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Abstract—Annotation of software requirements documents is 
performed by experts during the requirements analysis phase 
to extract crucial knowledge from informally written textual 
requirements. Different annotation tasks target the extraction 
of different types of information and require the availability of 
experts specialized in the field. Large scale annotation tasks 
require multiple experts where the limited number of experts 
can make the tasks overwhelming and very costly without 
proper tool support. In this paper, we present our annotation 
tool, LASR, that can aid the tasks of requirements analysis by 
attaining more accurate annotations. Our evaluation of the tool 
demonstrate that the annotation data collected by LASR from 
the trained non-experts can help compute gold-standard 
annotations that strongly agree with the true gold-standards 
set by the experts, and therefore eliminate the need of 
conducting costly adjudication sessions for large scale 
annotation work. 

Keywords-Software Requirements Analysis; Requirements 
Annotation; Linguistic Annotation Tool. 

I.  INTRODUCTION 

A. Annotation of Software Requirements 
Software requirements annotation involves annotating 

different parts of the software requirements document to 
indicate what classes of requirements they contain, or, which 
software engineering artifacts are present (e.g. domain 
entities, data-attributes etc.), or, any other classes of 
information vital to the software project. For example, Fig. 1 
shows an extract from a software requirements document 
and how an annotator has chosen to annotate its sentences 
with different annotation labels. Here, the requirements 
sentences are to be annotated into four different classes: 
(i) Functional Requirement: A software requirement that 
expresses the required behavior of the system. 

(ii) Non-Functional Requirement: A software requirement 
that expresses the quality requirements and the constraints 
over the related behavior of the system. 

(iii) Ambiguous Requirement: A software requirement that 
can be interpreted in more than one way by the annotator 
(i.e. the requirements analyst). 

(iv) Noise: Any sentence that does not express any of the 
above types of software requirement. 

Software requirements can be further annotated 
according to different needs of information that are to be 
extracted about the software to be developed. 

B. Motivation and Research Objective 
In the early phases of the software development lifecycle, 

software requirements are essentially captured in unrestricted 
natural language without any formalization, so that it can be 
easily conveyable between the clients (and/or the potential 
users) and the technical people (analysts, developers, 
managers and others) [1]. After the elicitation of software 
requirements, the tasks of requirements analysis usually 
involve cumbersome manipulation and organization of a 
large pool of textual requirements. Being written in 
unrestricted natural language, these textual requirements are 
often found to be corrupted with ambiguity that an expert has 
to manually identify and resolve [2]. The documents 
containing the textual requirements can also be either 
unstructured or of varying structures which demands 
additional effort from an expert to manually extract crucial 
knowledge about the software. For example, sentences 
describing non-functional requirements are often found 
embedded in paragraphs containing functional requirements 
that an expert often has to manually organize by separating 
the non-functional requirements from the functional ones [3]. 

Thus, the annotation of software requirements is a crucial 
activity performed by experts to deal with informally written 
requirements during the requirements specification phase [4]. 
Reuse of requirements documents also require annotating its 
parts following a standard of requirements taxonomy [5]. 

However, different types of requirements annotation 
tasks are targeted to extract different kinds of information 
about the software from its requirements. Thus, to have 
many experts on different types requirements annotation 

Extract from a requirements document   
...The following use case describes approving a budget. First, the user navigates to 
the budget overview page. The system then displays the budget overview with editable 
budget attributes. System presets some of the budget attributes. User edits the budget 
attributes and sets the status as "Approved". All the mandatory attributes cannot be 
empty and the budget amounts cannot be negative. User finally saves the budget. ... 

Requirement Sentence Annotation Label 
The following use case describes approving a budget. Noise 
First, the user navigates to the budget overview page. Functional 
The system then displays the budget overview with editable budget 
attributes. Functional 

System presets some of the budget attributes. Functional 
User edits the budget attributes and sets the status as "Approved". Functional 
All the mandatory attributes cannot be empty and the budget 
amounts cannot be negative. Non-Functional 

User finally saves the budget. Functional 

Figure 1. Example of Sentence-level Annotation of Software Requirements. 
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tasks always available for all projects adds to the overall 
project costs.  

