
LASR: A Tool for Large Scale Annotation of Software Requirements

Ishrar Hussain, Olga Ormandjieva, and Leila Kosseim
Department of Computer Science and Software Engineering

Concordia University
Montreal, Quebec, Canada

{h_hussa, ormandj, kosseim}@cse.concordia.ca

Abstract—Annotation of software requirements documents is
performed by experts during the requirements analysis phase
to extract crucial knowledge from informally written textual
requirements. Different annotation tasks target the extraction
of different types of information and require the availability of
experts specialized in the field. Large scale annotation tasks
require multiple experts where the limited number of experts
can make the tasks overwhelming and very costly without
proper tool support. In this paper, we present our annotation
tool, LASR, that can aid the tasks of requirements analysis by
attaining more accurate annotations. Our evaluation of the tool
demonstrate that the annotation data collected by LASR from
the trained non-experts can help compute gold-standard
annotations that strongly agree with the true gold-standards
set by the experts, and therefore eliminate the need of
conducting costly adjudication sessions for large scale
annotation work.

Keywords-Software Requirements Analysis; Requirements
Annotation; Linguistic Annotation Tool.

I. INTRODUCTION

A. Annotation of Software Requirements
Software requirements annotation involves annotating

different parts of the software requirements document to
indicate what classes of requirements they contain, or, which
software engineering artifacts are present (e.g. domain
entities, data-attributes etc.), or, any other classes of
information vital to the software project. For example, Fig. 1
shows an extract from a software requirements document
and how an annotator has chosen to annotate its sentences
with different annotation labels. Here, the requirements
sentences are to be annotated into four different classes:
(i) Functional Requirement: A software requirement that
expresses the required behavior of the system.

(ii) Non-Functional Requirement: A software requirement
that expresses the quality requirements and the constraints
over the related behavior of the system.

(iii) Ambiguous Requirement: A software requirement that
can be interpreted in more than one way by the annotator
(i.e. the requirements analyst).

(iv) Noise: Any sentence that does not express any of the
above types of software requirement.

Software requirements can be further annotated
according to different needs of information that are to be
extracted about the software to be developed.

B. Motivation and Research Objective
In the early phases of the software development lifecycle,

software requirements are essentially captured in unrestricted
natural language without any formalization, so that it can be
easily conveyable between the clients (and/or the potential
users) and the technical people (analysts, developers,
managers and others) [1]. After the elicitation of software
requirements, the tasks of requirements analysis usually
involve cumbersome manipulation and organization of a
large pool of textual requirements. Being written in
unrestricted natural language, these textual requirements are
often found to be corrupted with ambiguity that an expert has
to manually identify and resolve [2]. The documents
containing the textual requirements can also be either
unstructured or of varying structures which demands
additional effort from an expert to manually extract crucial
knowledge about the software. For example, sentences
describing non-functional requirements are often found
embedded in paragraphs containing functional requirements
that an expert often has to manually organize by separating
the non-functional requirements from the functional ones [3].

Thus, the annotation of software requirements is a crucial
activity performed by experts to deal with informally written
requirements during the requirements specification phase [4].
Reuse of requirements documents also require annotating its
parts following a standard of requirements taxonomy [5].

However, different types of requirements annotation
tasks are targeted to extract different kinds of information
about the software from its requirements. Thus, to have
many experts on different types requirements annotation

Extract from a requirements document
...The following use case describes approving a budget. First, the user navigates to
the budget overview page. The system then displays the budget overview with editable
budget attributes. System presets some of the budget attributes. User edits the budget
attributes and sets the status as "Approved". All the mandatory attributes cannot be
empty and the budget amounts cannot be negative. User finally saves the budget. ...

Requirement Sentence Annotation Label
The following use case describes approving a budget. Noise
First, the user navigates to the budget overview page. Functional
The system then displays the budget overview with editable budget
attributes. Functional

System presets some of the budget attributes. Functional
User edits the budget attributes and sets the status as "Approved". Functional
All the mandatory attributes cannot be empty and the budget
amounts cannot be negative. Non-Functional

User finally saves the budget. Functional

Figure 1. Example of Sentence-level Annotation of Software Requirements.

978-1-4673-4365-7/12/$31.00 c© 2012 IEEE EmpiRE 2012, Chicago, Illinois, USA57

tasks always available for all projects adds to the overall
project costs.

