Worst-case analysis of a dynamic channel assignment strategy *

Lata Narayanan and Yihui Tang
Department of Computer Science
Concordia University
Montreal, Quebec
Canada H3G 1M8
email { lata, tang } @cs.concordia.ca

August 11, 2003

Abstract

We consider the problem of channel assignment in cellular networks with arbitrary
reuse distance. We show upper and lower bounds for the competitive ratio of a previ-
ously proposed and widely studied version of dynamic channel assignment, which we
refer to as the greedy algorithm. We study two versions of this algorithm: one that
performs reassignment of channels, and one that never reassigns channels to calls. For
reuse distance 2, we show tight bounds on the competitive ratio of both versions of the
algorithm. For reuse distance 3, we show non-trivial lower bounds for both versions of
the algorithm.

1 Introduction

The demand for wireless telephony and wireless data services is expected to continue growing
dramatically over the next decade. This makes the efficient use of already scarce spectrum
resources of great importance. The key idea behind the cellular concept was that of frequency
reuse: by dividing the service area into small coverage areas called cells served by low-power
transmitters, one could reuse the same channels in different cells in the network, thereby
greatly increasing the capacity of the network. However, in practice, reuse is limited by the
phenomenon of co-channel interference: if the same channel is used in two different cells
that are geographically close to each other, there can be radio interference, which distorts
the signals. To achieve an acceptable signal to interference ratio, the same channel should
therefore not be reused in two different cells in the network, unless they are separated by a
minimum distance, which is called the reuse distance.

Cellular data and communication networks are usually modeled as graphs with each
node representing a base station in a cell in the network. At any given time, a certain num-
ber of active connections (or calls) are serviced by their nearest base station. In networks
employing TDMA /FDMA technology, service involves the assignment of a frequency chan-
nel to each client call. For convenience, the set of available channels is assumed to be the
set {1,2,...,C}. The graphs most often used to model cellular networks are finite portions

*Research supported partially by NSERC, Canada.

of the infinite triangular lattice. We refer to a finite induced subgraph of the triangular
lattice as a hexagon graph. In the rest of this paper, the graphs we consider are always
hexagon graphs. The number of calls to be served, that is, channels to be assigned, at a
node v is modeled by its weight w(v). Interference constraints are modeled in terms of reuse
distance; it is assumed that the same channel can be assigned to two different nodes in the
graph if and only if their graph distance is at least . The objective of an algorithm for the
channel assignment problem is to assign w(v) channels to each node v in the network, such
that interference constraints are respected, and the total number of channels used over all
the nodes in the network is minimized. In practice, the problem is an online one; at each
step, each node has a weight, and the algorithm must assign channels to all new calls, and
perhaps adjust the previous assignment by reassigning channels to old calls.

A simple and commonly used strategy is called fized channel assignment (FCA), in
which base stations can only use channels from fixed sets that are precomputed to avoid
interference with neighbors [11]. For example, when the reuse distance is 2, a 3-cell pattern
is used to cover the network, and the set of available channels is partitioned into three equal
sized sets. Each cell uses channels from only one of the three sets based on which cell it
corresponds to in the pattern. Similarly, for the case r = 3, a 7-cell pattern can be used.
The problem with such a fixed strategy is that a lot of channels may be unused in cells
with low traffic, while calls are rejected in cells with higher traffic, resulting in inefficient
use of available bandwidth. In fact, this strategy can be seen to use 3 times (7 times)
the minimum number of channels needed when the reuse pattern is a 3-cell pattern (7-cell
pattern respectively). In contrast, dynamic channel assignment (DCA) [2, 3, 5, 15, 19]
does not partition the channel set, and in principle, allows any channel to be used by any
node in the network. In other words, each base station can use any channels that are
currently unused by any neighbors with whom there might be a possibility of interference.
In between are borrowing strategies [4, 6, 7, 12, 14], where a fixed number of channels is
reserved per node, but borrowing is allowed, provided there is no conflict with neighbors.
This can also be seen as providing a different ordering of channels to different nodes. An
interesting alternative called cluster partitioning was proposed in [9], the details of which are
provided in Section 5.2. While it is repeatedly claimed that DCA achieves higher capacity
than FCA, and this has been demonstrated in some situations, using both empirical and
analytical methods, its worst case performance in a theoretical framework has not been
studied.

