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CLaC @ QATS: Quality Assessment for Text Simplification

Elnaz Davoodi and Leila Kosseim
Concordia University

Montreal, Quebec, Canada
e davoo@encs.concordia.ca, kosseim@encs.concordia.ca

Abstract
This paper describes our approach to the 2016 QATS quality assessment shared task. We trained three independent Random Forest
classifiers in order to assess the quality of the simplified texts in terms of grammaticality, meaning preservation and simplicity. We
used the language model of Google-Ngram as feature to predict the grammaticality. Meaning preservation is predicted using two
complementary approaches based on word embedding and WordNet synonyms. A wider range of features including TF-IDF, sentence
length and frequency of cue phrases are used to evaluate the simplicity aspect. Overall, the accuracy of the system ranges from 33.33%
for the overall aspect to 58.73% for grammaticality.

Keywords: Simplification, Word Embedding, Language Model

1. Introduction
Automatic text simplification is the process of reducing the
complexity of a text to make it more accessible to a broader
range of readers with different readability levels. While
preserving its meaning as much as possible, a text’s lexi-
cal, syntactic and discourse level features should be made
more simple. However, evaluating the simplicity level of
a text is still a challenging task for both humans and auto-
matic systems.
Current approaches to automate text simplification vary de-
pending on the type of simplification. Lexical simplifica-
tion was the first effort in this area. In particular, Devlin and
Tait (1998) introduced an approach of replacing words with
their most common synonym based on frequency (Kuc̆era
et al., 1967). More recently, publicly available resources
such as Simple English Wikipedia 1 and the Google 1T
corpus 2 have been used to automate lexical simplification
based on similar approaches such as common synonym re-
placement and context vectors (e.g. (Biran et al., 2011; Bott
et al., 2012; Rello et al., 2013; Kauchak, 2013)).
Another approach to automatic text simplification involves
syntactic simplification. Current work in this area aims
to identify and simplify complex syntactic constructions
such as passive phrases, embedded clauses, long sentences,
etc. Initial work on syntactic simplification focused on
the use of transformation rules in order to generate sim-
pler sentences (e.g. Chandrasekar and Srinivas (1997)).
Later, work have paid more attention on sentence splitting
(e.g. Carroll et al. (1998)), rearranging clauses (e.g. Sid-
dharthan (2006)) and dropping clauses (e.g. (Barlacchi and
Tonelli, 2013; Štajner et al., 2013)). To our knowledge,
Siddharthan (2003) is the only effort that specifically ad-
dressed the preservation of a text’s discourse structure by
resolving anaphora and ordering sentence.
In the remainder of this paper, we describe the method-
ology we used to measure the 4 simplification criteria
of the QATS workshop: GRAMMATICALITY, MEANING

1http://www.cs.pomona.edu/˜dkauchak/
simplification/

2https://books.google.com/ngrams

PRESERVATION, SIMPLICITY and OVERALL. In Sections
2 and 3, the details of our submitted system are described,
while Section 4 summarises our results.

2. System Overview
As can be seen in Figure 1, our system consisted of three
independent supervised models in order to predict each
of the three main aspects: GRAMMATICALITY, MEANING
PRESERVATION and SIMPLICITY. We used 10 fold cross-
validation in order to choose the best supervised models.
The 4th aspect (i.e. OVERALL) was predicted using the pre-
dictions of MEANING PRESERVATION and SIMPLICITY.

2.1. Grammaticality Prediction
In order to predict the quality of the simplified sentences
from the point of view of grammaticality, we have used
the log likelihood score of the sentences using the Google
Ngram corpus3. To do this, the BerkeleyLM language mod-
eling toolkit4 was used (Pauls and Klein, 2011) to built a
language model from the Google Ngram corpus, then the
perplexity of all simple sentences in the training set were
calculated. These log likelihood scores were used as fea-
tures to feed a Random Forest classifier.

