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Abstract. Measurement of software size from user requirements is crucial for 
the estimation of the developmental time and effort. COSMIC, an ISO/IEC in-
ternational standard for functional size measurement, provides an objective me-
thod of measuring the functional size of the software from user requirements. 
COSMIC requires the user requirements to be written at a level of granularity, 
where interactions between the internal and the external environments to the 
system are visible to the human measurer, in a form similar to use case descrip-
tions. On the other hand, requirements during an agile software development 
iteration are written in a less formal way than use case descriptions — often in 
the form of user stories, for example, keeping with the goal of delivering a 
planned release as quickly as possible. Therefore, size measurement in agile 
processes uses methods (e.g. story-points, smart estimation) that strictly depend 
on the subjective judgment of the experts, and avoid using objective measure-
ment methods like COSMIC. In this paper, we presented an innovative concept 
showing that using a supervised text mining approach, COSMIC functional size 
can be automatically approximated from informally written textual require-
ments, demonstrating its applicability in popular agile software development 
processes, such as Scrum.  

1.  Introduction 

The agile development process breaks down the software development lifecycle into a 
number of consecutive iterations that increases communication and collaboration 
among stakeholders. It focuses on the rapid production of functioning software com-
ponents along with providing the flexibility to adapt to emerging business realities 
[19]. In practice, agile processes have been extended to offer more techniques, e.g. 
describing the requirements with user stories [21]. Instead of a manager estimating 
developmental time and effort and assigning tasks based on conjecture, team mem-
bers in agile approach use effort and degree of difficulty in terms of points, or size, to 
estimate of their own work, often with biased judgment [5]. Hence, an objective mea-
surement of software size is crucial in planning and management of agile projects. 

We know that effort is a function of size [22], and a precise estimation of software 
size right from the start of a project life cycle gives the project manager confidence 
about future courses of action, since many of the decisions made during development 
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depend on the initial estimations. Better estimation of size and effort allows managers 
to determine the comparative cost of a project, improve process monitoring, and ne-
gotiate contracts from a position of knowledge. 

The above has led the industry to formulate several methods for functional size 
measurement (FSM) of software. Allan Albrecht first proposed the idea in his work 
on function point analysis (FPA) in 1979 [2], where he named the unit of functional 
size as function point (FP). His idea of effort estimation was then validated by many 
studies, like [3,17], and, thus, measuring the functional size of the software became an 
integral part of effort estimation. There have been many standards developed by dif-
ferent organizations on FSM methods, following the concepts presented in Albrecht’s 
FPA method. Four of these standards have been accepted as ISO standards: they are 
IFPUG [14], Mark II [15], NESMA [16] and COSMIC [13]. 

There have been many studies in recent years [6,7,26], where researchers at-
tempted to automate the process of different functional size measurement methods, 
but none of them, to our knowledge, addressed the problem where they would take 
the textual requirements as input to start the automatic measurement process. In addi-
tion, all these work depended on extracting manually the conceptual modeling arti-
facts first from the textual requirements, so that a precise functional size measurement 
can be performed. On the other hand, the work documented in this paper aims to de-
velop a tool that would automatically perform a quicker approximation of COSMIC 
size without requiring the formalization of the requirements. This is in response to the 
high industrial demands of performing size estimation during agile development 
processes, where formalization of requirements are regarded as costly manipulation, 
and, thus, ignored during size estimation. Our methodology extends the idea pre-
sented in the Estimation by Analogy approach [25] and the Easy and Quick (E&Q) 
measurement approach, that was originated in the IFPUG standard [14]. The applica-
bility of this approach in COSMIC was manually demonstrated by [24]. 

