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Abstract. In this paper we present the use of the AORTE system in
recognizing textual entailment. AORTE allows the automatic acquisi-
tion and alignment of ontologies from text. The information resulted
from aligning ontologies created from text fragments is used in classify-
ing textual entailment. We further introduce the set of features used in
classifying textual entailment. At the TAC RTE4 challenge the system
evaluation yielded an accuracy of 68% on the two-way task, and 61% on
the three way task using a simple decision tree classifier.

1 Introduction

In this paper we present a novel method of recognizing textual entailment. Tex-
tual entailment is defined as “a relationship between a coherent text T and a
language expression, which is considered as a hypothesis, H. We say that T en-
tails H (H is a consequent of T), if the meaning of H, as interpreted in the
context of T, can be inferred from the meaning of T” [1].
For example, the text:
(T): Jurassic Park is a novel written by Michael Crichton.
Entails the following hypothesis (among others):
(H1): Michael Crichton is an author.
(H2): Jurassic Park is a book.
(H3): Michael Crichton is the author of the book Jurassic Park.

Recognizing textual entailment is a fundamental task to many applications
in natural language processing, such as in Information Retrieval where retriev-
ing relevant documents could be seen as finding documents containing the text
that entails the information we are looking for, in Information Extraction where
the extraction of information is based on a set of templates that entail the infor-
mation that we would like to extract, in Question Answering where candidate
answers are snippets that entail the question we want to answer, and in Sum-
marization where redundancy can be avoided by detecting textual entailment.

The remainder of the paper is organized as follows. Section 2 presents related
work in recognizing textual entailment. In Section 3 we give an overview of our
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approach, focusing on the main features that were used to classify textual entail-
ment. Section 4 presents a performance evaluation of our system at the recent
TAC RTE-4 2008 challenge, and finally in Section 5, we present our conclusion.

2 Related Work

Current methods for recognizing textual entailment are based on a measure of
similarity between the text T and the hypothesis H. These methods can be
categorized into three main approaches: The first and most popular approach
is based on a different set of similarity matching techniques that usually differ
by the assumption they make for measuring the similarity. For example, some
calculate a similarity measure assuming word independence such as the system
of [2], others assume some sort of relationship between words such as the use of
parse trees as in the system of [3]. In addition to defining a similarity measure,
these methods usually rely heavily on the use of machine learning techniques to
classify textual entailment.

The second type of approach is more of a traditional one that relies on a
logic based semantic representation of the text and a theorem prover to prove
the hypothesis, such as the COGEX system of [4].

The last type of approach is a combination of the two first categories, such
as the system of [5] that also relies greatly on world knowledge. This system has
achieved the best results on the Recognizing Textual Entailment challenge for
the last three years.

The method we describe here can be categorized in the last group. It is a
novel approach that relies on knowledge representation, use of extracted world
knowledge from the web, and machine learning. But what is unique about it is
its use of available techniques in acquiring and aligning ontologies, in addition
to machine learning in order to classify textual entailment. The next section will
explain our approach in more details.

3 The AORTE Approach

Our approach for recognizing textual entailment is based on the automatic acqui-
sition of an ontology from the text T, and another ontology from the hypothesis
H, and the alignment of the acquired ontologies. The textual entailment problem
is then reduced to a classification one based on the resulted aligned ontology. In
this paper we will not present the details of the creation and alignment of the
ontologies, but rather will focus on the classification of textual entailment based
on the aligned ontologies.