Again, requirements annotation is also necessary to build
annotated sets of documents (i.e. annotated corpora) that are
used in numerous recent researches [6] that attempt to learn
the behavior of human expertise behind different
requirements analysis tasks and automate these tasks by
using supervised or semi- supervised learning techniques.
For example, our umbrella project, READ-COSMIC [7],
requires annotated corpora to train and test our supervised
text miners that are used for measuring the functional size of
software. To build such annotated corpora for these
researches would ideally require many human experts to
manually annotate a large number of requirements instances.
This would not only be highly expensive, but also
overwhelming for a limited number of experts.

Thus, the objective of the research presented in this paper
is to identify a unique set of features for a requirements
annotation tool that would—
(g1) Support any type of requirements annotation tasks.
(g2) Support building large pools of annotated corpora for
statistical data analysis.

(g3) Improve the overall process of requirements annotation
by attaining accurate annotations with non-experts.

To achieve this, we developed our annotation tool, called
“LASR”, with the aim to satisfy the above goals. In this short
paper, we will present the experiments which we conducted
to validate how well LASR satisfies goal g3 above. Let us
first describe LASR briefly.

II. LASR: LIVE ANNOTATION OF SOFTWARE REQUIREMENTS
We developed LASR (Live Annotation of Software

Requirements) to aid the collection of annotated corpora and
the generation of training/testing datasets required by the
supervised learning systems related to our work [7]. LASR is
a Web-based application that provides a rich graphical user
interface allowing quick navigation and control during the
annotation tasks. It uses a client-server architecture at the
highest-level of the logical view. On the server-side, it
implements a three-tier-architecture, comprising of the
Presentation, Application and Services layers. The
application layer then further implements the model-view-
controller architecture, via the CakePHP framework. Figure
2 shows LASR’s architecture in details.

Here, the Requirements Repository at the backend holds
the requirements documents contributed by its users. The
Instance Extractor module of LASR is equipped with
lightweight NLP-based tools, e.g. a sentence delimiter and a
noun-phrase chunker, that can automatically extract
requirements instances at the levels of passages, sentences
and noun-phrases from the requirements documents and save
them to the backend. Annotation Templates define the
annotation work to be performed at a particular level of
requirements instance (e.g. at the sentence level or noun-
phrase level). The templates are stored as XML files at the

backend file-system, and contains configuration details on
the annotation interface as well, making the interface
customizable by the project manager.

III. EXPERIMENTS & RESULTS
To validate our goal g3, we ran annotation experiments

on LASR at the sentence-level of software requirements (as
shown in section I.A) and compared its accuracy to that
obtained with manual annotation, without any tool support.

A. The Corpus
For these experiments, our corpus was composed of six

requirements documents belonging to three different
problem domains. They were collected from both the
industry and academia. Some statistics about these
documents are presented in Table I.

TABLE I
DOCUMENTS USED IN THE EXPERIMENTS

Doc.
ID Doc. Title Source Problem

Domain

Total Sentences
Extracted After
Preprocessing

D1 (undisclosed) SAP Labs, Montreal,
Canada Business 15

D2 (undisclosed) SAP Labs, Montreal,
Canada Business 101

D3 Course Registration
System Concordia University Academic

(Private) 179

D4 IEEE Montreal
Website Concordia University Web (Public) 467

D5 (undisclosed) SAP Labs, Montreal,
Canada Business 7

D6 (undisclosed) SAP Labs, Montreal,
Canada Business 89

Here, we extracted the sentences from only those sections
of the documents that held textual user requirements.

B. The Annotators
We had two groups of annotators and one expert (in

requirements annotation) annotating the above documents.
One group (G1) consisting of four graduate students of the
Master of Computer Science program who were trained to
annotate software requirements documents manually. The
expert led the training of the annotators, and also participated
with them in the manual annotation experiment.

Figure 2. Architecture of LASR.

58

The other group (G2) consisted of 26 undergraduate
students of software engineering,. They were introduced to
requirements annotation (through lectures and handbooks),
but were not thoroughly trained. No prior tests were
conducted to verify their knowledge, before the experiment
was executed. However, they were all trained via class
tutorials to work on LASR’s user interface as annotators.

We designed the experiments so that G1 annotated the
requirements documents manually, and G2 used LASR to
annotate the same documents.

C. Results
A total of 858 sentences (from the six documents of

Table I) were annotated during this experiment. We
identified the expert’s annotation as the true gold-standard to
compare all other annotations made during the experiments,
both manually and by LASR. The distribution of the true
gold-standard annotations of our corpus, as annotated by the
expert, is shown in Fig. 3.