2.  Background 

2.1  COSMIC 

For the purposes of this research, we have chosen to use the COSMIC FSM method 
developed by the Common Software Measurement International Consortium 
(COSMIC) and now adopted as an international standard [13]. We chose this method 
in particular, because it conforms to all ISO requirements [12] for FSM, focuses on 
the “user view” of functional requirements, and is applicable throughout the Agile de-
velopment life cycle. Its potential of being applied accurately in the requirements spe-
cification phase compared to the other FSM methods is demonstrated by the study of 
[8]. Also, COSMIC does not rely on subjective decisions by the functional size mea-
surer during the measurement process [13]. Thus, its measurements, taken from well-
specified requirements, tend to be same among multiple measures. This is particularly 
important for validating the performance of the automatic size measurements that 
would be yielded by our solution.  

In COSMIC, the size is measured in terms of the number of Data-movements, 
which accounts for the movement of one or more data-attributes belonging to a single 
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Data-group. A data-group is an aggregated set of data-attributes. A Functional 
Process, in COSMIC, is an independently executable set of data-movements that is 
triggered by one or more triggering events. A triggering event is initiated by an “ac-
tor” (a functional user or an external component) that occurs outside the boundary of 
the software to be measured. Thus, a functional process holds the similar scope of a 
use case scenario, starting with the triggering event of a user-request and ending with 
the completion of the scenario. 

The data-movements can be of four types: Entry, Exit, Read and Write. An Entry 
moves a data-group from a user across the boundary into the functional process, while 
an Exit moves a data group from a functional process across the boundary to the user 
requiring it. A Write moves a data group lying inside the functional process to persis-
tent storage, and a Read moves a data group from persistent storage to the functional 
process. 

COSMIC counts each of these data-movements as one CFP (COSMIC Function 
Point) of functional size, and measures the size of each of the functional processes 
separately. It then sums up sizes of all the functional processes to compute the total 
size of the system to be measured. 

2.2  Size Measurement in Agile Development Processes 

Agile development processes are driven by the motto of delivering releases as quickly 
as possible [19]. The size of every agile iteration is subjectively estimated by means 
of user requirements that are written less formally than use case descriptions. These 
textual requirements, which are mostly available in the form of smart use cases [1] or 
user-stories [21], although, do not provide detailed description of the scenarios like 
those found in use cases, they must hold “enough details” to perform the size estima-
tion [21]. Size measurement methods in agile development processes include story-
points [5] and smart estimation [1], and depend on the subjective judgment of human 
experts, and, therefore, are prone to biases and errors [5]. 

COSMIC offers an objective method of measuring functional size. It is built to be 
applied in the traditional processes of software development, where documentation of 
requirements using formalisms and templates is required. However, the IT industry 
recognized the traditional processes to cause many problems including delays and is 
now increasingly moving towards agile development processes, such as Scrum [29], 
an agile approach that does not impose documentation templates or formalisms on re-
quirements. Lack of formalism in requirements restricts FSM methods, like COSMIC, 
to be applied for measuring the functional size of an iteration in an agile development 
process. For example, from the discussion in section 2.1, it can be understood that the 
number of data-groups, which is necessary to be known to carry out COSMIC FSM, 
cannot be identified by the measurer from a set of requirements statements alone un-
less he/she is supplied with a complete list of available data-groups that requires for-
malizing the requirements with conceptual model (e.g. a domain model). 

Our work presents an alternative solution, which does not require the use of do-
main models; instead, it proposes an objective way of approximating the COSMIC 
functional size of a functional process (i.e. a use case) that is described by an infor-
mally written set of textual requirements, in forms likely to be used in agile size esti-
mation. 
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3.  Related Work 

One of the leading work done in the area of automating COSMIC FSM is by Diab et 
al [7], where the authors developed a comprehensive system called, μcROSE, which 
accepts state charts as inputs to measure the functional size of real-time systems only. 
We find their work to be largely dependant on a set of hard-coded rules for mapping 
different objects of interest to different COSMIC components, and also require C++ 
code segments to be attached with the state transitions and supplied as input too, so 
that data-movements can be identified. They presented a very brief validation of their 
work by an expert, testing their system against only one case study, where it per-
formed poorly in detecting the data groups, resulting in some erroneous measurement 
outputs. 

