OWL-DL, represents text mining result from the
biology domain, especially the mutational impact on
protein properties. This ontology contains information
on three main class of the biology domain: protein, mu-
tation, and organism. It also contains information to
represent changes in protein properties. Table 1 shows
the size of the two ontologies. MutationMiner is a small
ontology whereas the FungalWeb is much larger in size
(contains many more concepts, instances, and roles),
and concept definitions in the FungalWeb are also more
complex.

Table 1. Ontologies Used in the Evaluation

’ \ FungalWeb \ Mutation Miner

F#concepts 3616 51
#instances 11,163 675
#roles 142 41

5.2. Results and Analysis

To evaluate our method for quantifiers and number
restrictions, we prepared two sets of questions namely
Setl and Set2. Both question sets are related to the
FungalWeb ontology and the MutationMiner ontology,
but Setl contains no questions with quantifiers and
number restrictions while Set2 contains the same ques-
tions from Set1 but extended with quantifiers and num-
ber restrictions. In each set, we had 30 questions.
We evaluated ONLIT with both sets of questions sepa-
rately and obtained an MRR value of 0.35 for Setl and
an MRR value of 0.33 for Set2 (see Table 2). Since the
MRR value for both sets of questions were almost the
same, the use of quantifiers and number restrictions
into unary and binary query atoms does not seem to
lower the system’s performance, yet enables the system
to handle many new types of queries.

Table 2. Experimental Results (MRR)

Unary | Binary | Unary &
only only Binary
#Questions 9 21 30
Set 1: No Quantifiers
and Number Restrictions | 0.83 0.17 0.35
Set 2: Quantifiers and
Number Restrictions 0.78 0.11 0.33

When we analyzed the results further, we noticed
that binary query atoms are more difficult to answer
than unary queries. Our testing set was not balanced:
in each set of questions, out of 30 questions, 21 were
in the form of binary query atoms and only 9 were
unary queries. The MRR for unary queries is 0.78-0.83
whereas for binary query types the MRR is 0.11-0.17
(see Table 2). We suspect that the reason behind this
is the simpler structure of unary query atoms which al-
lows Minipar to generate more correct syntactic parses
and makes the predicates and arguments mapping to
ontology roles and concepts easier and nRQL query
generating task simpler for the system.

With both sets of questions, 11 questions were ac-
tually answered, while 19 were not. Given the MRR
of 0.35, this means that when a question is answered,
then the first answer is the correct one. Table 3 shows
the sources of error of the system for the questions that
were not answered. As the table shows, a wrong syn-
tactic parse taken as input accounts for about half the
errors; but ONLIT itself stills needs to be improved.

Table 3. Sources of Errors for Unanswered
Questions

Minipar | ONLIT
Error Error
Set 1: No Quantifiers
and Number Restrictions 37% 63%
Set 2: Quantifiers and
Number Restrictions 47% 53%

6. Related Work

Question answering systems with a user friendly in-
terface and which allows queries in unrestricted lan-

guage are still very rare. AquaLog [10] and its succes-
sor PowerAqua [11] are ontology-driven question an-
swering systems. They support queries in unrestricted
natural language and are ontology independent. They
are built on the GATE NLP platform [6] and use sev-
eral measures to compute the similarity between the
terms in the questions and roles and concepts of the
ontologies. For this purpose they use string-based al-
gorithms and WordNet [12]. PowerAqua provides fa-
cilities to query multiple ontologies. Our ONLI" sys-
tem is similar to these two systems but ONLI™ can
handle quantifier and number restriction queries which
are absent in those two systems. Querix [7] is another
ontology-based question answering system that trans-
lates generic natural language queries into SPARQL.
In case of ambiguities, Querix relies on clarification di-
alogs with users. In this process users need to dis-
ambiguate the sense from the system-provided sugges-
tions. In contrast to ONLI", Querix does not support
queries across multiple ontologies. Moreover, in [7] it
is not mentioned what types of questions are handled
by the system.