1) Manual Annotation: The annotators of G1 (excluding
the expert) performed the annotation manually on four
documents only, instead of the six, for a total of 742
sentences. The gold-standard annotations were computed by
following the majority voting model. Whenever a gold-
standard annotation could not be resolved, adjudication was
performed by the participation of the annotators of G1. Here,
we evaluated the performance of the annotators in terms of
Cohen’s kappa [8], showing the degree of agreement of the
gold-standard annotations, computed collectively from the
four annotators, with the annotations of the expert (the true-
gold-standards). This showed a high degree of agreement
(Kappa = 0.83187). This result represents the best-case
scenario, where all four annotators of G1 were properly
trained and the gold-standard annotations were computed
after holding meticulous adjudication sessions with their
participation to resolve their points of disagreements.

2) Annotation with LASR: The annotators of G2 used
LASR to perform annotation of all the six documents for a
total of 858 sentences. We computed the gold-standard
annotations manually using the simple majority voting rule
(we call this method, M1). We found that the computed gold-
standard annotations this way moderately agree (Kappa =
0.72396) with those submitted by the expert. Figure 4 shows
the corpus distribution in this case.

Here, we found that the method, M1, could not resolve
the gold-standards for 116 of the instances, indicating a high
degree of disagreements for those instances. The standard
method to resolve this issue is to run adjudication sessions
for all unresolved instances with the participation of all
annotators. Unfortunately, this method is costly especially
with real annotation tasks performed over larger corpora.

To address this problem, the first option that LASR
introduces, is to compute the gold-standard annotations
automatically using the levels of confidence entered by the
annotators. We call this method of computing gold-standard
annotations M2 for our experiments. Here, LASR tries to
compute the gold-standard annotation for each of the
annotated instances, by first assigning a custom score to each
of the annotation labels based on the level of confidence
submitted by the annotators. Thus, the annotation label with
the highest score, and that is also greater than some threshold
(0.51

 in our case), is selected as the gold-standard annotation.
LASR uses the formula below to calculate the score for each
possible annotation. It shows that if mi annotators have
annotated an instance i, and the class c is one of the possible
class labels for annotating the instance i, then the score of
class c for the instance i is —

 (1)

Thus, the final score of an annotation class c for an

instance, i, is the arithmetic average of all the confx,c,i values
submitted by each annotator, x. The confidence of an
annotator x, denoted by confx,c,i in the formula (1), is equal to
one of values of {0.1, 0.4, 0.7, 1.0} that is according to the
level of confidence chosen by the annotator x, while
annotating the instance i as class c. And, for all those classes,
c', that are not chosen the annotator x for the instance i,
confx,c',i will be equal to 0. Thus, 0 ≤ confx,c,i ≤ 1.

We used LASR to compute the gold-standard annotation
labels according to M2. Their distribution is shown in Fig. 5.
It shows that the computed gold-standard annotations now
agrees highly (Kappa = 0.81184) with those submitted by
our expert. However, there still remain 20 instances for
which the gold-standards could not be resolved.

LASR also provides a second option to compute gold-
standard annotation. Here, the expert first seeds the

1 LASR requires the annotators to attach fuzzy levels of their confidence

to each of their annotations. The level of annotator’s confidence is
collected as 4-value ratings that are then translated into fuzzy numeric
values, all as positive real numbers ≤1, having equal intervals, and none
being 0.5 or 0. We wanted no annotation to be ignored because of a zero
weight or be indecisive because of a 0.5 weight on the confidence level.

Figure 4. Distribution of the gold-standard annotations computed
manually, based on majority voting (M1).

116

383 58 14

287

UNRESOLVED
Functional
Non-Functional
Ambiguous
Noise

Figure 5. Distribution of the gold-standard annotations computed
by LASR, using annotators’ confidence levels (M2).

20

413

64
37

324

UNRESOLVED
Functional
Non-Functional
Ambiguous
Noise

∑
=

×=
im

x
icx

i

conf
m

icScore
1

,,)(1)|(

Figure 3. Distribution of the true gold-standard annotations (as
annotated by the expert) in our corpus.

483
63 26

286
Functional
Non-Functional
Ambiguous
Noise

59

annotation data by setting true gold-standard annotations for
at least a small portion of the un-annotated corpora. LASR
recommends seeding by annotating at least 10% of the un-
annotated instances randomly. The seeded annotations are
regarded as the true gold-standard annotations; and LASR
then measures the skill level, Sx, of each annotator, x, as the
ratio of his/her annotations agreeing with the true gold-
standard annotations. For example, if the annotations of an
annotator, x, agrees with the seeded gold-standard
annotations 60% of the times, then the skill level, Sx, would
be 0.6. Thus, LASR uses a modified version of the formula
(1) as below to calculate the score for selecting the gold-
standard annotation label for each instance—

 (2)

Thus, the annotation label c that achieves the highest

score in terms of the above formula (2) is selected as the
gold-standard annotation for an instance i. We call this
method of computing gold-standard annotations M3 for our
experiments. We now use LASR to compute the gold-
standard annotation labels according to M3. Their
distribution is shown in Fig. 6. It shows that the computed
gold-standards annotations now have a very high degree of
agreement (Kappa = 0.86043) with those submitted by our
expert. Moreover, there remained no instances, where their
gold-standards are unresolved, eliminating the need for
running costly adjudication sessions.