Again, requirements annotation is also necessary to build 
annotated sets of documents (i.e. annotated corpora) that are 
used in numerous recent researches [6] that attempt to learn 
the behavior of human expertise behind different 
requirements analysis tasks and automate these tasks by 
using supervised or semi- supervised learning techniques. 
For example, our umbrella project, READ-COSMIC [7], 
requires annotated corpora to train and test our supervised 
text miners that are used for measuring the functional size of 
software. To build such annotated corpora for these 
researches would ideally require many human experts to 
manually annotate a large number of requirements instances.  
This would not only be highly expensive, but also 
overwhelming for a limited number of experts. 

Thus, the objective of the research presented in this paper 
is to identify a unique set of features for a requirements 
annotation tool that would— 
(g1) Support any type of requirements annotation tasks. 
(g2) Support building large pools of annotated corpora for 
statistical data analysis. 

(g3) Improve the overall process of requirements annotation 
by attaining accurate annotations with non-experts. 

To achieve this, we developed our annotation tool, called 
“LASR”, with the aim to satisfy the above goals. In this short 
paper, we will present the experiments which we conducted 
to validate how well LASR satisfies goal g3 above.  Let us 
first describe LASR briefly. 

II. LASR: LIVE ANNOTATION OF SOFTWARE REQUIREMENTS 
We developed LASR (Live Annotation of Software 

Requirements) to aid the collection of annotated corpora and 
the generation of training/testing datasets required by the 
supervised learning systems related to our work [7]. LASR is 
a Web-based application that provides a rich graphical user 
interface allowing quick navigation and control during the 
annotation tasks. It uses a client-server architecture at the 
highest-level of the logical view. On the server-side, it 
implements a three-tier-architecture, comprising of the 
Presentation, Application and Services layers. The 
application layer then further implements the model-view-
controller architecture, via the CakePHP framework. Figure 
2 shows LASR’s architecture in details. 

Here, the Requirements Repository at the backend holds 
the requirements documents contributed by its users.  The 
Instance Extractor module of LASR is equipped with 
lightweight NLP-based tools, e.g. a sentence delimiter and a 
noun-phrase chunker, that can automatically extract 
requirements instances at the levels of passages, sentences 
and noun-phrases from the requirements documents and save 
them to the backend. Annotation Templates define the 
annotation work to be performed at a particular level of 
requirements instance (e.g. at the sentence level or noun-
phrase level). The templates are stored as XML files at the 

backend file-system, and contains configuration details on 
the annotation interface as well, making the interface 
customizable by the project manager. 

III. EXPERIMENTS & RESULTS 
To validate our goal g3, we ran annotation experiments 

on LASR at the sentence-level of software requirements (as 
shown in section I.A) and compared its accuracy to that 
obtained with manual annotation, without any tool support. 

A. The Corpus 
For these experiments, our corpus was composed of six 

requirements documents belonging to three different 
problem domains. They were collected from both the 
industry and academia. Some statistics about these 
documents are presented in Table I. 

TABLE I 
DOCUMENTS USED IN THE EXPERIMENTS 

Doc. 
ID Doc. Title Source Problem 

Domain 

Total Sentences 
Extracted After 
Preprocessing 

D1  (undisclosed) SAP Labs, Montreal, 
Canada Business 15 

D2  (undisclosed) SAP Labs, Montreal, 
Canada Business 101 

D3  Course Registration 
System Concordia University Academic 

(Private) 179 

D4  IEEE Montreal 
Website Concordia University Web (Public) 467 

D5  (undisclosed) SAP Labs, Montreal, 
Canada Business 7 

D6  (undisclosed) SAP Labs, Montreal, 
Canada Business 89 

 

Here, we extracted the sentences from only those sections 
of the documents that held textual user requirements. 

B. The Annotators 
We had two groups of annotators and one expert (in 

requirements annotation) annotating the above documents. 
One group (G1) consisting of four graduate students of the 
Master of Computer Science program who were trained to 
annotate software requirements documents manually. The 
expert led the training of the annotators, and also participated 
with them in the manual annotation experiment. 

 
 
 

Figure 2.  Architecture of LASR. 

