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Abstract

This paper discusses the use of information extraction and natural language
generation in the design of an automated e-mail answering system. We analyse
short free-form texts and generating a customised and linguistically-motivated
answer to frequently asked questions. We describe the approach and the design of
a system currently being developed to answer e-mail in French regarding printer-
related questions addressed to the technical support staff of our computer science
department.

1 Introduction

The number of free-form electronic documents available and needing to be pro-
cessed has reached a level that makes the automatic manipulation of natural
language a necessity. Manual manipulation is both time-consuming and expen-
sive, making NLP techniques very attractive. E-mail messages make up a large
portion of the free-form documents that are currently treated manually. As e-
mail becomes more and more popular, an automated e-mail answering service
will become as necessary as an automated telephone service is today.

This paper discusses the use of information extraction and natural language
generation to answer e-mail automatically. We describe the design of a system
currently being developed to answer e-mail in French regarding printer-related
questions addressed to the technical support staff of our computer science depart-
ment. The original project was prompted by a local corporation for its customer
service needs, but because of difficulties in gathering a corpus of e-mail messages
from their archives, local e-mails from our department were used to develop the
technology.

Unlike typical question answering systems (e.g. [20]) our focus is on analysing
short, free-form texts and generating a customised and linguistically-motivated
answer to frequently asked questions. In our view, two main approaches are avail-
able to answer e-mail: information retrieval or information extraction. With the
0 source: Proceedings of the 5th International Conference on Applications of Natural

Language to Information Systems (NLDB’2000). june 2000. Versailles, France



information retrieval approach, the incoming message is considered as a query
to be matched against some textual knowledge base (e.g. a FAQ). E-mail an-
swering thus becomes a question of finding passages from the textual knowledge
base that best relate to the incoming message and sending the passages as is
to the user. Although this approach has the major advantage of being domain
independent1, it does not provide a natural and customised answer. It provides
an ergonomically awkward interaction with e-mail users, and it supposes that
the e-mail message is short enough so that the process can be computationally
efficient. In order to provide a specific response to the user query, we believe that
key information from the content of the e-mail must be identified and used to
customise the answer. For this reason, whenever the specific discourse domain of
the question is known (e.g. through classification), information extraction seems
in our view more adequate for analysing the incoming e-mail and template-based
natural language generation appropriate to produce a natural answer from pre-
written response templates.

2 The corpus

The system we are developing is aimed at answering printer-related user e-mail
received by the technical support staff of our department, where communications
are done in French. We have concentrated our efforts on a specific discourse
domain in order to obtain good results in information extraction and to be able
to manage knowledge representation. The entire corpus covered a 3 year period
and is composed of 188 e-mails. The corpus was split into two sets: the first 2
years for analysis and the last year for testing. From the original corpus, we kept
only the messages that discussed only one topic and were self-contained, i.e. that
do not need information external to the message to be understood. We therefore
removed replies (i.e. messages that answer a previous question from technical
support), signatures and e-mail headings (except the from and subject fields).
The final analysis corpus contains 126 messages with an average of 47 words per
message. This average is smaller than the Reuter-21578 text categorisation test
collection 2 (129 words), but larger than the typical questions of the QA track
of TREC-8 (9 words3) [20]. The messages from the analysis corpus fall into 3
major query types:

– problem reports (67%): For example, reports that a printer is out of paper,
a user can’t print a particular file, the printer is unreachable, . . .

– how-to questions (19%): For example, questions about how to print on both
sides of the paper, how to kill a job, . . .

– general information (13%): For example, questions regarding properties of
the printers (name, location, resolution, . . . )

1 Provided a textual knowledge base exists
2 www.research.att.com/˜lewis
3 average of the NIST 38 development questions (www.research.att.com/˜singhal/qa-

dev-set)



From: David Smith <smith@iro.umontreal.ca>
Subject:
Bonjour,
J’aimerais savoir comment je peux imprimer seulement sur un côté de la page sur l’impri-
mante hp2248. [ I would like to know how I can print only on one side of the page on the
hp2248 printer.]
Merci.
David

Fig. 1. Example of a how-to question from our corpus and its English translation

Figure 1 shows a example of a simple e-mail and its English translation (for
illustration purposes). Note that for confidentiality reasons, names of persons
have been changed.