3.1 Ontology Acquisition

Figure 1 shows a diagram of AORTE’s system architecture. As shown in the
Figure, given a Text and a Hypothesis, the system automatically acquires an
ontology from each, namely ontology-T and ontology-H.
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Fig. 1. AORTE System Architecture

The ontology acquisition phase includes different steps that support the ac-
quisition of classes, properties, and instances of an ontology. Briefly, the first step
is based on syntactic analysis, which uses the Minipar dependency parser [6], the
MARS anaphora resolution system [7], and a set of transformation rules based
on part of speech tags to create a structure that is referred to as a semi-semantic
structure. The second step to ontology acquisition uses the semi-semantic struc-
ture to create a semantic one based on a set of transformation rules and re-
strictions, in addition to RoDEO’s named entities and noun compounds seman-
tic relation extractor [8]. The semantic structure is a semantic underspecified
representation of a sentence described by a set of ternary predicate argument
relations, characterized by having a predicate as a property that is always re-
lating a governing verb to a content word. For example, the sentence “Michael
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Crichton is the author of Jurassic Park” could be represented as a set of “(Pred-
icate(Governing Verb, Content Word[Type])” as follows: “writer(write, Michael
Crichton[author]) & writable(write, Jurassic Park[book])”. RoDEO is responsi-
ble for adding relevant world knowledge that is extracted from the web and
added to the ontologies, such as the type of content word as in “book” for the
type of “Jurassic Park” in our example, or the verb relating compound nouns
as in “write” relating “author” to “book”. The last step in ontology acquisi-
tion is the ontological analysis which transforms the created semantic structures
into a formal semantic representation expressed in the Ontology Web Language
(OWL) and more specifically in OWL-DL, a subset of OWL supporting a de-
cidable (SHOIN(D)) description logic. OWL is a semantic markup language for
defining and instantiating web ontologies, and it is based on description logic.
It is a vocabulary extension of RDF (the Resource Description Framework), de-
rived from the DAML+OIL (DARPA Agent Markup Language and Ontology
Interchange Language), and based on XML (Extensible Markup Language). An
OWL ontology may include descriptions of classes, properties (relations between
two classes), the classes instances, and a set of axioms. The main reason for se-
lecting OWL is the existence of well studied reasoners that can be used to reason
over the created knowledge base schema and instances, the availability of well
studied powerful query formalism, the possibility of applying rules to the created
knowledge base using backward or forward chaining, and the ability to integrate
multiple knowledge bases. The reasoner that we are using is RACER [9]. The
RACER system (an acronym for Renamed ABox and Concept Expression Rea-
soner) is a reasoner that implements tableau calculus for description logic (DL)
and supports the web ontology languages DAML+OIL, RDF, and OWL.

In order to illustrate the system’s output at each stage, let us take the fol-
lowing example from the Recognizing Textual Entailment (RTE3) challenge de-
velopment set [10].

(T): Jurassic Park is a novel written by Michael Crichton.
(H): Michael Crichton is the author of the book Jurassic park.
Figure 2 shows a graphical representation of the automatically created on-

tology from T (ontology-T); while Figure 3 shows the ontology created from H
(ontology-H). In these graphs, rectangles represent classes, solid arrows represent
subclasses, ovals represent properties, dotted lines represent property domain,
and dotted arrows represent property range. What is particular about these
automatically created ontologies is that they are fine-grained in the sense that
almost every occurrence of a content word in the text results in the creation
of a class, every verb semantic role results in the creation of a property, and
additional world knowledge extracted from the web is also added.

As we can see in Figure 2, the created properties are the arguments of the verb
Write, where it has two properties: writer having as range the class Michael
Crichton, and a writable having as range the class Jurassic Park. In addition
the ontology includes a taxonomy created from the extracted types of named
entities, and the syntactic structure of the sentence, where Jurassic Park is a
subclass of Novel and Michael Crichton is a subclass of Writer, Director, and
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Fig. 2. Example of ontology-T for the sentence Jurassic Park is a novel written
by Michael Crichton.

Producer. It should be noted that our definition of an instance as a representation
of a snapshot of the world at a certain time, would force us to consider a named
entity, such as Michael Crichton, as a class containing many instances that each
describes a different situation of the class at a different time.

In Figure 3 the class Write, which was not actually explicitly mentioned
in the hypothesis text, was added in the ontology using the RoDEO system
that extracted it from the web as a verb that characterizes the relationship
between an Author and a Book. The arguments of the verb Write are then
added as properties of this class, were the writer property takes as range
Michael Crichton, and the writable property takes as range Jurassic park.