Katzela and Nagshineh [10] provide an extensive survey of DCA strategies. The main
characteristic common to all DCA schemes is that all channels are kept in a central pool and
are assigned dynamically to radio cells as new calls arrive in the system. A channel is eligible
for use in any cell, provided interference constraints are met. DCA strategies vary in the
criterion used to select the channel to be assigned from the set of all eligible channels. They
also vary in whether they are centralized or distributed, and the synchronization mechanism
used in the latter case. A wide variety of selection criteria to choose the assigned channel
can be found in the literature. For example, in [19], the algorithm tries to maximize the
amount of reuse: roughly, the channel that has been used the most often at distance r
but least often at distances r + 1 and r + 2 is used. A number of recently proposed DCA
schemes are based on measurement of signal strength from various eligible channels, and
aim to increase the reusability of channels [16, 17]. A commonly used strategy [3, 5, 15], is
the purely greedy strategy of using the minimum numbered channel among those eligible.

In this paper, we investigate in detail the worst-case performance of this greedy strategy.

Both centralized and distributed versions of the greedy strategy have been proposed and
studied in the literature, and in the distributed cases, synchronization mechanisms based
on message passing have been described. We are not concerned here with synchronization
details, and hence, for purposes of ease of analysis, we impose a simple synchronization
scheme based on rounds, that ensures that no conflicts take place owing to synchronization
problems. In fact, we first analyze an offline algorithm, 4.e. we study the performance of
the algorithm on a single set of weights assigned to each node. We emphasize that we are
not proposing this simplified version of the greedy strategy as a new DCA strategy to be
implemented, but simply as a tool to be able to analyze easily the strategies mentioned
earlier [3, 5, 15|, and previously proposed in the literature. It is straightforward to see
that the lower bounds we prove on this offline algorithm also hold for the online variations
proposed in [3, 5, 15]. An additional motivation is to be able to provide a fair comparison in
the online setting with previous borrowing strategies. Our lower bounds also apply to the
signal-strength-based strategies mentioned above. We use standard yardsticks for measuring
the efficacy of offline and online algorithms. An offline channel assignment algorithm is said
to have performance ratio k if it uses at most k times the minimum number of channels
required to satisfy all requests. An online channel assignment algorithm has competitive
ratio ¢ if uses at most ¢ times as many channels overall as the optimal offline algorithm
would.

Our Results. For any reuse distance r, we show that the offline greedy algorithm
has a performance ratio of at most 6. For reuse distance 2, we show that the greedy
strategy has a guaranteed performance ratio of 5/3; this is a tight bound, as it is possible
to construct a hexagon graph and weight vector so that the algorithm uses 5/3 times the
optimal number of channels. For the case r = 3, we show that the greedy strategy has a
guaranteed performance ratio of 23/8. On the other hand, we show that in some cases, this
strategy uses 7/3 times the optimal number of channels. Thus the performance ratio of the
greedy strategy lies between 7/3 and 23/8. We also construct a weighted hexagon graph on
which the greedy algorithm uses 12D /5 channels where D is the maximum total weight on
any clique in the graph, and is a lower bound on the number of channels needed. Finally,
for arbitrary reuse distance, the greedy strategy has a performance ratio of at most 6, while
a simple borrowing strategy is shown to have a performance ratio of at most éf’;i;? which
is 6 —o(1).

There are two straightforward online implementations of the offline greedy strategy. The
first is essentially the offline algorithm repeated at every step, and has the same bounds
on its performance. However, channels assigned to ongoing calls may be reassigned during
successive steps, leading to intra-cell handoffs. We refer to this online implementation
as G-R (greedy algorithm with reassignments), and mention it in order to provide a fair
comparison with the borrowing strategies, which also perform reassignments. The second
online implementation of the greedy strategy does not reassign channels, and is exactly the
same as the strategies proposed in [3, 5, 15], with the synchronization details abstracted
away. We call this version G-NR (greedy algorithm with no reassignments). Recently,
Caragiannis et al. [1] showed an upper bound of 2.5 on the competitive ratio of this
algorithm for reuse distance 2, for the case when calls are of infinite duration. In this
paper, we show a lower bound of 2.5 for the general case. Our result thus demonstrates
a tight bound on the competitive ratio of G-NR for reuse distance 2 when calls are of

Reuse Best known | Upper bound | Lower bound | Best known
distance | upper bound for G-R for G-R lower bound
[re ¥ | % g
3 T 4 . 5 &

Table 1: Summary of results for algorithms that perform reassignments.
represent D, (G, w), the weighted clique number; G-R is the greedy algorithm that allows

reassignments.
Reuse Best known | Upper bound | Lower bound | Best known
distance | upper bound for G-NR for G-NR lower bound
2 3D [9, 11] 3D 5D 2D [8]
3 3D [9] 4D 3D 22
r 4D 9] 6D 5D 5D