3 General Architecture

The typical task of answering e-mail can be decomposed into 3 steps [4]: recog-
nising the problem(s) (reading and understanding the e-mail); searching for a
solution (identifying predefined text blocks) and providing a solution (customis-
ing the text blocks and sending the text). Our interest lies in the first and last
steps: understanding the text and formulating the response.

The general architecture of the system is shown in Figure 2. As a printer-
related message arrives, information extraction tries to fill pre-defined extraction
templates that are then passed to a knowledge-intensive, domain-dependent pro-
cess that checks the validity of the extracted information. Valid templates are
further filled by inferring new information from the extraction templates and
a domain knowledge base. Depending on the template content, a set of answer
templates is selected, filled and organised by a natural language generation mod-
ule. The emphasis of the work is on the information extraction and the natural
language generation modules (modules in bold in Figure 2).

When responding to an e-mail, four situations can occur:

Answer found: The extraction templates contain correct information and
the decision process can find a suitable answer template. In this case, the
extraction and the answer templates are passed to the generation module.

Human referral: The extraction templates contain correct information but
the decision process cannot find a suitable answer. In this case, a Human
referral message is produced.4

Incorrect information: The extraction templates contain incorrect or inco-
herent information. This situation can arise from a legitimate error made

4 Our interest lies in answering the e-mail and not in actually routing it to a clerk or
department. A technique based on text classification or case-based reasoning may
be used to select the most appropriate clerk to route the e-mail to.
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Fig. 2. Architecture of the system

by the sender in the message, or from an error in the extraction module.
Because the source cannot be determined, in both cases a generic Incorrect
information message is generated.

Incomplete information: The extraction templates do not contain enough
material to select an answer template. This can occur if the message did not
contain the necessary information, or if the extraction module did not find
it. In this case, a message of the type Missing information is generated. Note
that no conversation management is performed to wait for and recover the
missing information in subsequent messages.

3.1 Text Analysis

The task of an Information Extraction (IE) system is to identify specific informa-
tion from a natural language text in a specific discourse domain and to represent
it in a structured template format. For example, from a car accident report, an
IE system will be able to identify the date and location of the accident, and the
names and status of the victims. The filled templates can then be stored in a
database for later retrieval or serve as a basis for the automatic generation of
summaries.

IE from formal texts usually follows one of two approaches: a linguistic sur-
face approach or a statistical approach. The linguistic approach is based on
a lexico-syntactic description of the phrases to be located [1, 2, 12]. With this
approach, the text is tokenised, each token is tagged with its most likely gram-
matical category, and syntactic chunking is performed to group together noun



and verb phrases. Next, lexico-syntactic extraction patterns and large dictio-
naries of trigger phrases (M., inc., . . . ), of known proper names and of general
language are used to identify and semantically tag key phrases. Discourse rules
are then applied to relate this key information and to infer new ones. To account
for noise in certain kinds of texts, IE is often performed by statistical methods
which uses a language model trained on large pre-tagged corpora [11, 17]. Stud-
ies have shown that the probabilistic methods yield good results if large corpora
are available for training. However, to apply the system to different discourse
domains, retraining of the model is necessary. In contrast, linguistic rule-based
systems can be tuned more easily from a small corpus. Because our corpus was
so small and we already had a rule-based information extraction prototype for
French [13], we followed a rule-based approach. As is typically done, we tokenise
and lemmatise the texts and make use of lexicons, grammars and extraction
patterns.

In our project, the IE module tries to fill a template relation and a set of tem-
plate elements for each printer-related message. The filled templates will be used
to diagnose the printer question and find an appropriate answer. Following the
MUC terminology [18], template elements are templates describing named enti-
ties (e.g. templates for persons, artifacts, . . . ) and templates relations represent
relations between template elements (e.g. person1 is the owner of artifact1).
While the design and extraction of some fields are domain independent (e.g.
person templates, location templates) and can use publicly available resources,
others are domain-dependent (e.g. printer or file templates) for which specific
grammars and lexicons must be built. In our discourse domain, the system tries
to fill templates for computer users, printers, files, machines and actions per-
formed. These templates are shown in Figure 3. Each field value can either be a
free-form string extracted from the document (e.g. David Smith), a value from
a closed set of possible answers (e.g. a printer name) or a pointer to another
template. Template entities are filled through three techniques:

Lexicons: This includes lists of known users, laboratories, software and printer
names built from the technical support databases.