You can notice from these two graphs that these ontologies are quite similar
to each other. Only the two classes: Author and Book, which are available in the
ontology-H, are missing from the ontology-T.

3.2 Ontology Alignment

The next stage of the AORTE system as shown in Figure 1, is the alignment of
the created ontologies to form a single ontology, namely ontology-A. The align-
ment phase aligns the classes and properties of the two created ontologies. The
alignment takes as its base the ontology created from T and adds to it the classes
and properties that align from the hypothesis ontology. This stage is based on
our implementation of the S-match algorithm [11] that uses the verbOcean lexi-
cal patterns [12] in addition to WordNet [13] to perform the semantic alignment
of classes and properties.

Figure 4 shows a graphical representation of the aligned ontology example,
where the arrows represent an equivalence axiom between classes or properties.
Note that in this specific example, all the classes and properties have been aligned
in the resulted ontology. This is the basis of our hypothesis for recognizing textual



6

Fig. 3. Example of ontology-H for the sentence Michael Crichton is the author
of the book Jurassic park.

entailment, where we take the resulted alignments as features for classifying
textual entailment.

3.3 Identifying Textual Entailment

Our hypothesis for recognizing textual entailment is that if a high proportion of
classes and properties can be aligned between the two created ontologies, then
most probably we have an entailment. Consequently, we created a set of features
based on the aligned ontology that we believe may be helpful in classifying
textual entailment.

The features are:

F1: Available Classes This feature represents the percentage of the classes in
ontology-H that were available in ontology-T.

F2: Available Properties This feature represents the percentage of the prop-
erties in ontology-H that were available in ontology-T.

F3: Available Sub-Classes The percentage of subclass relationships between
classes in ontology-H that are available in the ontology-A.

F4: Equivalent Classes The percentage of equivalent classes available in ontology-
A from the number of classes in ontology-H; where an equivalent class is a
class having a synonym relation discovered using Wordnet.

F5: Possible Equivalent Classes The percentage of possible equivalent classes
available in ontology-A from the number of classes in ontology-H; where
a possible equivalent class is an equivalent class that has been labeled by
AORTE as being a synonym extracted from the web using the verbOcean
lexical patterns.

F6: Equivalent Properties The percentage of equivalent properties available
in ontology-A from the number of properties in ontology-H; where an equiv-
alent property is a property having a synonym relation discovered using
Wordnet.
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Fig. 4. Example of ontology-A, the alignment of ontology-T of Fig. 2 and
ontology-H of Fig. 3

F7: Possible Equivalent Properties The percentage of possible equivalent
properties available in ontology-A from the number of properties in ontology-
H; where a possible equivalent properties is an equivalent property that has
been labeled by AORTE as being a synonym extracted from the web using
the verbOcean lexical patterns.

F8: Disjoint Classes The percentage of disjoint classes available in ontology-
A from the number of classes in ontology-H. Disjoint classes in OWL are
two classes that do not have members in common, in our case it means that
the two classes representing content words are antonyms, these antonym
relations are discovered using Wordnet.

F9: Possible Disjoint Classes The percentage of possible disjoint classes avail-
able in ontology-A from number of classes in ontology-H; where a possible
disjoint class is a disjoint class that has been labeled by AORTE as being
an antonym extracted from the web using the verbOcean lexical patterns.

F10: Disjoint Properties The percentage of disjoint properties available in
ontology-A from the number of properties in ontology-H. Similar to disjoint
classes, that represents content words that are antonyms, and these antonym
relations are discovered using Wordnet.

