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Abstract. Non-functional Requirements (NFRs) such as software quality at-
tributes, software design constraints and software interface requirements hold 
crucial information about the constraints on the software system under devel-
opment and its behavior. NFRs are subjective in nature and have a broad impact 
on the system as a whole. Being distinct from Functional Requirements (FR),  
NFRs are dealt with special attention, as they play an integral role during soft-
ware modeling and development. However, since Software Requirements 
Specification (SRS) documents, in practice, are written in natural language, 
solely holding the perspectives of the clients, the documents end up with FR 
and NFR statements mixed together in the same paragraphs. It is, therefore, left 
upon the software analysts to classify and separate them manually. The 
research, presented in this paper, aims to automate the process of detecting NFR 
sentences by using a text classifier equipped with a part-of-speech (POS) tag-
ger. The results reported in this paper outperform the recent work [6] in the 
field, and achieved a higher accuracy of 98.56% in the critical conditions of us-
ing 10-folds-cross-validation over the same data used by [6].The research re-
ported in this paper is part of a larger project aimed at applying Natural Lan-
guage Processing techniques in Software Requirements Engineering. 

1.  Introduction 

Software Requirements Specification (SRS) document is one of the most important 
artifacts produced during the software development lifecycle.  An SRS document 
specifies features of a software that enriches the understanding of the developers on 
the particular software. SRS documents are composed of two distinct kinds of re-
quirements specification statements: (1) Functional Requirements, and (2) Non-
functional Requirements. 

Functional Requirements (FRs) are the sentences and propositions that specify the 
behavior of the software and/or software components, describing possible inputs and 
events of the environment and the corresponding required outputs. On the other hand, 
Non-functional requirements (NFRs) describe how the software system will provide 
the means to perform functional tasks; for example, software quality attributes soft-
ware design constraints and software interface requirements [10]. Software quality 
NFRs include performance, reliability, maintainability, portability, robustness, secu-
rity and likewise many others. Consider the following example: 



“The System shall allow generation of Inventory Quantity Adjustment documents 
on demand. The System shall not require additional third party licenses resulting in 
royalty fees.”[6] 

Here, the first sentence describes the behavior of a system, and, therefore, is a 
functional requirement. In contrast, the second sentence explains a required quality of 
the system, and, therefore, is a non-functional requirement. Similar to FRs, NFRs also 
play a crucial role in SRS, because they can guide the developers to a completely al-
ternative solution in the future design and implementation phase, because of the con-
straints they hold [4]. During requirements elicitation and analysis, NFRs tend to be 
stated in terms of either the qualities of the functional tasks or the constraints on them, 
which are expressed as functional requirements, as the former affect the semantics of 
the latter. In practice, the initial versions of both FRs and NFRs are written by the 
stakeholders with these FR and NFR sentences mixed together within the same para-
graphs, and it often becomes hard for human analysts to factor out all the NFRs from 
the greater number of FRs. Empirical reports consistently indicate that neglecting 
NFRs in the  requirements elicitation and analysis phase leads to project failures, or at 
least to considerable delays, and, consequently, to significant increases in the devel-
opment final cost [2]. Thus, automating the task of detecting NFRs can reduce the 
risks associated with neglecting NFRs in the development process and therefore 
provide an assessment to the software analysts. 

In this paper, we present our approach towards an effective method for automatic 
classification of textual requirements into two categories, namely, FRs and NFRs, by 
means of using a text classifier equipped with a part-of-speech (POS) tagger. Since 
the characteristics of FR and NFR remain within the scope of sentences, the classifier 
works only at the sentence-level. 

The remainder of this paper is organized as follows: section 2 presents the related 
work. The methodology for automatic assessment of NFRs is introduced in section 3. 
Section 4 presents a discussion of the results and observations. Finally, our conclu-
sions and directions for future work are outlined in section 5. 