Figure 7 summarizes the results of our annotation
experiments, showing the quality of the computed gold-
standard annotations (based on the annotations submitted by
G2) for M1, M2 and M3, in terms of their degrees of
agreement (in Kappa) with the true gold-standard
annotations chosen by the expert. Fig. 7 also compares these
results to that of the gold-standard annotations after G1
performed the task manually.

Our experiment with M3 shows that LASR was able to

weight the annotations based on the scores of formula (2)
accordingly, using the levels of skill of the annotators of G2
and their levels of confidence, and, thus, selected the gold-
standards that agreed the most with the true gold-standards,
as shown in Fig. 7. This indicates that LASR automatically

extracted gold-standard annotations that are reliable enough,
even when the group of annotators was not fully trained.

IV. CONCLUSION
In this paper, we discussed how a linguistic annotation

tool can effectively aid the annotation tasks of software
requirements. We presented our annotation tool, LASR, and
showed how it helped a group of annotators with minimum
training to annotate software requirements accurately.

The unique features of LASR did not only help in
attaining more accurate annotations, but also helped
eliminating the need of running adjudication sessions to
resolve disagreement among the annotators, and, thus,
reducing the cost of large scale annotation. It improved the
idea of crowd-sourcing by introducing the method of expert
seeding of the true gold-standard annotations for a portion of
the corpora, and thus, allowing real-time evaluation of the
skills of annotators.

For our future work, we intend to further experiment on
the usability of LASR, and study if it can help minimize the
annotators’ effort for different requirements annotation tasks.
Also, we would analyze the impact on our results for having
different numbers of annotators. The data collected from our
experiments on LASR are currently also being used for our
umbrella project, READ-COSMIC [7], that explores the
linguistic features for functional size measurement.

ACKNOWLEDGMENT
We thank SAP Labs, Montreal, Canada, for providing the

annonymized software requirements documents for our
experiments. We also thank the anonymous reviewers for
their comments on an earlier version of this paper.

REFERENCES
[1] Leffingwell, D., & Widrig, D. (2003). Managing Software

Requirements: A Use Case Approach. Pearson Education.
[2] Meyer, B. (1985). On Formalism in Specifications. IEEE Software, 2,

6-26.
[3] Hussain, I., Kosseim, L., & Ormandjieva, O. (2008). Using Linguistic

Knowledge to Classify Non-functional Requirements in SRS
documents. In Natural Language and Information Systems, LNCS
5039, pp. 287-298. Germany: Springer-Verlag.

[4] Ko, Y., Park, S., Seo, J., & Choi, S. (2007). Using classification
techniques for informal requirements in the requirements analysis-
supporting system, Information and Software Technology Journal, 49,
1128-1140.

[5] Eriksson, M., Börstler, J. & Kjell, B. (2009). Managing requirements
specifications for product lines – An approach and industry case
study, The Journal of Systems and Software, 82, 435–447.

[6] Casamayor, A., Godoy, D., Campo, M. (2011). Mining textual
requirements to assist architectural software design: a state of the art
review, Artificial Intelligence Review, Springer Netherlands, 1-19.

[7] Hussain, I., Kosseim, L., & Ormandjieva, O. (2010). Towards
Approximating COSMIC Functional Size from User Requirements in
Agile Development Processes Using Text Mining. In Natural
Language Processing and Information Systems, LNCS 6177, pp. 80-
91. Germany: Springer-Verlag.

[8] Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales.
Journal of Educational and Psychological Measurement, 20, 37-46.

Figure. 6. Distribution of the gold-standard annotations computed by
LASR, using annotators’ confidence levels and skill levels (M3).

432

65
39

322
Functional
Non-Functional
Ambiguous
Noise

∑
=

×=
im

x
xicx SconficScore

1
,,)()|(

Figure 7. Quality of the different gold-standard annotations in terms of
their agreements (in Kappa) with the true gold-standard annotations

0.5
0.6
0.7
0.8
0.9

1

M1 M2 M3

Ka
pp

a

Methods to Compute Gold-Standard Annotations

Annotation
with LASR

Manual
Annotation

60