To better illustrate how these features are computed, let us take our examples
of ontology-T, ontology-H and ontology-A as shown in Figures 2, 3, and 4. Table 1
shows the necessary parameters needed to compute our feature values. These
parameters are retrieved by querying ontology-T, ontology-H, and ontology-A.
The querying should not be seen as a simple matching of classes in a repository
but as a logical inference that is performed using an inference engine. for example,
if we queried the ontology-A for if Michael Crichton is an author, the reasoner
will return True and this will be added to the number of subclass relations in
ontology-A parameter. And with these parameters, we can now compute our
features:
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Parameter Value Parameter Value

Classes in ontology-T 7 Properties in ontology-T 2
Subclass relationships in ontology-T 4 Classes in ontology-H 5
Properties in ontology-H 2 Subclass relationships in ontology-T 2
Classes in ontology-A 9 Properties in ontology-A 2
Subclass relationships in ontology-A 6 Equivalent classes in ontology-A 2
Equivalent properties in ontology-A 0 Possible equivalent classes in ontology-A 0
Possible equivalent properties in ontology-A 0 Disjoint classes in ontology-A 0
Possible disjoint classes in ontology-A 0 Possible disjoint classes in ontology-A 0
Disjoint properties in ontology-A 0

Table 1. Parameters from ontology-T, ontology-H, and ontology-A used to com-
pute the feature values

F1 = (7 + 5− 9)/5 = 0.6 F2 = (2 + 2− 2)/2 = 1
F3 = (4 + 2)/6 = 1 F4 = 2/5 = 0.4
F5 = 0 F6 = 0
F7 = 0 F8 = 0
F9 = 0 F10 = 0

We used three classifying algorithms: the B40 decision tree classifier based
on ID3, a k-Nearest neighbor classifier with k=1, and a Näıve Bayes classifier.
We used as training set the 800 text-hypothesis pairs from the RTE3 pilot task
dataset [10]. The RTE3 pilot task is the task of recognizing textual entailment;
where the dataset is annotated into three decisions: yes for entailment, no for no
entailment, and unknown. We ran the AORTE ontology acquisition and align-
ment to create ontology-T, ontology-H and ontology-A for all 800 pairs. For
each pair, we then extracted the 10 features described above, then trained the
classifiers. Table 2 shows a sample from the training set.

Fig. 5. Part of the decision tree learned from the ontology alignment of RTE3
data set showing the features decision nodes represented by rectangles, each
followed by the chance nodes represented by ovals, and ending with a triangle
followed by the related decision.
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Text Hypothesis F1 F2 . . . F10 Entailment

The sale was made to pay Yukos’ US$ 27.5
billion tax bill, Yuganskneftegaz was orig-
inally sold for US$ 9.4 billion to a little
known company Baikalfinansgroup which
was later bought by the Russian state-
owned oil company Rosneft.

Baikalfinansgroup
was sold to Rosneft.

1 0 0 YES

A decision to allow the exiled Italian royal
family to return to Italy may be granted
amid the discovery that the head of the
family, Prince Vittorio Emmanuele, ad-
dressed the president of Italy properly. He
has called President Ciampi “our presi-
dent, the president of all Italians”.

Italian royal family
returns home.

0.56 0.6 0 NO

Amsterdam police said Wednesday that
they have recovered stolen lithographs by
the late U.S. pop artist Andy Warhol
worth more than $1 million.

Police recovered
81 Andy Warhol
lithographs.

0.77 0.2 0 UNKNOWN

Table 2. Sample of annotated Text-Hypothesis pairs from RTE3

Figure 5) shows part of the decision tree learned from our training set that is
relevant to our T-H example. An analysis of the full decision tree indicates that
the most discriminating features are the following:

1. F9: Possible disjoint classes (root of the tree).
2. F5, F2, and F3: Possible equivalent classes, available properties, and available

sub-classes.
3. F1, F4 and F8: Available classes, equivalent classes and disjoint classes.
4. F6 and F7: Equivalent properties and possible equivalent properties.
5. F10: Disjoint properties.

Traversing the relevant part of the learned decision tree (shown in Figure 5)
shows that for our specific example, the decision tree would classify the relation
as entailment.