D is used to

Table 2: Summary of results for algorithms with no reassignments. D is used to represent
D, (G, w), the weighted clique number; G-NR is the greedy algorithm without reassignments.
The bounds for G-NR apply to the algorithms in [2, 4, 13].

infinite duration. We also show that G-NR has competitive ratio between 3 and 4 for reuse
distance 3. Both the lower bounds and the upper bounds apply to the DCA strategies
from the literature that we wish to analyze. Our results are summarized in Tables 1 and
2. Note that borrowing strategies with competitive ratio 4/3 are known for reuse distance
2 [12, 14, 8]. For reuse distance 3, Feder and Shende have shown a borrowing strategy
with competitive ratio 7/3 [4]. The best previously known algorithm that does not perform
reassignment of channels is the cluster partitioning strategy of Jordan and Schwabe [9],
which has a competitive ratio of 3 for reuse distances 2 and 3, and 4 for higher values of
reuse distance.

The rest of the paper is organized as follows. The next section contains definitions
and some technical facts. Section 3 and 4 give our results for reuse distances 2 and 3
respectively. Section 5 presents our results for arbitrary reuse distance. Conclusions and
some discussion of future work are given in Section 6.

2 Preliminaries

Let G be a hexagon graph, i.e. a finite induced subgraph of the infinite triangular lattice.
The parameter r is called the reuse distance. A weighted graph is a pair (G, w) where w is
a positive integral vector indexed by the nodes of G. The component of w corresponding to
node v is denoted w(v) and is called the weight of v. The weight of a node represents the
number of calls to be served at that node.

Given G = (V, E), the graph G" = (V, E') is defined by E' = EUE?U...UE""!. Thus
any pair of nodes at distance 7 < r in GG is connected by an edge in G". The problem of
channel assignment in a weighted hexagon graph (G, w) with reuse distance r is thus the

same as multicoloring the graph G". We will assume that nodes are assigned channels from
the ordered interval [1,A] = {1,2,...,A}, where A > 1 depends on the particular graph
under consideration. For instance, when a node is assigned the subinterval of channels [4, j],
it means that the node is assigned the channels {i,i +1,...,7}.

The unweighted clique number of G" is the maximum size of any clique in G", and is
denoted w(G"). Similarly, the chromatic number of G", the minimum number of colors
needed to color G, is denoted by x(G"). It is known that x(G") = w(G") (see Section 5),
and an optimal coloring can be computed in polynomial time. We assume that such an
optimal coloring of the graph G" is available; thus every node in G" is assigned a color from
the set {1,2,...,x(G")}. We define N,(v) to be all neighbors of v in G that have a lower
color than that of v. For example, if v is a node with color 3 in G”, then N, (v) consists of
all neighbors of v in G” that have color 1 or 2. Given a weighted graph (G, w), for any node
v, we define H,(v) to be w(v) + ¥yen, (yyw(u). Given a (partial) assignment of channels to
N, (v), RCy(v) is defined to be the number of channels assigned to more than one node in
N,(v). Thus RC,(v) is a measure of the reuse of channels within N, (v). Finally, we define
N.(v) to be all neighbors of v in G and H,(v) to be w(v) + Sye n, (o) w(u).

We are now ready to define the greedy algorithm in a more precise manner. Given a
weighted hexagon graph (G, w) and a reuse distance r, the algorithm is assumed to have a
coloring of G” using x(G") colors available. The algorithm proceeds in x(G") rounds. In
round 4, each node v with color 7 and weight w(v) assigns to itself the set of w(v) channels
with the lowest numbers that are not used in N, (v). Notice that all nodes in N, (v) were
assigned channels in previous rounds. This synchronization scheme is given only for ease of
analysis; it is not hard to see that the lower bounds obtained for the above algorithm also
apply to the greedy DCA algorithms in the literature.

We consider two online implementations of the greedy offline algorithm described above.
The first one essentially consists of running the offline algorithm at every step on the new
weight vector. We call this version G-R, the greedy algorithm with reassignments. At step
t, every node v knows its weight wy(v). In every step, the algorithm proceeds in rounds, and
the nodes with color ¢ participate in round ¢. At every step, a node completely recalculates
the channels to be assigned to all its nodes, and the channel assigned to an ongoing call can
be changed from time to time. The second online implementation, called G-NR, does not
perform reassignments. At step ¢, each node v knows the number of new call arrivals, say
ng(v). The node v then assigns to itself the set of n;(v) channels with the lowest numbers
that are not used at itself or in N,(v). Any synchronization mechanism (including the
one described above for the offline algorithm) could be used to prevent conflicts occurring
during a single time step.