Grammars of named entities: This includes such things as regular expres-
sions for recognising file names from unknown words.

Lexico-syntactic extraction patterns: This includes patterns for recognis-
ing named entities from their neighboring words. For example, the pattern
printer::name5 in room X allows us to infer that X is the room number
of printer::name although it may not follow the grammar of room num-
bers. Such patterns allows us to be somewhat flexible and recognise named
entities that are not well formed.

Because our e-mails are factual and short and because the discourse domain is
very specific, template relation extraction can be kept simple. As Figure 3 shows,
in most cases, the template elements can only have one relation with other tem-
plates. For example, any printer template is assumed to be the job destination
5 The notation X::Y refers to field Y of template X.



(where the user wants to print) and machine templates are always assumed to be
the job source (the machine from where the printing job is sent). In the cases of
file and user templates, two relations are possible; in these cases, lexico-syntactic
patterns are used to disambiguate between relations. For example, if a template
entity for files is filled then it can be a file to print or a file printing. To
identify the correct relation, patterns such as I wish to print file::name or
file::name is blocking the queue are used. Template relations are identi-
fiable this way because the discourse domain is very specific, and the texts are
factual and short.

print event template

Field Value Validation

sender user template no
destination printer template no
source machine template no
file to print file template no
action tried action template no

user template

Field Value Validation

name string no
e-mail address set yes
laboratory set yes

printer template

Field Value Validation

name set yes
room set yes
status set yes
file printing file template yes

file template

Field Value Validation

name string yes
current format set yes
desired format set yes
current page size set yes
desired page size set yes
generated how set yes
owner user template no
job number string no

machine template

Field Value Validation

name set yes
OS set yes
laboratory set yes

action template

Field Value Validation

comand tried string yes
error message string yes

Fig. 3. Extraction Template Relation and Template Entities to be filled

Template and field coreference allows us to merge several templates if they
refer to the same real-world entity. Several manually coded and automatically
learned techniques exist to perform coreference resolution (e.g. [5]). In our sys-
tem, coreference resolution has not specifically been addressed. We use the strate-
gies of our existing IE system, exibum [13], which merges entities only on the
basis of head noun equality. This strategy allows us to determine that the names
David Smith and David refer to the same person and that smith@iro.umontreal.
ca is the e-mail address of this same person. However, this technique cannot de-
termine that JD in the signature of the second message of Figure 1 refers to



John Doe. Figure 4 shows the templates filled by the IE module for the how-to
question of Figure 1.

print event 1

sender user1 template
destination printer1 template
source
file to print file1 template
action tried

file1 template

name
current format
desired format single sided
current page size
desired page size
generated how
owner
job number

printer1 template

name hp2248
room
status
file printing

user1 template

name David Smith
e-mail address smith@iro.umontreal.ca
laboratory

Fig. 4. Extraction Templates after Information Extraction

3.2 Discourse Analysis

Semantic Validation and Discourse Inferencing Once the templates are
filled, the field values are validated. This process serves two purposes: making
sure the user communicated correct information, so that a correct answer can be
formulated, and more importantly, making sure the information extraction per-
formed a correct analysis of the text. Extraction templates contain two types of
field values: those used to select an answer template, and those that do not influ-
ence the choice of answer templates but rather are used to customise the answer.
The latter fields are not verified, while the former are checked for correctness.
Semantic validation is performed through two strategies:

1. Matching filled fields against one another and against a static knowledge
base to verify their coherence. For example, if the IE module extracted
within the same printer template the fields printer1::name = hp2248 and
printer1::room = X-234, but the database does not contain the pair (name=
hp2248, room= X-234), then an incoherence is detected.

2. Running dynamic scripts associated to specific template fields. For exam-
ple, if the IE module extracted within the same printer template the fields
printer1::name = hp2248 and printer1::file printing::name = test.
txt, but the script associated with printer names to find the name of the cur-
rently printing file (namely, lpq -P printer::name) has determined that
printer hp2248 is currently printing another file, then an incoherence is de-
tected.



Incorrect templates are flagged and are sent directly to the answer template
selection, that will select an Incorrect information type of answer. On the other
hand, correct templates are further filled by discourse analysis.

