

 1

Towards Approximating COSMIC Functional Size from
User Requirements in Agile Development Processes

Using Text Mining

Ishrar Hussain, Leila Kosseim and Olga Ormandjieva

Department of Computer Science and Software Engineering,
Concordia University, Montreal, Quebec, Canada

{h_hussa, kosseim, ormandj}@cse.concordia.ca

Abstract. Measurement of software size from user requirements is crucial for
the estimation of the developmental time and effort. COSMIC, an ISO/IEC in-
ternational standard for functional size measurement, provides an objective me-
thod of measuring the functional size of the software from user requirements.
COSMIC requires the user requirements to be written at a level of granularity,
where interactions between the internal and the external environments to the
system are visible to the human measurer, in a form similar to use case descrip-
tions. On the other hand, requirements during an agile software development
iteration are written in a less formal way than use case descriptions — often in
the form of user stories, for example, keeping with the goal of delivering a
planned release as quickly as possible. Therefore, size measurement in agile
processes uses methods (e.g. story-points, smart estimation) that strictly depend
on the subjective judgment of the experts, and avoid using objective measure-
ment methods like COSMIC. In this paper, we presented an innovative concept
showing that using a supervised text mining approach, COSMIC functional size
can be automatically approximated from informally written textual require-
ments, demonstrating its applicability in popular agile software development
processes, such as Scrum.

1. Introduction

The agile development process breaks down the software development lifecycle into a
number of consecutive iterations that increases communication and collaboration
among stakeholders. It focuses on the rapid production of functioning software com-
ponents along with providing the flexibility to adapt to emerging business realities
[19]. In practice, agile processes have been extended to offer more techniques, e.g.
describing the requirements with user stories [21]. Instead of a manager estimating
developmental time and effort and assigning tasks based on conjecture, team mem-
bers in agile approach use effort and degree of difficulty in terms of points, or size, to
estimate of their own work, often with biased judgment [5]. Hence, an objective mea-
surement of software size is crucial in planning and management of agile projects.

We know that effort is a function of size [22], and a precise estimation of software
size right from the start of a project life cycle gives the project manager confidence
about future courses of action, since many of the decisions made during development

 2

depend on the initial estimations. Better estimation of size and effort allows managers
to determine the comparative cost of a project, improve process monitoring, and ne-
gotiate contracts from a position of knowledge.

The above has led the industry to formulate several methods for functional size
measurement (FSM) of software. Allan Albrecht first proposed the idea in his work
on function point analysis (FPA) in 1979 [2], where he named the unit of functional
size as function point (FP). His idea of effort estimation was then validated by many
studies, like [3,17], and, thus, measuring the functional size of the software became an
integral part of effort estimation. There have been many standards developed by dif-
ferent organizations on FSM methods, following the concepts presented in Albrecht’s
FPA method. Four of these standards have been accepted as ISO standards: they are
IFPUG [14], Mark II [15], NESMA [16] and COSMIC [13].

There have been many studies in recent years [6,7,26], where researchers at-
tempted to automate the process of different functional size measurement methods,
but none of them, to our knowledge, addressed the problem where they would take
the textual requirements as input to start the automatic measurement process. In addi-
tion, all these work depended on extracting manually the conceptual modeling arti-
facts first from the textual requirements, so that a precise functional size measurement
can be performed. On the other hand, the work documented in this paper aims to de-
velop a tool that would automatically perform a quicker approximation of COSMIC
size without requiring the formalization of the requirements. This is in response to the
high industrial demands of performing size estimation during agile development
processes, where formalization of requirements are regarded as costly manipulation,
and, thus, ignored during size estimation. Our methodology extends the idea pre-
sented in the Estimation by Analogy approach [25] and the Easy and Quick (E&Q)
measurement approach, that was originated in the IFPUG standard [14]. The applica-
bility of this approach in COSMIC was manually demonstrated by [24].