Given a weighted hexagon graph (G, w), we define D, (G, w) to be the maximum total
weight on any clique in G". When solving the channel assignment problem on (G, w) with
respect to reuse distance r, clearly D, (G, w) is a lower bound on the number of channels
required. Let mc(v) be the highest channel used by the vertex v. The following lemma is
used frequently in subsequent sections.

Lemma 1 For the offline greedy algorithm, and for any node v, me(v) < min{H,(v) —
RC;(v),w(v) + maz e, vyme(u)}-

Proof: The number of distinct channels used by nodes in N, (v) is at most H,(v) —
w(v) — RC,(v). Therefore, v will never use a channel higher than H,.(v) — RC,(v). Also,

if u is a node in N, (v) that uses the highest channel in v’s neighborhood, v will never use

more than the next w(v) channels. O

The following technical lemma is useful in determining which nodes will be neighbors

in G" for a given r. In a hexagon graph, the ve\l;‘gices are all integer linear combinations zp
1 V3

+yq of the two vectors p = (1,0) and q = (5, %>). Thus we may identify the vertices with

the pairs (z,y) of integers, called their coordinates.

Lemma 2 For any two nodes p and q at coordinates (x1,1y1), (x2,ys) respectively, let d(p, q)
denote the distance between p and q.

(((z2 —21) + (Y2 —y1) if w2 >3 and y2 > y1 Casel
Y2 — Y1 if 1o < 1 and Yo > 1
and yo —y1 > 11 — 22 Case
T — L9 if zo < 1 and yo > y1
d(p,q) = and yo —y1 < x1 — 290 Cased
’ (1 —22) + (y1 —y2) ifxa <z andys <y1 Cased
Y1 — Y2 if xg > 1 and y2 < 1y
and xo —x1 <y1 —y2 Cased
T — T1 if 1o > 1 and yo <yy
and xo —x1 > y1 —y2 Caseb

Proof: Straightforward. See Figure 1 for an example of each case, where (z1,y;) = (0,0).
O

3 Reuse distance 2

In this section, we study the behavior of the greedy strategy when the reuse distance is 2.
We show a tight bound for the performance of the static version of the greedy algorithm,
and a lower bound for the competitive ratio of G-NR, the online greedy algorithm with no
reassignments.

3.1 Static case

For this case, the best known algorithms [12, 14] have performance ratio 4/3. We show that
the greedy strategy has performance ratio 5/3. This is a tight bound, as there are weighted
hexagon graphs where the greedy algorithm uses 5/3 times the optimal number of channels
required.

Theorem 1 For reuse distance 2, the performance ratio of the offline greedy algorithm is
5

3
Proof: Let (G, w) be a weighted hexagon graph, where every node is colored red, blue, or
green (corresponding to colors 1,2, and 3 in the base coloring of G). We denote Ds(G, w)
by Dsy. It is easy to see that all red and blue nodes can be assigned channels using the
first Dy channels C[1,2,...,Ds]. In the third round of the algorithm, we assign channels
to the green nodes. For any green node v with w(v) > %, since Ny(v) and v can be

covered by three cliques(as shown in Figure 2), Hy(v) < 3Dy — 2w(v) < 3D — % = 5—1;2

Thus, by Lemma 1, me(v) < Hs(v) < % If instead, w(v) < 222 since we can use

3
the first Dy colors C[1,2,..., Ds] to color the red and blue nodes, by Lemma 1, we have
me(v) < w(v) + mazy,en,@wyme(u) < 2D3/3 + Dy = % Since a green node can never use

a channel higher than 5D /3 and Dy is a lower bound on the number of channels needed,
the algorithm has performance ratio at most 5/3.

We note that % is also a lower bound for the performance ratio of the greedy algorithm.
For example, in Figure 3, the reader can verify that Dy = 3k, and that there is an optimal
assignment using 3k channels, but the greedy algorithm will use 5k channels. Thus, the

greedy algorithm uses 5/3 times the optimal number of channels required. O

Corollary 1 G-R, the online greedy algorithm with reassignments, has competitive ratio %
for reuse distance 2.