2.  Related Work 

The current processes to extract NFRs from SRS documents mostly rely on manual 
inspection, where an analyst reads the texts to identify a sentence manually as FR or 
NFR following different approaches (e.g. [5,7,8]). Research in this field to automate 
the process of extracting NFRs from SRS documents has been scarce. 

A recent study of Cleland-Huang et al. [6] explored the use of text classification as 
an attempt to classify requirements statements into FR and NFR. As reported in their 
paper, their work attained a recall measure of 0.767 and a precision measure of 0.248 
with their corpus. The authors used a stemmer to stem the words of the documents, 
and then selected keywords based on their high probability of occurrences in NFR 
statements. Their system then classified a statement as NFR, if the density of those se-
lected keywords in that statement exceeds a particular threshold, else, otherwise.  

The research work presented in this paper used the same corpus that was used by 
[6] and compares the performance of the resultant classifier with that of theirs. The 



results reported in this work outperform the recent work in this field [6], and attain a 
higher accuracy of 98.56% using 10-folds-cross-validation over the data used by [6]. 

3.  Methodology 

Ideally, classifying the requirements as FR or NFR should be performed, or at least 
assisted, automatically. This section introduces our methodology aimed at improving 
the NFRs detection in requirements documents. 

3.1 The Corpus 

The corpus used by [6] was made freely available for download via [1]. It contains 15 
SRS problem statements, all from different domains, with a total of 765 sentences: 
495 (65%) of them were annotated as “NFR”, while 270 (35%) of them as “FR”. 
These will be referred to as CorpusN and CorpusF, respectively. 

According to [6], all these statements were manually annotated by fifteen graduate 
students of DePaul University (who also work in the software industry as profession-
als). The same corpus is used in this project to train our classifier and also for testing 
its performance. 

3.2.  Syntactic Features 

By definition of NFR, it can be realized that some categories of words are better indi-
cators of NFR by their occurrences in the sentences. For example, NFR sentences of-
ten explain quality attributes of a component or the system as a whole, and such sen-
tences are likely to contain Adjectives and Adverbs in them. Again, NFR sentences 
that explain constraints of the system are likely to contain Cardinals or numeric fig-
ures.  Following these characteristics of NFR, as described in [4], we were motivated 
to choose a list of syntactic features as candidates and test their probabilities of occur-
rence in our collection NFR sentences (CorpusN), and thus, validate them to the most 
representative list of syntactic features. 

We used the Stanford Parser [11] (equipped with Brill’s POS tagger [3] and a mor-
phological stemmer) to morphologically stem1 the words and extract five syntactic 
features from each of the training instances (sentences) of the corpus. These features 
are: 
• Number of Adjectives 
  (e.g. “good”, “bad”, “efficient” etc.) 
• Number of Adverbs 
  (e.g. “very”, “well”, “properly” etc.) 
 

                                                            
1 The morphological stemmer comes built-in with the Stanford parser [11]. It stems with the 

prior knowledge of the morphology of a word, and stems only to the point at which it retains 
its original POS class. 



• Number of Adverbs that modify Verbs 
  (e.g. “well”, “efficiently”, “perfectly” etc.) 
• Number of Cardinals 
  (e.g. “1.56”, “800x600”, “twelve”, “11” etc.) 
• Number of Degree Adjectives/Adverbs 
  (e.g. “better”, “worse”, “best”, “more”, “most” etc.) 
 

We only identified these features as candidates that can have some influence in the 
process of classifying a statement as NFR. Among these features, the ones that are 
valid for detecting NFR were to be selected automatically based on their ranks of the 
higher probabilities of their occurrences in NFR sentences of the training dataset. This 
probability measure for a candidate feature fi is computed as follows: 

CorpusF)in  f ofFrequency   CorpusNin  f of (Frequency
CorpusNin  f ofFrequency   )Pr(f

fi

i
i +
=  

(1) 

Note that this probability is not normalized, while 61% of the total number words 
in both the corpora belonged to CorpusN. The probability values of all the syntactic 
features are shown in Table 1. 