2. Background

2.1 COSMIC

For the purposes of this research, we have chosen to use the COSMIC FSM method
developed by the Common Software Measurement International Consortium
(COSMIC) and now adopted as an international standard [13]. We chose this method
in particular, because it conforms to all ISO requirements [12] for FSM, focuses on
the “user view” of functional requirements, and is applicable throughout the Agile de-
velopment life cycle. Its potential of being applied accurately in the requirements spe-
cification phase compared to the other FSM methods is demonstrated by the study of
[8]. Also, COSMIC does not rely on subjective decisions by the functional size mea-
surer during the measurement process [13]. Thus, its measurements, taken from well-
specified requirements, tend to be same among multiple measures. This is particularly
important for validating the performance of the automatic size measurements that
would be yielded by our solution.

In COSMIC, the size is measured in terms of the number of Data-movements,
which accounts for the movement of one or more data-attributes belonging to a single

 3

Data-group. A data-group is an aggregated set of data-attributes. A Functional
Process, in COSMIC, is an independently executable set of data-movements that is
triggered by one or more triggering events. A triggering event is initiated by an “ac-
tor” (a functional user or an external component) that occurs outside the boundary of
the software to be measured. Thus, a functional process holds the similar scope of a
use case scenario, starting with the triggering event of a user-request and ending with
the completion of the scenario.

The data-movements can be of four types: Entry, Exit, Read and Write. An Entry
moves a data-group from a user across the boundary into the functional process, while
an Exit moves a data group from a functional process across the boundary to the user
requiring it. A Write moves a data group lying inside the functional process to persis-
tent storage, and a Read moves a data group from persistent storage to the functional
process.

COSMIC counts each of these data-movements as one CFP (COSMIC Function
Point) of functional size, and measures the size of each of the functional processes
separately. It then sums up sizes of all the functional processes to compute the total
size of the system to be measured.

2.2 Size Measurement in Agile Development Processes

Agile development processes are driven by the motto of delivering releases as quickly
as possible [19]. The size of every agile iteration is subjectively estimated by means
of user requirements that are written less formally than use case descriptions. These
textual requirements, which are mostly available in the form of smart use cases [1] or
user-stories [21], although, do not provide detailed description of the scenarios like
those found in use cases, they must hold “enough details” to perform the size estima-
tion [21]. Size measurement methods in agile development processes include story-
points [5] and smart estimation [1], and depend on the subjective judgment of human
experts, and, therefore, are prone to biases and errors [5].

COSMIC offers an objective method of measuring functional size. It is built to be
applied in the traditional processes of software development, where documentation of
requirements using formalisms and templates is required. However, the IT industry
recognized the traditional processes to cause many problems including delays and is
now increasingly moving towards agile development processes, such as Scrum [29],
an agile approach that does not impose documentation templates or formalisms on re-
quirements. Lack of formalism in requirements restricts FSM methods, like COSMIC,
to be applied for measuring the functional size of an iteration in an agile development
process. For example, from the discussion in section 2.1, it can be understood that the
number of data-groups, which is necessary to be known to carry out COSMIC FSM,
cannot be identified by the measurer from a set of requirements statements alone un-
less he/she is supplied with a complete list of available data-groups that requires for-
malizing the requirements with conceptual model (e.g. a domain model).

Our work presents an alternative solution, which does not require the use of do-
main models; instead, it proposes an objective way of approximating the COSMIC
functional size of a functional process (i.e. a use case) that is described by an infor-
mally written set of textual requirements, in forms likely to be used in agile size esti-
mation.

 4

3. Related Work

One of the leading work done in the area of automating COSMIC FSM is by Diab et
al [7], where the authors developed a comprehensive system called, μcROSE, which
accepts state charts as inputs to measure the functional size of real-time systems only.
We find their work to be largely dependant on a set of hard-coded rules for mapping
different objects of interest to different COSMIC components, and also require C++
code segments to be attached with the state transitions and supplied as input too, so
that data-movements can be identified. They presented a very brief validation of their
work by an expert, testing their system against only one case study, where it per-
formed poorly in detecting the data groups, resulting in some erroneous measurement
outputs.