3.2 Oanline case

For the online case, a trivial upper bound of 3 for the performance ratio of the greedy
algorithm follows from the fact that No(v)U{v} can be covered with 3 cliques (see Figure 2).
In [1], the authors use a more detailed analysis of Ho(v) to prove that for reuse distance
2, the competitive ratio p of the greedy algorithm satisfies 2.429 < p < % when calls are
of infinite duration. For the general case, we construct a hexagon graph and a sequence of

weight vectors to show a lower bound of 2.5 for this case.

Theorem 2 G-NR, the online greedy algorithm with no reassignments, has competitive
ratio % for reuse distance 2.

Proof: = We provide a hexagon graph (see Figure 4) and a sequence of call arrivals and
terminations on nodes in the graph so that the greedy algorithm is forced to use 20 channels,
while the reader can verify that the optimal offline algorithm needs only 8 channels. Let
the pair («, i) represent:

1 new calls come into node o« if 7 > 0
1 calls finish at node « if71<0

It is easy to see that the number of calls can easily be multiplied by any k > 0 to give
arbitrarily large weight vectors. While in principle, the adversary can specify the exact calls
that finish, in our example, when reducing the weight, we always reduce it to zero, that is,
all current calls terminate. Thus there is no need to specify the exact calls that finish in
a particular time step. Finally, many elements of the following sequence could be done in
parallel; we do not use this optimization for clarity and ease of verification.

The adversary’s objective is to make the node o use the channels [19,20]. This happens
only if all the channels [1,18] are currently in use in o’s neighborhood. Therefore the first
goal of the adversary is to make such a situation occur. It is intuitively clear that it is
harder to make a neighbor of o use the high channels than the low channels. Thus we work
on the harder task first. We first force the node n to use the channels [16, 18]. To do this,
once again, we create a situation where the 6 neighbors of n use all the channels [1,15]. In
particular, the nodes h,0 and s will have weight 2 each, and will use the higher channels
[10,15] and the remaining neighbors of n have weight 3 each, and will use the channels
[1,9]. The value of Dy[G] never exceeds 8.

First we work on the node s. The sequence (FE,2), (D, 3), (F,—2), (t,2), (A,5), (t,—2),
(D,—3) leads to A using the channels [6,10]. Next, the sequence (C,5),(z,3),(C, —5),
(A, —5) leads to z using the channels [11,13]. Now, the sequence (z,3),(y,3), (z, —3),
(4,3), (r,4), (y,—3),(¢,—3) leads to r using the channels [7, 10]. Increasing the weight of
n to 6 leads to m using the channels [1,6] since n has no neighbors of positive weight.
Now, increasing the weight of s to 2 forces s to use the channels [14,15]. The sequence
(r,—4), (z,—3) ensures that the only nodes with non-zero weight are s and n.

Next we work on the node o. The sequence (w, 3), (v, 3), (w, —3) leads to v using the
channels [1,3]. Next, the sequence (k,3), (p,5), (k, —3), (v,—3), (0,2), (p, —5) leads to the
node o using the channels [12,13]. At this point, 0,s, and n are the only nodes with
non-zero weight. Next, to make node h use the channels [10,11], we employ the sequence
(a,3),(b,3),(a,—3), (d,3),(c,3),(b,—3), (d,—3),(h,2). Next, the sequence (n,—6), (¢, —3)
ensures that the only nodes with positive weight are h, o, and s, and they are using the
channels [10, 15].

Finally we make the other neighbors of n use the channels [1,9]. The sequence (y, 3), (r, 3),
(y,—3),(g,3), (m,3),(g,—3), (r, —3) makes m use the channels [7,9]. The sequence (i, 3), (A4, 3),
(¢,3), (A, —3) makes 7 use the channels [1, 3] and ¢ use the channels [4,6]. Then the sequence
(n,3), (h,—2), (0,—2), (s,—2),(m,—3), (i,—3), (t, —3) leads to n using the channels [16, 18]
and being the only node of positive weight in the graph.

Recall that the final goal is to make o use the channels [19,20]. At this point, we work
on the other neighbors of 0. First we make the node j use the channels [13,15]. The
sequence (w,4),(q,4), (w,—4), (f,4), (k,4),(f,—4),(g,—4) leads to k using the channels
[9,12]. Next, (d,5), (e,3), (d,—5),(0,5), (4,3), (k,—4), (e, —3), (0, —5) achieves the purpose
of j using the channels [13, 15]. Now, the sequence (k,2), (¢, 2), (B,3), (v,2), (p,3), (k, —2),
(g, —2), (v, —2) leads to p getting the channels [7,9]. At this point, (z,3), (,3), (2, —3),
(,3), (u, 3), (B, —3), (0,2), leads to t getting the channels [4, 6], i getting the channels [1, 3],
u getting the channels [10, 12], and finally, o getting the channels [19,20] as desired.