The role of discourse analysis is to infer information or relations that is
not explicitly stated in the text, but that are known from the discourse it-
self or the domain. Discourse analysis tries to further fill extraction templates
and create new ones. This analysis is performed also by the use of a static
and a dynamic knowledge bases, and by the use of default values for empty
fields. For example, the fact that David Smith is a member of the artificial
intelligence laboratory can be determined by matching the e-mail address
smith@iro.umontreal.ca to the static knowledge base; while a dynamic script
can determined that printer hp2248 is currently printing the file test.txt, thus
creating a new file template.

Answer Template Selection Selecting the generic content of the response
is done using a decision tree developed specifically for this discourse domain.
Conditions of the decision tree relate to field values of the extraction templates,
while the leaves of the decision tree are answer templates (see Figure 5). Answer
templates can contain canned answers to be used as is, but can also contain
command names, options and syntax, special considerations and a location where
to find more information, for which the formulation can vary.

For example, a value for the field file to print::desired format indicates
that the topic of the e-mail is to print a file in a particular format and the cor-
responding decision tree is traversed. If the extraction templates do not contain
enough information to reach an answer template (a leaf), then an Incomplete
information answer template is selected. If no answer template can be reached
because of unpredicted information in the extraction templates, a Human refer-
ral (no answer found) is selected. Finally, if an answer template is reached, it
will be customised by the template-based Natural Language Generation (NLG)
module.

canned answer: ∅
command: lpr
option: -i-1
syntax: lpr -P destination::name -i-1 file to print::name
special consid-
erations:

Note that this printing mode should only be used for the final copy of
a document.

more info: www.theURL/lpr#recto

Fig. 5. Example of an answer template



3.3 Response Formulation

Once an answer template is selected, it must be filled and organised into a cohe-
sive answer. To produce a response, pre-defined rhetorical schemas are followed.
Regardless of which situation we are dealing with, the response will contain
welcome greetings, a message body (Incorrect info or Missing info or Human
referral or a Customised response), closing greetings and a signature. A reper-
toire of canned answers is available to produce each part of the response. Some
canned answers are fully lexicalised, while others contain slots to be filled by
information contained in the extraction templates or the answer templates. For
example, welcome greetings can simply be Hello or Dear sender::name. If the
extraction templates contain the name of the sender, Dear sender::name will
be preferred over Hello. If several equivalent variants of the same part of the
answer have been specified, such as Dear sender::name and Hi sender::name,
one of the variants is randomly selected by the system.

The process of deriving the surface form from the answer template is car-
ried out in two steps. A Prolog definite clause grammar (DCG), specifying the
rhetorical schema, the canned text and parameterized slots, and various helper
predicates and rules, is used to generate the text level of abstraction [10], that
is the full sequence of words and phrases in the response. The final orthographic
form is then generated from this sequence of words. Issues such as elision, con-
traction, punctuation, capitalisation and formatting are handled in this step by
the motor realisation module of the spin generation system [14].

The customised response is built from the filled answer template selected by
the decision tree. “Special considerations” and “Location for more information”
are optional parts of the response schemas and will be filled depending on the
level of detail desired in the responses. The output for the how-to question of
Figure 1 is shown in Figure 6 along with an English translation.

Bonjour David,
Pour imprimer en recto seulement sur la hp2248, il faut utiliser la commande lpr avec
l’option -i-1. Faire: lpr -P hp2248 -i-1 <nom du fichier>
Notez que ce mode d’impression ne doit être utilisé que pour la copie finale d’un
document.
Pour plus d’info, consutez l’URL: www.theURL/lpr#recto
[To print on only one side of the paper on the hp2248, you must use the command
lpr with the option -i-1. Type: lpr -P hp2248 -i-1 <file name>
Note that this printing mode should only be used for the final copy of a document.
For more info, consult the URL: www.theURL/lpr#recto]
Bonne chance,
Support technique

Fig. 6. Generated answer for the how-to question of Figure 1



4 Related Work

Related work on e-mail answering include commercial e-mail answering systems,
question answering and e-mail classification.

The simplest level of e-mail answering systems is the so-called autoresponder6.
These systems return a canned document in response to an e-mail according
to the presence of keywords in the subject or body of the message. A variant
of autoresponders can customise the returned document, if the user filled in a
predefined Web form. An obvious drawback of these systems is that they do
not analyse the content of a free-form message. A more sophisticated type of
e-mail responder are included in e-mail management systems, and can provide
pre-written response templates for frequently asked questions. Slots are usually
filled in with information extracted manually from the incoming mail, but some
systems seem to perform the extraction automatically [3, 16].