Condori-Fernández et al [6] performed another study, where they presented step by 
step guidelines to first derive manually the UML modeling artifacts, e.g. the use case 
models and system sequence diagrams from the requirements, and then, apply their 
set of rules for measuring the COSMIC functional size of the system from the UML 
models. Their approach was validated on 33 different observations, showing repro-
ducible results with 95% confidence. 

4.  Methodology 

Most of the related work performed in this field were directed towards performing a 
precise measurement of COSMIC functional size. On the other hand, our goal is to 
develop an automated tool that would do quicker estimation of COSMIC size without 
requiring the formalization of the requirements. Our methodology requires the histori-
cal data of an organization to be stored for the purpose of generating a dataset for 
training/testing our application. The historical dataset needs to contain sets of textual 
user requirements written in any quality, where each set corresponds to a unique func-
tional process, along with their respective functional size in COSMIC to be recorded 
by human measurers. We present our detailed methodology in the following sections. 

4.1 CFP Measurement 

Our first step is to build our historical dataset by manually measuring the COSMIC 
size of the functional processes in units of CFP (COSMIC Function Point). The avail-
able textual description of the user requirements corresponding to each functional 
process is used for this purpose. Here, for each requirements statement belonging to a 
functional process, the human measurer first identifies how many different types of 
data-movements are expressed by the statement, and then, how many data-groups par-
ticipate in each of the types of data-movements present in the statement. Following 
COSMIC, the sum of number of data-groups for each type of data-movements indi-
cates the total CFP size of one requirements statement. The measurer repeats this step 
for the rest of the requirements statements within the functional process and summing 
up their sizes results in the CFP count for the whole functional process. The measurer 
then again sums up CFP sizes for each of the functional processes to obtain the re-
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spective CFP count of the whole system. Table 1 illustrates the CFP counting process 
with a hypothetical example of a system consisting of two functional processes. 

Table 1. A hypothetical example of precise CFP calculation 

Functional 
processes User requirements 

Types of Data-movements 
expressed by the state-
ment: 

Number of Data-
groups involved in 
a data-movement 

Size in 
CFP 

FPr:1 

1.1 User requests to view 
the detailed information 
of one item. 

Entry 2 2 

Read 1 1 

Size of statement 1.1 = 3 

1.2 System displays detailed 
item information. 

Exit 1 1 

Size of statement 1.2 = 1 

Total size of FPr:1 =  3+1 = 4 

FPr:2 

2.1 When user requests to 
add the item to the 
shopping cart, system 
adds it and displays the 
cart. 

Entry 2 2 

Write 1 1 

Exit 1 1 

Size of statement 2.1 = 4 

Total size of FPr:2 =  4 

Total size of the whole system =  
4 + 4   =   

8 

 
Our approach requires these measurement data to be saved in the historical database 
for the past completed projects. For this work, we will need the CFP count for each of 
the functional processes that have been measured, along with the textual requirements 
associated to a functional process. 

4.2  Class Annotation of Functional Processes 

Once we have gathered the historical dataset, we need to define classes of functional 
processes, based on their sizes in CFP, to be used later in the automatic classification 
task. To do this, we performed a box-plot analysis on the CFP size values from our 
historical dataset, to produce four different classes of functional processes, based on 
their sizes in CFP. Table 2 shows the defined ranges of these classes. 

Table 2. Ranges of CFP values to define the classes 

Classes Ranges 

Small [0, Lower Quartile) 

Medium [Lower Quartile, Median) 

Large [Median, Upper Quartile) 

Complex [Upper Quartile, ∞) 

Here, the lower quartile would cut off the lowest 25% of all the recorded CFP size da-
ta from the historical database. The median would divide the dataset by 50%, and the 
upper quartile cuts off the highest 25% of the dataset. 