The reader can verify that the optimal offline algorithm can perform the assignment
with 8 channels. In particular, we can break up the sequence of calls into two parts: at the
end of the first part, node n has weight 2, and its neighbors alternately have weight 2 or
3. In the second part of the call sequence, first all neighbors of node n lose all their calls,
and then the other neighbors of node o get 3 calls each, culminating with node o getting
two calls. By looking ahead a few steps, the optimal assignment can ensure that node n
ends up with channels [1, 3] at the end of the first part, and that the alternating neighbors
of node n have channel sets [4,6] or [7,8]. Similarly, in the second part of the sequence,
the neighbors of node o can be assigned either [1, 3] or [4, 6], so that node o can finally be
assigned channels 7, §]. 0

4 Reuse distance 3

In this section, we study the case when the reuse distance r = 3. We show that for the
static case, the greedy strategy has performance ratio at least that of the borrowing strategy
given in [4]. This shows that for the static case, the greedy strategy is no better than the
borrowing strategy in the worst case. We also show that G-NR, the online greedy algorithm
with no reassignments, has competitive ratio at least that of the cluster partitioning strategy
of [9]. This shows that for the online case, the greedy strategy is no better than the cluster

partitioning strategy in the worst case.

4.1 Static case

Feder and Shende have given a borrowing strategy for this case that has performance ratio
7/3 [4]. In particular, for any weighted hexagon graph (G, w), their algorithm uses at most
7D3(G,w)/3 channels. We show in this section that there are situations when the greedy
algorithm performs worse than this. Also, we show an upper bound on the performance
ratio of the greedy algorithm; however, we were unable to prove a tight bound for this case.

For reuse distance 3, the underlying unweighted graph G® can be colored with 7 colors.
Let G be a weighted hexagon graph and let D3 denote D3(G,w). For convenience, we refer
to a node with color 1 as a 1-node, a node with color 2 as a 2-node and so on. According
to the algorithm, when a node ¢ is being assigned channels, the only nodes which already
have assigned channels, and may therefore affect its assignment are nodes with lower colors.
For example, when a 4-node is being assigned channels, the only nodes that may affect the
assignment are the 1, 2 and 3-nodes in its neighborhood. Thus, one can obtain an upper
bound on the largest channel used by a 4-node by knowing bounds on the largest channel
used by 1, 2, and 3-nodes. We now prove a succession of lemmas, showing upper bounds
on the largest channel used by nodes of colors from 1 to 7. Clearly, upper bounds on the
largest channel used by nodes of colors 1 to 7 provides an upper bound on the performance
ratio of the greedy algorithm.

Lemma 3 All the 1-nodes and 2-nodes can be assigned using the first D3 channels C[1,2, ..., Ds].
Proof: Straightforward. O
Lemma 4 For any 3-node v, mc(v) < min{Ds + w(v),3D3 — 2w(v)} < %.

Proof: For any 3-node v, the set {v} U N3(v) can be covered by three cliques. and also,
by Lemma 3, no element of N3(v) can use a channel higher than D3. It then follows from
an argument similar to the proof for green nodes in Theorem 1 that mec(v) < min{D3 +
w(v),3D3 — 2w(v)} < 225, O
In fact, this is a tight bound, as shown by the example in Figure 5. The reader can
verify that D3 = 3k, but the greedy algorithm will use 5k channels.
We prove the following general fact that will be useful later.

Fact 1 Let p be a 3-node in N3(v) where v is a 4-node, and let w(p) = D3 —w(v) —i. Then
Hj(p) < D3 + 2i.

Proof: Since p is a 3-node, N3(p) can be covered by three cliques, each consisting of a
pair of 1- and 2-nodes. Since two of these cliques are also sub-graphs of a clique containing
both v and p, their total weights are at most ¢ each (see Figure 6 for one such position of
p with respect to v, the other positions can be verified by the reader). The third clique in
N3(p) has weight at most w(v) + 4. Thus, H3(p) < D3 + 2i. O

13D3

Lemma 5 For any 4-node v, mc(v) < =%

Proof: For any 4-node v, since {v} U N3(v) can be covered by three cliques, Hs(v) <

3D3 — 2w(v). So if w(v) > 417)3, by Lemma 1, mc(v) < Hz(v) < 3D3 —8D3/7 = % On

the other hand, by Lemma 4, none of the nodes in N3(v) can use channels higher than 8l

Therefore, if w(v) < 421)137 me(v) < % + % = 137D3.
It remains to show that mec(v) < 1323 when 482 < w(v) < 222 Let w(v) = 282 + &,

7
where 0 < k <

8Ds . Then for any 3-node p in N3(v), w(p) < 522 — k. Let w(p) = &=
—k —1i. We clalm that mc(p) < % — k.