Condori-Fernández et al [6] performed another study, where they presented step by
step guidelines to first derive manually the UML modeling artifacts, e.g. the use case
models and system sequence diagrams from the requirements, and then, apply their
set of rules for measuring the COSMIC functional size of the system from the UML
models. Their approach was validated on 33 different observations, showing repro-
ducible results with 95% confidence.

4. Methodology

Most of the related work performed in this field were directed towards performing a
precise measurement of COSMIC functional size. On the other hand, our goal is to
develop an automated tool that would do quicker estimation of COSMIC size without
requiring the formalization of the requirements. Our methodology requires the histori-
cal data of an organization to be stored for the purpose of generating a dataset for
training/testing our application. The historical dataset needs to contain sets of textual
user requirements written in any quality, where each set corresponds to a unique func-
tional process, along with their respective functional size in COSMIC to be recorded
by human measurers. We present our detailed methodology in the following sections.

4.1 CFP Measurement

Our first step is to build our historical dataset by manually measuring the COSMIC
size of the functional processes in units of CFP (COSMIC Function Point). The avail-
able textual description of the user requirements corresponding to each functional
process is used for this purpose. Here, for each requirements statement belonging to a
functional process, the human measurer first identifies how many different types of
data-movements are expressed by the statement, and then, how many data-groups par-
ticipate in each of the types of data-movements present in the statement. Following
COSMIC, the sum of number of data-groups for each type of data-movements indi-
cates the total CFP size of one requirements statement. The measurer repeats this step
for the rest of the requirements statements within the functional process and summing
up their sizes results in the CFP count for the whole functional process. The measurer
then again sums up CFP sizes for each of the functional processes to obtain the re-

 5

spective CFP count of the whole system. Table 1 illustrates the CFP counting process
with a hypothetical example of a system consisting of two functional processes.

Table 1. A hypothetical example of precise CFP calculation

Functional
processes User requirements

Types of Data-movements
expressed by the state-
ment:

Number of Data-
groups involved in
a data-movement

Size in
CFP

FPr:1

1.1 User requests to view
the detailed information
of one item.

Entry 2 2

Read 1 1

Size of statement 1.1 = 3

1.2 System displays detailed
item information.

Exit 1 1

Size of statement 1.2 = 1

Total size of FPr:1 = 3+1 = 4

FPr:2

2.1 When user requests to
add the item to the
shopping cart, system
adds it and displays the
cart.

Entry 2 2

Write 1 1

Exit 1 1

Size of statement 2.1 = 4

Total size of FPr:2 = 4

Total size of the whole system =
4 + 4 =

8

Our approach requires these measurement data to be saved in the historical database
for the past completed projects. For this work, we will need the CFP count for each of
the functional processes that have been measured, along with the textual requirements
associated to a functional process.

4.2 Class Annotation of Functional Processes

Once we have gathered the historical dataset, we need to define classes of functional
processes, based on their sizes in CFP, to be used later in the automatic classification
task. To do this, we performed a box-plot analysis on the CFP size values from our
historical dataset, to produce four different classes of functional processes, based on
their sizes in CFP. Table 2 shows the defined ranges of these classes.

Table 2. Ranges of CFP values to define the classes

Classes Ranges

Small [0, Lower Quartile)

Medium [Lower Quartile, Median)

Large [Median, Upper Quartile)

Complex [Upper Quartile, ∞)

Here, the lower quartile would cut off the lowest 25% of all the recorded CFP size da-
ta from the historical database. The median would divide the dataset by 50%, and the
upper quartile cuts off the highest 25% of the dataset.

These four sets of ranges allow us to annotate the textual requirements of the func-
tional processes automatically into four fuzzy size classes. In our class ranges, we

 6

keep the minimum and the maximum values as 0 and ∞, respectively, instead of the
sample minimum or the sample maximum, like in an actual box-plot analysis; so that,
if the new unseen sample is an outlier compared to the historical dataset, it would still
get classified into a class.

After defining the class boundaries automatically, we then calculate the mean, the
minimum and the maximum for each of the classes, to designate the range of the ap-
proximate size for each of the classes.