These four sets of ranges allow us to annotate the textual requirements of the func-
tional processes automatically into four fuzzy size classes. In our class ranges, we 
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keep the minimum and the maximum values as 0 and ∞, respectively, instead of the 
sample minimum or the sample maximum, like in an actual box-plot analysis; so that, 
if the new unseen sample is an outlier compared to the historical dataset, it would still 
get classified into a class. 

After defining the class boundaries automatically, we then calculate the mean, the 
minimum and the maximum for each of the classes, to designate the range of the ap-
proximate size for each of the classes. 

4.3  Text Mining 

Our next step consists of extracting linguistic features from the textual requirements 
belonging to each of the functional processes from our training dataset, to train a text 
classification algorithm that can automatically classify a new set of textual require-
ments belonging to a functional process into one of the classes defined above (i.e. 
Small, Medium, Large or Complex). It will then simply approximate the size of the 
functional processes by outputting its size as the calculated mean value of the class it 
belongs to, along with the minimum and the maximum seen CFP value for that class 
to indicate possible variation in the approximation; and, thus, provide the quickest 
possible approximation of the COSMIC functional size from textual requirements that 
are not formalized and can be written in any quality. 

5.  Preliminary Study 

As a proof of concept, we performed a small preliminary study with four different 
case studies: two industrial projects from SAP Labs, Canada, and two university 
projects. They are all completed projects and from different domains. Table 3 summa-
rizes the case studies. 

Table 3. Summary of the case studies 

ID Source Title Type of Appli-
cation 

Size of Require-
ments Document 

Functional 
Processes ex-
tracted 

C1 Industry (SAP) (undisclosed) Web (Internal) 11,371 words 12 
C2 Industry (SAP) (undisclosed) Business 1,955 words 3 

C3 University 
Course Registra-
tion System 

Business 3,072 words 14 

C4 University IEEE Montreal 
Website 

Web (Public) 5,611 words 32 

Total number of functional processes extracted = 61 

 
We manually pre-processed these requirements to extract sets of requirements sen-

tences each of which belongs to a distinct functional process. This mimics the availa-
ble set of user requirements before an iteration starts in an agile development process. 
From all four requirements documents, we were able to extract 61 sets of textual re-
quirements, each belonging to a distinct functional process.  

We used five human measurers, all graduate students skilled to perform COSMIC 
FSM from requirements documents, to measure the CFP of these 61 functional 
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processes, similarly to what is shown in Table 1. The CFP values and the textual re-
quirements of the 61 functional processes built our historical dataset. 

5.1  The Annotated Corpus 

As mentioned in Section 3.2, we performed a box-plot analysis on the CFP values of 
our historical dataset that gave us — median = 6 CFP; lower-quartile = 5 CFP; and, 
upper-quartile = 8 CFP. Therefore, according to the ranges defined in Table 2 in sec-
tion 3.2, the actual CFP ranges for the four size classes for our historical dataset are: 
Small: [0,5); Medium: [5,6); Large: [6,8); and, Complex: [8,∞). We then followed 
these ranges to automatically annotate the sets of textual requirements belonging to 
the 61 functional processes into the four size classes —  where 9 (15%) functional 
processes were annotated as Small, 15 (25%) were Medium, 21 (34%) were Large, 
and 16 (26%) were annotated as Complex. 

5.2  Syntactic Features 

To perform the classification task, we considered a large pool of linguistic features 
that can be extracted by a syntactic parser. In this regards, we used the Stanford Parser 
[18] (equipped with Brill’s POS tagger [4] and a morphological stemmer) to morpho-
logically stem the words and extract many linguistic features, e.g. the frequency of 
words appearing in different parts-of-speech categories. As we have the actual CFP 
values in our historical dataset, we sorted the linguistic features based on the correla-
tion between their values and the CFP values. The top ten highly correlated features 
are listed in Table 4. 