Ifi< %, by Fact 1, we have H3(p) < D3 +2i < 9D3/7 < % — k, and therefore by
Lemma 1, mc(p) < % — k. If instead ¢ > 3, we have w(p) < % — k. Since none of the

1- and 2-nodes in Ng() will use colors higher than D3, by Lemma 1, mc(p) < D3 +w(p) <

5D3
5 k.

Since no 3-node in N3(v) uses a channel higher than % — k, and any 1- or 2-node in
Nj3(v) uses channels numbered at most D3 < 5D3 —Fk, by Lemma 1, me(v) < w(v)+2352 5D3 —k<
13D3 O

7
The bound in Lemma 5 is a tight bound, as shown by the example in Figure 7. The

reader can verify that D3 = 7k but the greedy algorithm uses 13k = 13D3/7 channels in
this case.

Lemma 6 For any 5-node v, mc(v) < %

Proof: For any 5-node v, by Lemmas 3 to 5, since none of its neighbors will use channels
higher than 1305 if w(v) < 1205 by Lemma 1, me(v) < 1328 4 ap(v) = HDs,

Consider two of the 1-nodes 1, and 1, in v’s neighborhood (see Figure 8). If w(1,) < w(1y),
all of 1,’s channels will also be used by 1, and thus RC5(v) > w(1,). It is easy to verify
that Hs(v) < 3D3 + w(1l,) — 2w(v) and therefore by Lemma 1, me(v) < Hz(v) — RC3(v) <
3D3 — 2w(v) < % if w(v) > %. Similarly, if w(1,) < w(1l,), we can also show that
mc(v) < 3D3(v) — 2w(v) < %.

It remains to show that mc(v) < % when % < w(v) < 2D3 Let w(v) = % + k,
where 0 < k < 2D3 Then for any 4-node u in v’s neighborhood, w() < 22)?3 — k.

Claim 6.1 shows that me(u) < % — k. Indeed, if u is 1-, 2, or 3-node in v’s neighbor-
hood, mc(u) < % < % — k, for all values of k in the range 0 < k < 2;;3 It follows as a

consequence of Lemma 1 that mc(v) < w(v) + BD3 —k= 12D3 +k+ BD3 —k= %. O

Claim 6.1 mc(u) < % — k.

Proof: Let w(u) = % — k — 4. Since N3(u) consists of 3 cliques, and all the nodes in

one of them are also neighbors of v, therefore Hz(u) < 2:?;15)3 —k—i+ 2(1%;?3—1— kE+1i)+i=
4215)3 +k+ 2. If w(u) > %, we have k + ¢ < % and Hs(u) < % — k, therefore
by Lemma 1, mc(u) < % — k. If instead w(u) < % — k, by Lemmas 1, 3, and 4,

me(u)<%+w():—137D3—k.

Thus we only need to consider % —k<w(u) < %. Suppose w(u) = 4D3 k+ 2,
where £ < 2%?53 + k. Then for any 3- node p in N3(), w(p) < 17D3 +k—¢. Let w(p) =

D3 —w(v) —j = 17D3 +k —0—j. Ifj—k > 22 then w(p) < %—E and by Lemma, 4,
me(p) < P2y, It then follows from Lemma 1 that mc(u) < ﬂ — 0+ s k=

3
% — k as claimed.

10

Otherwise if j — k < %, by Fact 1, H3(p) < D3 +2j < @ + 2k. Thus, by Lemma 1,
me(p) < 222 4 2k. It then follows from Lemma 1 that me(u) < 223 4 2k + 1D —
+€:%+k+€<%+2k<%fk,asrequired. O

The above bound is tight, as there exists a hexagon graph for which D3 = 5k but the

greedy algorithm uses 11k = 11D3/5 channels (see Figure 8).