Question answering (QA) tries to find an answer to a natural language ques-
tion [20] form a large set of documents. The question type is determined by
the presence of trigger phrases (e.g. where, how many, how much, . . . ), which
indicates the type of the answer required (location, number, money, . . . ). Infor-
mation retrieval is typically performed to identify a subset of the documents and
a set of passages that may contain the answer, named entities are then extracted
from these passages and semantically tagged and the string containing the best
scoring entity is retained as the answer. QA differs from e-mail answering in
several aspects. Generally speaking, e-mail answering is interested in analysing
a longer text and formulating a linguistically-motivated answer, while QA takes
a short and explicit question as input and focuses on locating the answer. Issues
in discourse analysis must therefore be addressed in e-mail answering, but not
in QA. In addition, questions in QA are, for the moment, restricted to specific
types: who, why, where, . . . but pertain to an unrestricted discourse domain. On
the other hand, in e-mail answering, the questions are of unrestricted type, but
the discourse domain is typically restricted.

E-mail classification is another domain related to our work that has been ad-
dressed by many research projects. This has been approached both from an auto-
matic learning perspective (e.g. [4, 9]) and from an IE perspective (e.g. [6]). Our
work complements those in text classification as it supposes that the incoming
e-mail messages have already been classified as printer-related questions. E-mail
classification can therefore be seen as a pre-processing module to our system.

On the NLG side, Coch developped a system to generate automatic answers
to complaint letters from clients of LaRedoute (a large French mail-order corpo-
ration) [7, 8]. As letters are not in electronic format, the reading and extraction is
done by humans, but the decision and the production of the response is done au-
tomatically. Through a formal blind evaluation, Coch has demonstrated that the
best responses (according to specific criteria) are still the human-generated ones,
but that the use of a hybrid template-based NLG system produced acceptable
responses at a much faster rate.

6 also known as AR, infobots, mailbots or e-mail-on-demand



5 Discussion and Further Research

In this paper, we have described the design of an e-mail answering system we
are currently developing. The system relies on information extraction to anal-
yse the user message, a decision tree to determine the content of the answer,
and template-based natural language generation to produce the surface form of
the answer in a customised and cohesive way. Because the discourse domain is
specific and high precision scores are desired, a knowledge-intensive approach
is used. In order to scale up the approach to larger domains, we believe that
new domain-dependent knowledge-bases, extraction rules and answer templates
should be developped and that text-classification should be performed prior to
IE in order to select the appropriate knowledge bases to use. Although the de-
sign of a knowledge-intensive domain-dependent system offers poor adaptability
to other discourse domains, it was viewed as a means to reach high precision
scores in text analysis; something that is crucial in e-mail answering, as a wrong
answer sent to a client can have far-reaching customer satisfaction consequences.
We believe the incremental approach to be appropriate; i.e. testing the preci-
sion of the system on a small discourse domain, and incrementally enlarging the
discourse domain.

As the system is under development, no formal evaluation has yet been per-
formed. As far as further research is concerned, our priority is therefore finishing
the implementation of the prototype so that a formal evaluation can be per-
formed. We plan to evaluate the system using 3 measures: a measure of the IE
module, a measure of the NLG module and a global measure combining the
two. Measuring the IE will be done using the MUC evaluation protocol [19] on
the test corpus. Measuring the NLG module will be done through to a blind
evaluation protocol similar to [7].

So far, we have not taken into account how textual noise from the e-mail
affects the textual analysis. E-mail messages are informal electronic texts that do
not follow strict writing guidelines. Textual noise can come from typography (e.g.
lack of diacritics and capitalisation), terminology (e.g. informal abbreviations),
orthography and grammatical irregularities. Our approach is based on the MUC
experiences that have mainly been concerned with homogeneous corpora that
follow writing guidelines. The rule-based key-word approach may need to be
adapted to account for textual noise.

For the moment, the NLG system fills answer slots directly, without much
linguistic knowledge. We plan to increase the cohesiveness and naturality of
the responses by using referring expressions whenever possible. The work of
Kosseim et al. [15], for example, provides linguistically-motivated guidelines for
the generation of such expressions in French.
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