4.3 Text Mining

Our next step consists of extracting linguistic features from the textual requirements
belonging to each of the functional processes from our training dataset, to train a text
classification algorithm that can automatically classify a new set of textual require-
ments belonging to a functional process into one of the classes defined above (i.e.
Small, Medium, Large or Complex). It will then simply approximate the size of the
functional processes by outputting its size as the calculated mean value of the class it
belongs to, along with the minimum and the maximum seen CFP value for that class
to indicate possible variation in the approximation; and, thus, provide the quickest
possible approximation of the COSMIC functional size from textual requirements that
are not formalized and can be written in any quality.

5. Preliminary Study

As a proof of concept, we performed a small preliminary study with four different
case studies: two industrial projects from SAP Labs, Canada, and two university
projects. They are all completed projects and from different domains. Table 3 summa-
rizes the case studies.

Table 3. Summary of the case studies

ID Source Title Type of Appli-
cation

Size of Require-
ments Document

Functional
Processes ex-
tracted

C1 Industry (SAP) (undisclosed) Web (Internal) 11,371 words 12
C2 Industry (SAP) (undisclosed) Business 1,955 words 3

C3 University
Course Registra-
tion System

Business 3,072 words 14

C4 University IEEE Montreal
Website

Web (Public) 5,611 words 32

Total number of functional processes extracted = 61

We manually pre-processed these requirements to extract sets of requirements sen-

tences each of which belongs to a distinct functional process. This mimics the availa-
ble set of user requirements before an iteration starts in an agile development process.
From all four requirements documents, we were able to extract 61 sets of textual re-
quirements, each belonging to a distinct functional process.

We used five human measurers, all graduate students skilled to perform COSMIC
FSM from requirements documents, to measure the CFP of these 61 functional

 7

processes, similarly to what is shown in Table 1. The CFP values and the textual re-
quirements of the 61 functional processes built our historical dataset.

5.1 The Annotated Corpus

As mentioned in Section 3.2, we performed a box-plot analysis on the CFP values of
our historical dataset that gave us — median = 6 CFP; lower-quartile = 5 CFP; and,
upper-quartile = 8 CFP. Therefore, according to the ranges defined in Table 2 in sec-
tion 3.2, the actual CFP ranges for the four size classes for our historical dataset are:
Small: [0,5); Medium: [5,6); Large: [6,8); and, Complex: [8,∞). We then followed
these ranges to automatically annotate the sets of textual requirements belonging to
the 61 functional processes into the four size classes — where 9 (15%) functional
processes were annotated as Small, 15 (25%) were Medium, 21 (34%) were Large,
and 16 (26%) were annotated as Complex.

5.2 Syntactic Features

To perform the classification task, we considered a large pool of linguistic features
that can be extracted by a syntactic parser. In this regards, we used the Stanford Parser
[18] (equipped with Brill’s POS tagger [4] and a morphological stemmer) to morpho-
logically stem the words and extract many linguistic features, e.g. the frequency of
words appearing in different parts-of-speech categories. As we have the actual CFP
values in our historical dataset, we sorted the linguistic features based on the correla-
tion between their values and the CFP values. The top ten highly correlated features
are listed in Table 4.

Table 4. Ten linguistic features highly correlated with CFP

Features (Frequency of..) Correlation with CFP

Noun Phrases 0.4640
Parentheses 0.4408
Active Verbs 0.4036
Tokens in Parentheses 0.4001
Conjunctions 0.3990
Pronouns 0.3697
Verb Phrases 0.3605
Words 0.3595
Sentences 0.3586
Uniques (hapax legomena) 0.3317

The correlation shows the ten syntactic features that influence COSMIC functional
size the most. The reasons for some of them are explained below.

Noun Phrases. No matter how poorly a requirement is described, the involvement of
a data-group in a particular data-movement is typically indicated by the presence of a
noun phase. Therefore, if a functional process contains more noun phrases, the
chances are that its data-movements involve more data-groups and its size is larger.

 8

Parentheses & Number of tokens inside parentheses. When complex functional
processes are often described in textual requirements, parentheses are used to provide
brief explanations in a limited scope. Thus, a higher number of parentheses/Number
of tokens inside parentheses can sometimes indicate a complex functional process.