4 Performance Evaluation

To evaluate our system, we participated in the recent TAC-RTE challenge. The
Text Analysis Conference (TAC) is a conference that comprises a collection of
tracks concerned with the evaluation of different NLP related technologies. One
of these tracks is the Recognizing Textual Entailment (RTE) Track, which has
the goal of providing a framework to systems that recognize when text entails
another. The RTE challenge define textual entailment as “a directional relation-
ship between two text fragments”, where a Text (T) entails a Hypothesis (H) if
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the truth of H can be inferred from T within the context induced by T”. The RTE
challenge is also divided into two tasks: A three way task in which a system must
classify textual entailment into: “Entailment” if T entails H, a “Contradiction”
if T contradicts H and “Unknown” if the system cannot determine the truth of H
based on T. A two way task in which a system must classify textual entailment
into: “Entailment” if T entails H, and “No entailment” if T does not entail H. In
order to evaluate our AORTE system, we used the RTE4 challenge, and classi-
fied the given 1000 T-H pair into the three way task (Entailment, Contradiction,
and Unknown). The evaluation is done automatically, where the classifications
returned by a system are compared to human annotated golden standard, and
the returned score is the accuracy or the percentage of matching judgments.
As the RTE4 task did not provide a development set, we used the RTE3 pilot
dataset introduced in the previous section for training.

We submitted three different runs, each for a different classification algo-
rithm. In the first run we used the B40 decision tree classifier, and compared to
human annotated answers, this run resulted in an accuracy of 61.6%. For the
second run we used the nearest neighbor classifier (k=1) and resulted in an accu-
racy of 52%. In the last run we employed a Näıve Bayes classifier that yielded a
score of 43.2%. The best run that scored 61.6% was ranked 2nd when compared
to other system that participated in the same challenge.

The RTE challenge automatically converts the three way submitted runs of
each system into two way runs by automatically conflating “Contradiction” and
“Unknown” to “No Entailment”. The B40 decision tree classifier on the two way
run scored a 68.8%, the nearest neighbor classifier achieved 54%, and the Naive
Bayes classifier marked a 54.7%. The best run of 68.8% was ranked 2nd when
compared to other system that participated in the 3-way challenge and had their
answers automatically converted to the two-way format.

In addition to the accuracy measure, the challenge provided the possibility
of ranking the textual entailment pairs by confidence. Where the more confident
the system is in an entailment the higher it is placed or ranked in the evaluated
set. This score is labeled an average precision score, where it is computed as the
average of the systems precision values at all points in the ranked list in which
the gold standard annotation is “Entailment”. As average precision is relevant
only for a binary annotation, in the case of three-way judgment submissions the
pairs tagged as “Contradiction” and “Unknown” will be conflated and re-tagged
as “No entailment”.

We ranked the resulted classification in our system simply by highest number
of available classes and properties. So the highest is the percentage of available
classes + available properties in the aligned ontologies of a T-H pair having an
“Entailment” result, the higher it is placed on the result set. As such, the system
had an average precision of 58.1% for all runs.
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5 Conclusion

This paper proposed a textual entailment recognizing approach based on the
alignment of ontologies that are automatically extracted from text. The ap-
proach classifies textual entailment by learning from the overlap of classes and
properties between the text ontologies and the hypothesis ontology, the percent-
age of equivalent and disjoint classes and properties in the aligned ontology, and
other ontology-alignment related features. The system performance was evalu-
ated using the Recognizing Textual Entailment (RTE-4) challenge, resulting in a
accuracy of 68% on the two-way task, and 61% on the three way task for the best
run that uses a simple decision tree classifier, which ranked 2nd when compared
to the other systems that participated in the challange. By carefully studying
our results we have realized that the system performance had significantly been
affected by the text length, as a result our future work will focus on resolving
this issue and mainly on improving the association of relevant knowledge. In
addition, we will work on providing a detailed analyze of the type of textual
entailment the system can handle and specifically the contribution of each of the
system’s component to the overall performance.
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