Table 1. Probability Ranking of Syntactic Features (the numbers, computed by formula (1), 
indicates the probability of a feature to appear in Non-functional Requirements (i.e. CorpusN) 

Feature Probability 

Cardinals 0.8762 
Degree Adjectives/Adverbs 0.8571 
Adverbs that modify Verbs 0.8571 

Cutoff Threshold = 0.8 
Adverbs 0.7387 

Adjectives 0.6193 
 
Here, we manually selected a cutoff threshold (>0.8, in this case), and all the 

features exceeding the cutoff threshold were selected as valid (or most discriminating) 
features. 

3.3.  Keyword Features 

Previous work of [6,13] has shown that NFR statements are mostly identifiable by the 
use of specific keywords that belong to different part-of-speech categories. The work 
of [6] also identified specific keywords, but with no regards to their parts-of-speech 
group. This allowed many words of unwanted parts-of-speech group to be included in 
their final list. 

Analyzing the types of most probable words used in NFR, as described in [4], we 
have considered keywords of 9 different parts-of-speech groups separately— the 
frequencies of each becoming a feature in our final feature list. These 9 part-of-speech 
based keyword groups are: 



− Adjective-keywords (coded as: JJ_kw) 
− Adverb-keywords (coded as: RB_kw) 
− Modal-keywords (coded as: MD_kw) 
− Determiner-keywords (coded as: DT_kw) 
− Verb-keywords (coded as: VB_kw) 
− Preposition-keywords (coded as: IN_kw) 
− Common Noun-keywords that appeared in singular form (coded as: NN_kw) 
− Common Noun-keywords that appeared in plural form (coded as: NNS_kw) 

 
Similarly to ranking the features, two different probability measures have been 

considered for ranking the keywords in each of the groups: (a) Unsmoothed Probabil-
ity Measure, and (b) Smoothed Probability Measure. 

3.3.1.  Unsmoothed Probability Measure (UPM). Unlike [6], I considered taking 
the probability measure of a keyword occurring in a particular parts-of-speech (POS) 
category. 
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Keywords of a POS category were then ranked according to the higher values of 
unsmoothed probability measure. A high cutoff threshold is individually set for each 
group to select the most discriminating keywords that attain a higher value than the 
threshold, 

3.3.2.  Smoothed Probability Measure (SPM).  While examining the values of the 
Unsmoothed Probability Measure, we found that some keywords, simply by chance, 
appeared only a few times in CorpusN, but never in CorpusF. This led them to have 
the highest probability value of 1, and was ranked on the top. On the other hand, some 
very discriminating keywords appeared in CorpusN many times, and also, by chance, 
appeared only a few times in CorpusF. UPM method ranks these keywords below the 
earlier ones, since they attain a probability value less than 1. 

Also, with UPM, the keyword that appear, for example, once in CorpusN and 
never in CorpusF, and the keyword that appear, for example, 10 times in CorpusN, 
and never in CorpusF — both attain the same probability value of 1, and therefore, 
ranked together in the same place. But, clearly the second keyword is more discrimi-
nating than the first one. 

To address these issues, we used a second measure that adds a small smoothing 
factor to all values of UPM. This factor takes into consideration how many more 
times the keyword in a particular POS group actually appears in CorpusN, than that of 
CorpusF. That is, 
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Here, the constant α determines how much scaling one would like to add to the 
UPM value (the smaller the value of α, the higher the scaling). In our experiments, we 
used α = 10. 



Like UPM, keywords are also ranked according to their values of SPM, and a cut-
off threshold is chosen to select the most discriminating keywords. 

We used both UPM and SPM values to rank the keywords in their respective POS 
groups. Thus, we had the options, not only to manipulate the cutoff thresholds, but 
also to choose the best probability measures for each of the keyword groups. Table 2 
illustrates the benefit of using SPM by showing an example from our corpora set. 