Active Verbs & Verb Phrases. Verbs in active form define actions and are often
used in larger numbers in textual requirements to explain data-movements, as data-
movements result from actions carried out by the user or the system or an external
system.

Pronouns. A longer description in textual requirements for a functional process often
indicates its complexity, and requires the use of more pronouns within the functional
process to maintain cohesion with references.

Words, Sentences and Uniques. They all account for lengthy description of the re-
quirements in functional processes; and, as mentioned above, long description of re-
quirements of a functional process may indicate its complexity.

Next, we looked at possible keyword features than can be extracted.

5.3. Keyword Features

A large body of work (e.g. [10,27]) has shown that using keywords grouped into par-
ticular parts-of-speech categories helps to obtain good results with Text Mining. For
this study, we have, therefore, considered list of keywords, each list belonging to a
given parts-of-speech category. We chose three part-of-speech groups for these key-
words to be selected. They are: Noun-keywords (coded as: NN_keyword), Verb-
keywords (coded as: Verb_keyword), and Adjective-keywords (coded as:
JJ_keyword).

We generate finite lists of these keywords based on two different probabilistic
measures, as described in [10], that takes into account how many more times the
keywords occur in one class of the training set than the other class. A cutoff threshold
is then used to keep the list significantly smaller. For example, the three lists that were
automatically generated by this process from our training set during a fold of 10-fold-
crossvalidation is shown in Table 5.

Table 5. Some of the keywords of POS group: Noun, Verb and Adjective

NN_keyword VB_keyword JJ_keyword
user ensure supplied

category get current
quota choose previous

content start available
default restart
chart fill

… …

These three lists constituted three additional features for our classification task. Thus,
when we extract the features, we counted one of the keyword feature, for example, as
how many times words from its keyword-list appears in the set of requirements of a
functional process, and appearing in the same part-of-speech class.

 9

5.4. Feature Extraction and Classification

To classify the sets of textual requirements belonging to different functional
processes, we developed a Java-based feature extraction program that uses the Stan-
ford Parser [18] to extract the values of all the syntactic and keyword features men-
tioned above, and uses Weka [28] to train and test the C4.5 decision tree learning al-
gorithm [23]. We used the implementation of the C4.5 (revision 8) that comes with
Weka (as J48), setting its parameter for the minimum number of instances allowed in
a leaf to 6 to counter possible chances of over-fitting. The results are discussed in the
next section. We also trained/tested with a Naïve Bayes classifier [9], and a logistic
classifier [20]. The C4.5 decision tree-based classifier performed the best in compari-
son to the other classifiers with more consistent results during 10-fold-cross-
validation.

6. Results and Analysis

The results of the classification were very moderate when using the whole dataset for
training and testing. Since the dataset was not very large, we could not use a separate
dataset for testing, and we could only use cross-validation, which can be very harsh
on the performance, when the number of instances is very low. Yet, the classifier re-
sults did not drop significantly. Table 6 shows a summary of the results.

Table 6. Summary of the results

 Scheme
Correctly
Classified
Sentences

Incorrectly
Classified
Sentences

Kappa Comment

Corpus Size = 61
(sets of textual re-
quirements, each
set representing a
functional
process)

Training +
Testing on
same set

45
(73.77%)

16
(26.23%)

0.6414
Tree is of desirable
characteristics, not
sparse, and also
not flat. None of
the branches are
wrongly directed.

Cross-
validation
(10 Folds)

41 (67.21%)
20

(32.79%)
0.5485

The resultant decision tree after training on the complete dataset also came out

well-formed. The tree is shown in Figure 1.

Fig. 1. The resultant C4.5 decision tree after training with the complete dataset.

 10

Detailed results of using 10-fold-crossvalidation with the final confusion matrix is
shown in Table 7.