2.2. Meaning Preservation Prediction
The purpose of meaning preservation is to evaluate how
close the meaning of the original sentence is with respect
to its simple counterpart. To do this, we used two com-
plementary approaches based on word embedding and the
cosine measure.

2.2.1. Word Embedding
We used the Word2Vec package (Mikolov et al., 2013a;
Mikolov et al., 2013b) to learn the representation of words
on the Wikipedia dump5. We then trained a skip-gram
model using the deeplearing4j6 library. As a result, each

3https://books.google.com/ngrams
4http://code.google.com/p/berkeleylm/
5http://www.cs.pomona.edu/˜dkauchak/

simplification/
6http://deeplearning4j.org/

53

http://www.cs.pomona.edu/~dkauchak/simplification/
http://www.cs.pomona.edu/~dkauchak/simplification/
https://books.google.com/ngrams
https://books.google.com/ngrams
http://code.google.com/p/berkeleylm/
http://www.cs.pomona.edu/~dkauchak/simplification/
http://www.cs.pomona.edu/~dkauchak/simplification/
http://deeplearning4j.org/


Figure 1: System Overview

word in the original sentence and its simple counterpart are
represented as a vector. As calculating the similarity of two
sentences using word embedding is still a challenging task,
our approach to this problem was to use average similar-
ity. To do so, we calculated the similarity of each word
(each vector) in the original sentence to all the words in its
simpler counterpart. Then using the average length of the
original and simple pairs, we calculated the average simi-
larity between a pair of sentences. This similarity was the
first feature we fed to a Random Forest classifier.

2.2.2. Cosine Similarity of WordNet Synonyms
The second feature we used for meaning preservation was
based on WordNet synonyms. Each sentence was repre-
sented as a vector of its constituent words. Then, using
WordNet7, all synonyms of each word were added to the
corresponding vector of the sentence. However, as each
word can have various part of speech (POS) tags, before
expanding the vector, we first identified the POS of all the
words in the sentence using the Stanford POS tagger (Man-
ning et al., 2014). Afterwards, we filtered the synonyms
according to the POS tags and added only those with the
same POS tag of the word. As a result, each sentence was
represented as a vector of words and their synonyms. Us-
ing the cosine similarity to calculate the similarity between
corresponding vectors of pairs of sentences, we measured
how close the meaning of two sentences were.

Cosine Sim(i) =

# „

Oi.
#„

Si

|| # „

Oi|| × ||
#„

Si||

7https://wordnet.princeton.edu/

2.3. Simplicity Prediction

The purpose of simplicity prediction is to evaluate how sim-
pler the simple sentences are compared to their original
counterpart. As simplicity can be measured at various lev-
els (i.e. lexical, syntactic and discourse), we considered the
following sets of features in order to capture the changes at
each level.

2.3.1. Vector Space Model Similarity
The first feature we considered in order to evaluate the sim-
plicity of the simple sentences compared to their original
counterpart, was the cosine similarity between the Term
Frequecy-Inverse Document Frequency (TF-IDF) vectors
of each pair. A cosine similarity of 1 indicates that no
change has been made in the simplification process. How-
ever, before transforming sentences into their correspond-
ing TF-IDF vector, we preprocessed them. First, stop words
were removed, then all words were stemmed using the
Porter Stemmer (Porter, 1980). As a result, each sentence
was represented as a vector of the size of all the stems in
all sentences. It is worth noting that in order to compute
the inverse document frequency for each stem, we consid-
ered each sentence as a document. The cosine similarity
between original and simple sentences of the ith pair is cal-
culated using Formula 1, where

# „

Oi and
#„

Si represent the
vectors of the original sentence and its simple counterpart
correspondingly.
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2.3.2. Sentence Length
Traditional approaches to readability level assessment have
identified text length as an important feature to measure
complexity (e.g. Kincaid et al. (1975)). Following this,
we investigated the influence of sentence length in terms of
the number of open class words only. By ignoring closed
class words, we eliminated the effect of words which do
not contribute much to the meaning of the sentence. Thus,
we considered the difference between the length of pairs of
sentences as our second feature for simplicity prediction.