Table 4. Ten linguistic features highly correlated with CFP 

Features (Frequency of..) Correlation with CFP 

Noun Phrases 0.4640 
Parentheses 0.4408 
Active Verbs 0.4036 
Tokens in Parentheses 0.4001 
Conjunctions 0.3990 
Pronouns 0.3697 
Verb Phrases 0.3605 
Words 0.3595 
Sentences 0.3586 
Uniques (hapax legomena) 0.3317 

 
The correlation shows the ten syntactic features that influence COSMIC functional 
size the most. The reasons for some of them are explained below. 

Noun Phrases. No matter how poorly a requirement is described, the involvement of 
a data-group in a particular data-movement is typically indicated by the presence of a 
noun phase. Therefore, if a functional process contains more noun phrases, the 
chances are that its data-movements involve more data-groups and its size is larger. 
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Parentheses & Number of tokens inside parentheses. When complex functional 
processes are often described in textual requirements, parentheses are used to provide 
brief explanations in a limited scope. Thus, a higher number of parentheses/Number 
of tokens inside parentheses can sometimes indicate a complex functional process. 

Active Verbs & Verb Phrases. Verbs in active form define actions and are often 
used in larger numbers in textual requirements to explain data-movements, as data-
movements result from actions carried out by the user or the system or an external 
system. 

Pronouns. A longer description in textual requirements for a functional process often 
indicates its complexity, and requires the use of more pronouns within the functional 
process to maintain cohesion with references. 

Words, Sentences and Uniques. They all account for lengthy description of the re-
quirements in functional processes; and, as mentioned above, long description of re-
quirements of a functional process may indicate its complexity. 

Next, we looked at possible keyword features than can be extracted. 

5.3.  Keyword Features 

A large body of work (e.g. [10,27]) has shown that using keywords grouped into par-
ticular parts-of-speech categories helps to obtain good results with Text Mining. For 
this study, we have, therefore, considered list of keywords, each list belonging to a 
given parts-of-speech category. We chose three part-of-speech groups for these key-
words to be selected. They are: Noun-keywords (coded as: NN_keyword), Verb-
keywords (coded as: Verb_keyword), and Adjective-keywords (coded as: 
JJ_keyword). 

We generate finite lists of these keywords based on two different probabilistic 
measures, as described in [10], that takes into account how many more times the 
keywords occur in one class of the training set than the other class. A cutoff threshold 
is then used to keep the list significantly smaller. For example, the three lists that were 
automatically generated by this process from our training set during a fold of 10-fold-
crossvalidation is shown in Table 5. 

Table 5. Some of the keywords of POS group: Noun, Verb and Adjective 

NN_keyword VB_keyword JJ_keyword 
user ensure supplied 

category get current 
quota choose previous 

content start available 
default restart  
chart fill  

… …  

These three lists constituted three additional features for our classification task. Thus, 
when we extract the features, we counted one of the keyword feature, for example, as 
how many times words from its keyword-list appears in the set of requirements of a 
functional process, and appearing in the same part-of-speech class.  
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5.4.  Feature Extraction and Classification 

To classify the sets of textual requirements belonging to different functional 
processes, we developed a Java-based feature extraction program that uses the Stan-
ford Parser [18] to extract the values of all the syntactic and keyword features men-
tioned above, and uses Weka [28] to train and test the C4.5 decision tree learning al-
gorithm [23]. We used the implementation of the C4.5 (revision 8) that comes with 
Weka (as J48), setting its parameter for the minimum number of instances allowed in 
a leaf to 6 to counter possible chances of over-fitting. The results are discussed in the 
next section. We also trained/tested with a Naïve Bayes classifier [9], and a logistic 
classifier [20]. The C4.5 decision tree-based classifier performed the best in compari-
son to the other classifiers with more consistent results during 10-fold-cross-
validation. 

6.  Results and Analysis 

The results of the classification were very moderate when using the whole dataset for 
training and testing. Since the dataset was not very large, we could not use a separate 
dataset for testing, and we could only use cross-validation, which can be very harsh 
on the performance, when the number of instances is very low. Yet, the classifier re-
sults did not drop significantly. Table 6 shows a summary of the results. 