Table 2. Choosing between UPM and SPM (here, ranking of keywords are based on SPM). 

Keyword POS SPM UPM Frequency 
in CorpusN 

Frequency 
in CorpusF 

“every” DT 1.741 0.941 16 1 
“no” DT 1.482 0.882 30 4 

Cutoff threshold set on SPM = 1.3 
“this” DT 1.225 0.875 7 1 
“these” DT 1.100 1.000 1 0 

 
Table 2 shows the frequency values of the words “every” and “no”, indicating that 

they are the most discriminating words in this category. It can also be guessed by un-
derstanding the nature of NFRs, which are most likely to contain descriptions of con-
straints that usually have determiner words, e.g. “every” and “no”, as quantifiers. On 
the other hand, determiners like “this” and “these” simply appeared more in NFRs by 
chance. We find that, in this case, SPM successfully isolates the two most discrimi-
nating keywords of POS group DT2, while UPM failed to create a proper ranking by 
setting its highest value (1.0) for the keyword “these”. Therefore, here, we chose to 
rank the keywords by SPM values and set a cutoff threshold on them to select the 
most discriminating keywords. Thus, while training the system, for each of the key-
word groups, either SPM or UPM can be chosen, along with the cut-off threshold to 
fine-tune the results. A slice of the list of the keywords selected in this way is shown 
in Table 3. 

Table 3. Some of the keywords of different POS group, selected automatically by the keyword 
extractor program using both SPM and UPM set with different cut-off thesholds. 

JJ_kw RB_kw MD_kw DT_kw VB_kw IN_kw NN_kw NNS_kw 

acceptable only should every accommodate within abuse answer 

active prior may no accomplish than accordance aspect 

ad-hoc adequately might achieve between animation attack 

additional appropriately activate during appearance audience 

adjacent approximately adhere about attention button 

african currently agree alongside auditor calculation 

appealing especially appeal per avoidance condition 

… … 

 
 

… … … … 

                                                            
2 The Penn-tree bank tags are used for the keyword groups. DT signifies Determiners. 



3.4.  Feature Extraction and Classification 

Our final list of features, therefore, is as follows: 
• Number of Cardinals 
• Number of Degree Adjectives/Adverbs 
• Number of Adverbs that modify Verbs 
• Adjective-keywords (coded as: JJ_kw) 
• Adverb-keywords (coded as: RB_kw) 
• Modal-keywords (coded as: MD_kw) 
• Determiner-keywords (coded as: DT_kw) 
• Verb-keywords (coded as: VB_kw) 
• Preposition-keywords (coded as: IN_kw) 
• Common Noun-keywords that appeared in singular form (coded as: NN_kw) 
• Common Noun-keywords that appeared in plural form (coded as: NNS_kw) 

 
To classify the sentences, we developed a Java-based feature extraction program 

that parses the sentences from the corpora, and extracts the values of all the features 
mentioned above, and uses Weka [14] to train C4.5 decision tree learning algorithm 
[12]. We used the implementation of C4.5 (revision 8) that comes with Weka (as J48), 
setting its parameter for the minimum number of instances allowed in a leaf to 6 to 
counter possible chances of over-fitting. The results are discussed in the next section. 

4.  Results and Analysis 

The results came out to be exceptionally well when using the whole dataset for train-
ing and testing. Since the dataset was not very large, we also used 10-fold-
crossvalidation, and the results were very good as well. Table 4 shows the summary 
of the results. 

Table 4. Summary of the results 

 Scheme 
Correctly 
Classified 
Sentences 

Incorrectly 
Classified 
Sentences 

Kappa Comment 

Training + 
Testing on 
same set 

760 
(99.35%) 

5 
(7.63%) 0.9856 Concatenation of 

CorpusN & 
CorpusF 
(Size = 
475 + 270 = 765) 

Cross-
validation 
(10 Folds) 

754 (98.56%) 11 
(1.44%) 0.9682 

Tree is of 
desirable 
characteristics, 
not sparse, and 
also not flat. 
None of the 
branches are 
wrongly directed. 