Table 7. Confusion matrix when using 10-fold-crossvalidation

 Classified as

 Small Medium Large Complex

Small 7 0 1 1

Medium 1 7 7 0

Large 2 1 16 2

Complex 2 0 3 11

The precision, recall and f-measure results for each of the classes in 10-fold-cross-

validation are shown in Table 8.

Table 8. Precision, Recall and F-Measure, when using 10-fold-crossvalidation

Size Class Precision Recall F-Measure

Small 0.583 0.778 0.667

Medium 0.875 0.467 0.609

Large 0.593 0.762 0.667

Complex 0.786 0.688 0.733

Mean 0.709 0.673 0.669

Although the kappa results of Table 6 shows stable and moderate results in terms

of performance with the 10-fold-crossvalidation, the results of the confusion matrix in
Table 7 and the results in Table 8 show that the classifier is struggling to attain a good
recall with the fuzzy class Medium. The reason for this is that classifying an instance
into the size classes that fall in the middle (e.g. functional processes that are not small
and not large, but of medium size) is hard when we do not have a larger number of in-
stances that can allow the learning algorithm to find the threshold values for the other
features and thus, utilize them in making fine-grained distinction.

We can also demonstrate by showing that if we had less number of classes, i.e. two
or three size classes, the available number of instances would have been enough for a
more realistic classification task. To show that, we developed both a two-class size
classifier (classifying functional processes into Small and Large classes), and a three-
class size classifier (classifying functional processes into Small, Medium and Large
classes) using the same principles and the same sets of features described earlier in
this paper. The results were significantly better, attaining mean f-measures of 0.802
and 0.746 for the 2-class and the 3-class classifiers respectively.

 11

7. Conclusions and Future Work

In this paper, we have shown that classification of textual requirements in terms of
their functional size is plausible. Since our work uses a supervised text mining ap-
proach, where we needed experts to build our historical database by manually measur-
ing the COSMIC functional size from textual requirements, we could not train and
test our system with a large number of samples. Yet, the results that we were able to
gather by crossvalidating on such small number of samples show a promising beha-
vior of the classifier in terms of its performance. We have been able to identify auto-
matically a set of highly discriminating features that can effectively help together with
a classifier.

It should be mentioned that we have not yet tested our approach as to be used with
requirements written in variable level of quality. Therefore, we believe that this ap-
proach would be organization-specific, where textual requirements saved in the his-
torical dataset should all be written in the same format or writing style having similar
quality. This would allow our classifier to pick the best set of features and set the best
thresholds that would classify new requirements written in similar style and quality.

We are currently in the process of building larger datasets for training and testing
our system. Our future work includes implementing a full-fledged prototype to dem-
onstrate its use and a complete integration to the READ-COSMIC project [11], which
is our umbrella project on software development effort estimation from textual re-
quirements. We are also working on predicting the impact of non-functional require-
ments on the functional size for better precision in software effort estimation.

Acknowledgements. The authors would like to thank the anonymous reviewers for their valua-
ble comments on an earlier version of the paper.

References

1. Accelerated Delivery Platform. (2009). Smart use cases. Retrieved on February 14, 2009
from http://www.smartusecase.com/(X(1)S(hp3vxp242ym1mg45faqtegbg))/Default.aspx?Page=SmartUseCase

2. Albrecht, A. J. (1979). Measuring Application Development Productivity. Proceedings of
IBM Application Development Symp. (pp. 83-92). Monterey, Calif.: Press I.B.M.

3. Albrecht, A. J., & Gaffney, J. E. (1983). Software function, source lines of code, and de-
velopment effort prediction: A software science validation. IEEE Transactions on Software
Engineering, 9, 639-648.

4. Brill, E. (1992). A Simple Rule-Based Part of Speech Tagger. Proceedings of the third con-
ference on Applied natural language processing (pp. 152-155). Trento, Italy: Association
for Computational Linguistics.

5. Cohn, M. (2005). Agile Estimating and Planning. Upper Saddle River, NJ: Prentice Hall.
6. Condori-Fernández, N., Abrahão, S., & Pastor, O. (2007). On the estimation of the func-

tional size of software from requirements specifications. Journal of Computer Science and
Technology, 22 (3), 358-370.