Table 6. Summary of the results 

 Scheme 
Correctly 
Classified 
Sentences

Incorrectly 
Classified 
Sentences

Kappa Comment 

Corpus Size = 61 
(sets of textual re-
quirements, each 
set representing a 
functional 
process) 

Training + 
Testing on 
same set 

45 
(73.77%) 

16 
(26.23%) 

0.6414 
Tree is of desirable 
characteristics, not 
sparse, and also 
not flat. None of 
the branches are 
wrongly directed. 

Cross-
validation 
(10 Folds) 

41 (67.21%) 
20 

(32.79%) 
0.5485 

 
The resultant decision tree after training on the complete dataset also came out 

well-formed. The tree is shown in Figure 1. 

 

Fig. 1. The resultant C4.5 decision tree after training with the complete dataset. 
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Detailed results of using 10-fold-crossvalidation with the final confusion matrix is 
shown in Table 7. 

Table 7. Confusion matrix when using 10-fold-crossvalidation 

 Classified as 

 Small Medium Large Complex 

Small 7 0 1 1 

Medium 1 7 7 0 

Large 2 1 16 2 

Complex 2 0 3 11 

 
The precision, recall and f-measure results for each of the classes in 10-fold-cross-

validation are shown in Table 8. 

Table 8. Precision, Recall and F-Measure, when using 10-fold-crossvalidation 

Size Class Precision Recall F-Measure 

Small 0.583 0.778 0.667 

Medium 0.875 0.467 0.609 

Large 0.593 0.762 0.667 

Complex 0.786 0.688 0.733 

Mean 0.709 0.673 0.669 

 
Although the kappa results of Table 6 shows stable and moderate results in terms 

of performance with the 10-fold-crossvalidation, the results of the confusion matrix in 
Table 7 and the results in Table 8 show that the classifier is struggling to attain a good 
recall with the fuzzy class Medium. The reason for this is that classifying an instance 
into the size classes that fall in the middle (e.g. functional processes that are not small 
and not large, but of medium size) is hard when we do not have a larger number of in-
stances that can allow the learning algorithm to find the threshold values for the other 
features and thus, utilize them in making fine-grained distinction. 

We can also demonstrate by showing that if we had less number of classes, i.e. two 
or three size classes, the available number of instances would have been enough for a 
more realistic classification task. To show that, we developed both a two-class size 
classifier (classifying functional processes into Small and Large classes), and a three-
class size classifier (classifying functional processes into Small, Medium and Large 
classes) using the same principles and the same sets of features described earlier in 
this paper. The results were significantly better, attaining mean f-measures of 0.802 
and 0.746 for the 2-class and the 3-class classifiers respectively.  
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7. Conclusions and Future Work 

In this paper, we have shown that classification of textual requirements in terms of 
their functional size is plausible. Since our work uses a supervised text mining ap-
proach, where we needed experts to build our historical database by manually measur-
ing the COSMIC functional size from textual requirements, we could not train and 
test our system with a large number of samples. Yet, the results that we were able to 
gather by crossvalidating on such small number of samples show a promising beha-
vior of the classifier in terms of its performance. We have been able to identify auto-
matically a set of highly discriminating features that can effectively help together with 
a classifier. 

It should be mentioned that we have not yet tested our approach as to be used with 
requirements written in variable level of quality. Therefore, we believe that this ap-
proach would be organization-specific, where textual requirements saved in the his-
torical dataset should all be written in the same format or writing style having similar 
quality. This would allow our classifier to pick the best set of features and set the best 
thresholds that would classify new requirements written in similar style and quality.  

We are currently in the process of building larger datasets for training and testing 
our system. Our future work includes implementing a full-fledged prototype to dem-
onstrate its use and a complete integration to the READ-COSMIC project [11], which 
is our umbrella project on software development effort estimation from textual re-
quirements. We are also working on predicting the impact of non-functional require-
ments on the functional size for better precision in software effort estimation. 

 

Acknowledgements. The authors would like to thank the anonymous reviewers for their valua-
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