2.3.3. Average Word Length
According to Kincaid et al. (1975), not only can the num-
ber of words in the sentence be an indicator of simplicity
level, but also its length in terms of the number of charac-
ters. To account for this, we also considered the difference
between the average number of characters between pairs
of sentences. Using this feature along with the number of
words of each sentence (see Section 2.3.2), we investigated
not only the influence of the length of sentence, but also the
length of each word in the sentence.

2.3.4. Frequency in the English Wikipedia Corpus
The frequency of each word in the regular English
Wikipedia can be an indicator of the simplicity level of the
word. We expected that words in the original sentences
would be more frequent in the regular English Wikipedia
than words of the simple sentences. Thus, we calculated
the difference between the average frequency of all words
of the original sentence and their simple counterpart. To
do this, we preprocessed both pairs of sentences and the
regular English Wikipedia corpus, in order to remove stop
words and then stem the remaining words.

2.3.5. Frequency in the Simple English Wikipedia
Corpus

The Simple English Wikipedia corpus8 is an aligned cor-
pus of 60K ¡regular, simple¿ pairs of Wikipedia articles.
We used this corpus in order to calculate the average fre-
quency of words of each pair of sentences. We expected the
words of simpler sentences to be more frequent in the Sim-
ple Wikipedia articles compared to the original sentences.
To do this, we performed the same preprocessing as de-
scribed in Section 2.3.4. and used the average frequency of
the sentence’s stems as features.

2.3.6. Frequency of Cue Phrases
The last feature we considered to predict the simplicity as-
pect was the difference in the usage of cue phrases. Cue
phrases are special terms such as however, because, since,
etc. which connect text segments and mark their discourse
purpose. Several inventories of cue phrases have been pro-
posed (e.g. (Knott, 1996; Prasad et al., 2007)). For our
work, we used the list of 100 cue phrased introduced by
Prasad et al. (2007) and calculated the difference between
the frequency of cue phrases across pairs of sentences. It
is worth noting that cue phrases may be used to explicitly
signal discourse relations between text segments or may
be used in a non-discourse context. However, here we

8http://www.cs.pomona.edu/˜dkauchak/
simplification/

considered both discourse and non-discourse usage of cue
phrases.

2.4. Overall Prediction
The last aspect to be predicted evaluated the combination of
all other aspects. According to our analysis of the training
data set, this aspect depended mostly on the SIMPLICITY
and the MEANING PRESERVATION aspects. Our prediction
of this aspect was based only on a simple set of rules using
the predictions of these two aspects. The following shows
the rules we used to predict the value of this aspect.

• If both simplicity and meaning preservation are clas-
sified as GOOD, then overall = GOOD,

• If at least one of simplicity or meaning preservation is
classified as BAD, then overall = BAD,

• otherwise, overall = OK.

3. Data and Results
The training set contains 505 pairs of original and simple
sentences. The original sentences were taken from the news
domain and from Wikipedia and the simple counterparts
were automatically simplified using various text simplifica-
tion systems. Thus, the simple counterparts may contain
various types of simplifications such as lexical, syntactic or
mixture of both. Table 1 shows the distribution of the data
for each of the four aspects. As can be seen, none of the
aspects have a normal distribution over the class-labels.

Aspect
Value(%)

Good Ok Bad

Grammaticality 75.65 14.26 10.09
Meaning preservation 58.22 26.33 15.45
Simplicity 52.68 30.29 17.03
Overall 26.33 46.14 27.53

Table 1: Distribution of data

For our participation, we submitted one run for GRAMMAT-
ICALITY and MEANING PRESERVATION and three runs for
the SIMPLICITY and OVERALL aspects. The three runs had
different classification threshold to assign class labels. Our
official results are listed in Table 2. MAE and RMSE stand
for Mean Average Error and Root Mean Square Error cor-
respondingly.
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