58



The other group (G2) consisted of 26 undergraduate 
students of software engineering,. They were introduced to 
requirements annotation (through lectures and handbooks), 
but were not thoroughly trained. No prior tests were 
conducted to verify their knowledge, before the experiment 
was executed. However, they were all trained via class 
tutorials to work on LASR’s user interface as annotators. 

We designed the experiments so that G1 annotated the 
requirements documents manually, and G2 used LASR to 
annotate the same documents. 

C. Results 
A total of 858 sentences (from the six documents of 

Table I) were annotated during this experiment. We 
identified the expert’s annotation as the true gold-standard to 
compare all other annotations made during the experiments, 
both manually and by LASR. The distribution of the true 
gold-standard annotations of our corpus, as annotated by the 
expert, is shown in Fig. 3. 

1) Manual Annotation: The annotators of G1 (excluding 
the expert) performed the annotation manually on four 
documents only, instead of the six, for a total of 742 
sentences. The gold-standard annotations were computed by 
following the majority voting model. Whenever a gold-
standard annotation could not be resolved, adjudication was 
performed by the participation of the annotators of G1. Here, 
we evaluated the performance of the annotators in terms of 
Cohen’s kappa [8], showing the degree of agreement of the 
gold-standard annotations, computed collectively from the 
four annotators, with the annotations of the expert (the true-
gold-standards). This showed a high degree of agreement 
(Kappa = 0.83187). This result represents the best-case 
scenario, where all four annotators of G1 were properly 
trained and the gold-standard annotations were computed 
after holding meticulous adjudication sessions with their 
participation to resolve their points of disagreements. 

2) Annotation with LASR: The annotators of G2 used 
LASR to perform annotation of all the six documents for a 
total of 858 sentences. We computed the gold-standard 
annotations manually using the simple majority voting rule 
(we call this method, M1). We found that the computed gold-
standard annotations this way moderately agree (Kappa = 
0.72396) with those submitted by the expert. Figure 4 shows 
the corpus distribution in this case. 

Here, we found that the method, M1, could not resolve 
the gold-standards for 116 of the instances, indicating a high 
degree of disagreements for those instances. The standard 
method to resolve this issue is to run adjudication sessions 
for all unresolved instances with the participation of all 
annotators. Unfortunately, this method is costly especially 
with real annotation tasks performed over larger corpora. 

To address this problem, the first option that LASR 
introduces, is to compute the gold-standard annotations 
automatically using the levels of confidence entered by the 
annotators. We call this method of computing gold-standard 
annotations M2 for our experiments. Here, LASR tries to 
compute the gold-standard annotation for each of the 
annotated instances, by first assigning a custom score to each 
of the annotation labels based on the level of confidence 
submitted by the annotators. Thus, the annotation label with 
the highest score, and that is also greater than some threshold 
(0.51

 

 in our case), is selected as the gold-standard annotation. 
LASR uses the formula below to calculate the score for each 
possible annotation. It shows that if mi annotators have 
annotated an instance i, and the class c is one of the possible 
class labels for annotating the instance i, then the score of 
class c for the instance i is — 

 (1) 
 
Thus, the final score of an annotation class c for an 

instance, i, is the arithmetic average of all the confx,c,i values 
submitted by each annotator, x. The confidence of an 
annotator x, denoted by confx,c,i in the formula (1), is equal to 
one of values of {0.1, 0.4, 0.7, 1.0} that is according to the 
level of confidence chosen by the annotator x, while 
annotating the instance i as class c. And, for all those classes, 
c', that are not chosen the annotator x for the instance i, 
confx,c',i will be equal to 0. Thus, 0 ≤  confx,c,i ≤ 1. 

We used LASR to compute the gold-standard annotation 
labels according to M2. Their distribution is shown in Fig. 5. 
It shows that the computed gold-standard annotations now 
agrees highly (Kappa = 0.81184) with those submitted by 
our expert. However, there still remain 20 instances for 
which the gold-standards could not be resolved. 