7. Conclusions and Future Work

ONLIT is a portable ontology-driven question an-
swering system which accepts questions in unrestricted
natural language. It can handle queries with quantifiers
and number restrictions. To deal with these linguistic
expressions, we analyzed a corpus of such questions and
derived constraints at the syntactic level to recognize
and parse them. Preliminary evaluation shows that
incorporating this feature into the system does not de-
grade its overall performance, but definitely increases
its expressivity.

Currently, the syntactic heuristics used to parse
quantifiers and number restrictions were tested on a
very small and unbalanced corpus of 30 questions. As
future work, we definitely need to scale up the evalua-
tion and use a distribution of questions that is repre-
sentative of what users actually ask.

The next interesting challenge for ONLI™ is to han-
dle queries with negations (e.g. “Find all fungi which
do not have Cellulase”) or queries using conjunction
or disjunction (e.g., “Find all fungi which have pecti-
nase and/or Cellulase”). We need to explore how to
add these linguistic phenomena namely conjunction,
disjunction, and negation into ONLI™T.

References

[1] FaCT++: http://owl.man.ac.uk/factplusplus/. (last
accessed 2007-07-25).

[2] Pellet: http://pellet.owldl.com/. (last accessed 2007-
01-25).

[3] Racer Systems GmbH & Co. KG : RacerPro User’s
Guide Version 1.9.

[4] nRQL: The new racer query
language. http://www.racer-
systems.com/products/racerpro/manual.phtml.

(last accessed 2007-07-16).

[5] OWL: http://www.w3.0rg/2004/OWL/. (last ac-
cessed 2007-02-16).

[6] H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. GATE: an architecture for development
of robust HLT applications. In 40th Annual Meeting
of the ACL, pages 168-175, 2001.

[7] E. Kaufmann, A. Bernstein, and R. Zumstein. Querix:
A natural language interface to query ontologies based
on clarification dialogs. In 5th International Semantic
Web Conference (ISWC 2006), pages 980-981, 2006.

[8] L. Kosseim, R. Siblini, C. Baker, and S. Bergler. Using
selectional restrictions to query an OWL ontology. In
The 2nd International Conference on Formal Ontology
in Information Systems, Baltimore, Maryland (USA),
November 2006. FOIS-2006.

[9] D. Lin. Dependency based evaluation of MINIPAR.
In Workshop on the Ewvaluation of Parsing Systems,
Granada, Spain, 1998.

[10] V. Lopez, E. Motta, and M. Pasin. AqualLog: An
ontology-portable question answering system for the
semantic web. In Furopean Semantic Web Conference,
Crete, 2005.

[11] V. Lopez, E. Motta, and V. Uren. PowerAqua: Fishing
the semantic web. Lecture Notes in Computer Science :
The Semantic Web: Research and Applications, pages
393-410, 2006.

[12] T. Pedersen, S. Patwardhan, and J. Michelizzi. Word-
Net::Similarity - measuring the relatedness of concepts.
In Nineteenth National Conference on Artificial Intel-
ligence (AAAI-04), San Jose, California(USA), 2004.

[13] Arash Shaban-Nejad, Christopher J.O. Baker, Greg
Butler, and Volker Haarslev. The FungalWeb Ontol-
ogy: Semantic Web Challenges in Bioinformatics and
Genomics. In 4th International Semantic Web Con-
ference (ISWC), Lecture Notes in Computer Science
3729, pages 10631066, Galway, Ireland, 2004.

[14] E.M. Voorhees. Overview of the TREC 2001 Ques-
tion Answering Track. In Proceedings of The Tenth
Text REtrieval Conference (TREC-X), pages 157-165,
Gaithersburg, Maryland, 2001.

[15] R. Witte, T. Kappler, and C. J. O. Baker. Ontol-
ogy design for biomedical text mining. Semantic Web:
Revolutionizing Knowledge Discovery in the Life Sci-
ences, Springer Verlag, 2006.