 
The resultant decision tree after training on the complete dataset also came out 

well-formed. The tree is shown in Figure 3. 



 

Fig. 1. The resultant C4.5 decision tree after training with the complete dataset. 

Detailed results of using 10-fold-crossvalidation with the final confusion matrix 
and standard deviation on all measures are shown in Table 5 and 6 respectively. 

 

Table 5. Confusion matrix when using 10-fold-crossvalidation 

 Classified as 

 FR NFR 

FR 259 11 

NFR 0 495 

 
Table 5 shows that the retrieved all NFRs successfully (100% recall), without 

showing any sign of false negatives. Table 6, on the other hand, shows very low 
standard deviation over all the measurements taken during the iterations of 
crossvalidation (0.02 for precision and 0 for recall). This indicates that the results are 
likely to be robust.  

 
 
 
 
 
 
 
 



 
 

Table 6. Detailed 
results of using 10-
fold-crossvalidation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 2 and 3 shows similar phenomena, where the curves hardly experienced any 
drastic change. 
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Fig. 2. Classifier’s Accuracy/Error curve during 10-fold-crossvalidation 
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Fig. 3. Classifier’s Precision/Recall/F-Measure curve for detecting NFR, during 10-fold-
crossvalidation 

Table 7 compares our results of precision and recall using 10-fold-crossvalidation 
to the results obtained by the previous work [6]. Here, we have further broken down 
our results into steps of improvement, i.e. firstly using syntactic features only, then 
using keyword features only, and then using both types of features, as documented 
previously. 



Table 7. Comparison of our results to that of the previous work [6]. 

  Results 
  Precision Recall 
Work of Cleland-Huang et al. [6] 

- classification by density of keywords in 
the text 

0.248 0.767 

using Syntactic 
features Only 

0.950 1.0 

using Keyword 
features Only 

0.974 1.0 

Our work: 
- classification by C4.5 
decision tree learnner 
(10-fold-
crossvalidation) 

using both 
Syntactic and 
Keyword features 

0.978 1.0 

 
The results of Table 7 show significant improvement over the most recent work [6] 

in the field. The classifier yielded high accuracy in performance, demonstrating re-
sults with 98.56% accuracy in the critical conditions of using 10-fold-crossvalidation. 
The precision and recall achieved by the classifier with 10-fold-cross-validation are 
0.978 and 1.0 respectively, outperforming the work of [6] which attained the precision 
and recall as low as 0.248 and 0.767 respectively. Also, by using the syntactic fea-
tures exclusively, and also by using our keyword features (that we selected based on 
their part-of-speech category) exclusively, yelled results which also surpass the per-
formance of the work of [6] by a large margin.  

5. Conclusions and Future Work 

In this paper, a methodology for automatic classification of requirements by means of 
using a text classifier was presented. Our work extends the idea of [6] of using of In-
formation Retrieval for classifying Non-functional requirements, and showed that us-
ing linguistic knowledge can help perform very well in classification task. Ours re-
search aimed at assisting the software analysts in highlighting the NFRs in the users’ 
textual SRS documents to avoid their further oversight in the development process, 
which can lead to poor quality of the final product and eventually to project failure.  

The research reported in this paper is a part of a larger NLP-driven Requirements 
Engineering project which intends at using Natural Language Processing techniques 
in Requirements Engineering [9].  The goal of the work presented here was to 
increase the quality of the requirements text by deriving a module for the aforesaid 
project that would explicitly flag the requirements statements into FR and NFR for 
further processing. The module presented here can also be run exclusively as a stand-
alone program to perform the classification task on requirements text.  Our future 
work includes introducing more training and testing data, implementing a full-fledged 
prototype to demonstrate its use and a complete integration in our NLP-driven Re-
quirements Engineering project. 
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