7. Diab, H., Koukane, F., Frappier, M., & St-Denis, R. (2005). μcROSE: Automated Mea-
surement of COSMIC-FFP for Rational Rose Real Time. Information and Software Tech-
nology, 47 (3), 151-166.

8. Gencel, C., Demirors, O., & Yuceer, E. (2005). Utilizing Functional Size Measurement
Methods for Real Time Software System. 11th IEEE International Software Metrics Sym-
posium (METRICS 2005). IEEE Press.

 12

9. George H. John & Pat Langley. (1995). Estimating Continuous Distributions in Bayesian
Classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelli-
gence, San Mateo, 338-345.

10. Hussain, I., Kosseim, L., & Ormandjieva, O. (2008). Using Linguistic Knowledge to Clas-
sify Non-functional Requirements in SRS documents. LNCS: Natural Language and Infor-
mation Systems (Vol. 5039/2008), pp. 287-298. Germany: Springer-Verlag.

11. Hussain, I., Ormandjieva, O., & Kosseim, L. (2009). Mining and Clustering Textual Re-
quirements to Measure Functional Size of Software with COSMIC. Proceedings of the In-
ternational Conference on Software Engineering Research and Practice (SERP 2009), pp.
599-605, CSREA Press.

12. ISO/IEC 14143-1. (1998). Functional Size Measurement - Definition of Concepts. Interna-
tional Organization for Standardization.

13. ISO/IEC 19761. (2003). COSMIC Full Function Points Measurement Manual v.2.2. Inter-
national Organization for Standardization.

14. ISO/IEC 20926. (2003). Software Engineering -- IFPUG 4.1 Unadjusted functional size
measurement method -- Counting Practices Manual. International Organization for Stan-
dardization.

15. ISO/IEC 20968. (2002). Software Engineering - Mk II Function Point Analysis - Counting
Practices Manual. International Organization for Standardization.

16. ISO/IEC 24570. (2005). Software Engineering -- NESMA functional size measurement me-
thod version 2.1 -- Definitions and counting guidelines for the application of Function
Points Analysis. International Organization for Standardization.

17. Kitchenham, B. A., & Taylor, N. R. (1984). Software cost models. ICL Technical Journal,
4, 73-102.

18. Klein, D., & Manning, C. D. (2003). Accurate unlexicalized parsing. Proceedings of the
41st Meeting of the Association for Computational Linguistics (pp. 423-430). Association
for Computational Linguistics.

19. Larman, C. (2003). Agile & Iterative Development: a Manager's Guide. Boston, MA: Pear-
son Education.

20. le Cessie, S. & van Houwelingen, J.C. (1992). Ridge Estimators in Logistic Regression.
Applied Statistics. 41(1):191-201.

21. Martin, R. C. (2003). Agile Software Development: Principles, Patterns and Practices. Up-
per Saddle River, NJ: Prentice Hall.

22. Pfleeger, S. L., Wu, F., & Lewis, R. (2005). Software Cost Estimation and Sizing Methods.
Issues and Guidelines. RAND Corporation.

23. Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan
Kaufmann.

24. Santillo, L., Conte, M., & Meli, R. (2005). E&Q: An Early & Quick Approach to Function-
al Size. IEEE International Symposium on Software Metrics (p. 41). Los Alamitos, CA,
USA: IEEE Computer Society.

25. Shepperd, M., & Cartwright, M. (2001). Predicting with sparse data. IEEE Transactions on
Software Engineering, 27, 987-998.

26. Sneed, H. M. (2001). Extraction of function points from source-code. Proceedings of New
Approaches in Software Measurement, 10th International Workshop, IWSM (pp. 135-146).
Berlin, Germany: Springer-Verlag.

27. Wiebe, J., Wilson, T., Bruce, R., Bell, M., & Martin, M. (2004). Learning Subjective Lan-
guage. Computational Linguistics, v.30 n.3 (September 2004), Cambridge, MA, USA: MIT
Press, 277–308.

28. Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and tech-
niques (2nd ed.). San Francisco, CA: Morgan Kaufman.