LASR also provides a second option to compute gold-
standard annotation. Here, the expert first seeds the 

                                                           
1 LASR requires the annotators to attach fuzzy levels of their confidence 

to each of their annotations. The level of annotator’s confidence is 
collected as 4-value ratings that are then translated into fuzzy numeric 
values, all as positive real numbers ≤1, having equal intervals, and none 
being 0.5 or 0. We wanted no annotation to be ignored because of a zero 
weight or be indecisive because of a 0.5 weight on the confidence level.  

 

Figure 4.  Distribution of the gold-standard annotations computed 
manually, based on majority voting (M1). 
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Figure 5.  Distribution of the gold-standard annotations computed 
by LASR, using annotators’ confidence levels (M2). 
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Figure 3.  Distribution of the true gold-standard annotations (as 
annotated by the expert) in our corpus. 

483 
63 26 

286 
Functional 
Non-Functional 
Ambiguous 
Noise 

59



annotation data by setting true gold-standard annotations for 
at least a small portion of the un-annotated corpora. LASR 
recommends seeding by annotating at least 10% of the un-
annotated instances randomly. The seeded annotations are 
regarded as the true gold-standard annotations; and LASR 
then measures the skill level, Sx, of each annotator, x, as the 
ratio of his/her annotations agreeing with the true gold-
standard annotations. For example, if the annotations of an 
annotator, x, agrees with the seeded gold-standard 
annotations 60% of the times, then the skill level, Sx, would 
be 0.6. Thus, LASR uses a modified version of the formula 
(1) as below to calculate the score for selecting the gold-
standard annotation label for each instance— 

 

 (2) 
 
Thus, the annotation label c that achieves the highest 

score in terms of the above formula (2) is selected as the 
gold-standard annotation for an instance i. We call this 
method of computing gold-standard annotations M3 for our 
experiments. We now use LASR to compute the gold-
standard annotation labels according to M3. Their 
distribution is shown in Fig. 6. It shows that the computed 
gold-standards annotations now have a very high degree of 
agreement (Kappa = 0.86043) with those submitted by our 
expert. Moreover, there remained no instances, where their 
gold-standards are unresolved, eliminating the need for 
running costly adjudication sessions. 

Figure 7 summarizes the results of our annotation 
experiments, showing the quality of the computed gold-
standard annotations (based on the annotations submitted by 
G2) for M1, M2 and M3, in terms of their degrees of 
agreement (in Kappa) with the true gold-standard 
annotations chosen by the expert. Fig. 7 also compares these 
results to that of the gold-standard annotations after G1 
performed the task manually. 

 
 
 
 
 
 
 
 
Our experiment with M3 shows that LASR was able to 

weight the annotations based on the scores of formula (2) 
accordingly, using the levels of skill of the annotators of G2 
and their levels of confidence, and, thus, selected the gold-
standards that agreed the most with the true gold-standards, 
as shown in Fig. 7. This indicates that LASR automatically 

extracted gold-standard annotations that are reliable enough, 
even when the group of annotators was not fully trained. 

IV. CONCLUSION 
In this paper, we discussed how a linguistic annotation 

tool can effectively aid the annotation tasks of software 
requirements. We presented our annotation tool, LASR, and 
showed how it helped a group of annotators with minimum 
training to annotate software requirements accurately. 

The unique features of LASR did not only help in 
attaining more accurate annotations, but also helped 
eliminating the need of running adjudication sessions to 
resolve disagreement among the annotators, and, thus, 
reducing the cost of large scale annotation. It improved the 
idea of crowd-sourcing by introducing the method of expert 
seeding of the true gold-standard annotations for a portion of 
the corpora, and thus, allowing real-time evaluation of the 
skills of annotators. 

For our future work, we intend to further experiment on 
the usability of LASR, and study if it can help minimize the 
annotators’ effort for different requirements annotation tasks. 
Also, we would analyze the impact on our results for having 
different numbers of annotators. The data collected from our 
experiments on LASR are currently also being used for our 
umbrella project, READ-COSMIC [7], that explores the 
linguistic features for functional size measurement. 
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Figure. 6.  Distribution of the gold-standard annotations computed by 
LASR, using annotators’ confidence levels and skill levels (M3). 
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Figure 7.  Quality of the different gold-standard annotations in terms of 
their agreements (in Kappa) with the true gold-standard annotations 
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