Lemma 7 For any 6-node v, mc(v) < %

Proof: Let v be a 6-node, and let u be the node in N3(v) using the maximum-numbered
channel. If u is a 1- or 2-node, then by Lemmas 3 and 1, me(v) < D3 + w(v) < 2Ds.
Otherwise, if u is a 3-node, then w(v) < D3 — w(u) and by Lemmas 4 and 1, mc(v) <
Ds+w(u)+w(v) < 2D3. If uis a4-node, then me(v) < min{13Ds/7+w(v),3D5(v)—2w(v)}
< 47D3/21 < 5D3/2 as claimed. Claim 7.1 below gives three upper bounds on mc(u) for
the case when wu is a 5-node, and Claim 7.2 establishes a minimum value for the functions
obtained in Claim 7.1. The two claims together establish the lemma. O

Claim 7.1 Let w(v) =z and w(u) = D3 —x — y where u is a 5-node.
1. mec(v) < 3D3 — 2z +y.

2. me(v) < D3 + 2z + 2y.

3. me(v) < (19D5 + = — 6y) /7.

Proof: Notice that there are three 5-nodes in N3(v). In other words, the node u
can be in three different positions relative to the node v. One such position is shown
in Figures 9 and Figure 10. The case when w(1l,) < w(1p) is shown in Figure 9. It
can be seen that N3(v) U {v} can be covered by four cliques and the node 1,. Two of
these four cliques also include the node u. Furthermore, since w(l,) < w(1;), all channels
used at 1, are also reused at node 1j, thus RC3(v) > w(1,). Therefore, by Lemma 1,
me(v) < Hz(v) — RC3(v) < 4D3 +w(l,) — 3z — (Dg —x —y) — RC3(v) < 3D3 — 2z +y, as
claimed. A similar argument applies when w(1,) < w(1,); see Figure 10. Finally, we can
show the identical result for the remaining two positions of u. This finishes the proof of (1).

To see (2), observe that N3(u) consists of 3 cliques of 1-; 2-; 3-, and 4-nodes, in addition
to a 1-node, which can always be chosen to be the smaller of nodes 1, and 1, in N3(u)
(see Figure 8). Further, one of these cliques is such that all nodes in it are neighbors of
v, and thus has weight at most y, while the other two cliques have weight at most = + y.
Thus, using an argument similar to the one in the previous paragraph, we can show that
Hs(u) < D3 + = + 2y, and thus by Lemma 1, mec(u) < D3 + x + 2y. This implies in turn
that mc(v) < D3 + 2z + 2y.

To show (3), we need to analyze more carefully the maximum channels used by 3 and
4-nodes. In particular, if z3 is a 3-node with a 4-node neighbor x4, then Hs(z3) < 3D3 —
2w(zs) — 2w(zq). Therefore, me(x3) < 5D3/3 — 2x4/3. We take this into account when
analyzing a 4-node p with a 5-node neighbor w. In particular, the maximum channel used
by any neighbor of p is at most 5D3/3 — 2w(p)/3. Also, H3(p) < 3D3 — 2w(p) — w(u). It
follows from Lemma 1 that mc(p) < 13D3/7 —w(u)/7. Recalling that w(u) = D3 —z —y in
this case, we obtain mc(u) < mc(p) + w(u) < (19D3 — 6z — 6y)/7, and thus, by Lemma 1,
me(v) < (19D3 + z — 6y) /7 as claimed. O

11

Claim 7.2 min(3D3 — 2z +y, D3 + 2z + 2y, (19D3 + x — 6y)/7) < 2Ds.

Proof: Assume the claim is not true at x = a, y = b, that is, all three functions evaluate
5D3

to greater than =52 for these values. This implies:

3Ds —2a+b > 5D3/2 (1)
Dy+2a+2b > 5D3/2 2)
(19D3+(I,*Gb)/7 > 5D3/2 (3)

Then (1) + (2) = b > 22, while (1) + (3) * 14 = b < 25, which yields a contradiction.
O

Lemma 8 For any 7-node v, mc(v) < 23;33'

Proof: For any 7-node v, N3(v) U {v} can be covered by four cliques, and so H3(v) <
4D3 — 3w(v). If w(v) > %, by Lemma 1, mc(v) < Hz(v) < 4D3 — 3w(v) < %. On the
other hand, by Lemmas 3 to 7, none of the nodes in N3(v) can use channels higher than
%. So if w(v) < %, by Lemma 1, mec(v) < % +w(v) < %. |

It is possible to construct a weighted hexagon graph where the greedy algorithm uses
7D3/3 channels, while an optimal assignment using D3 channels exists. Thus, the perfor-
mance ratio of the greedy algorithm is at least 7/3. However, there is a weighted hexagon
graph (G, w) where D3(G,w) = 5k and the greedy algorithm uses 12k = 12D3/5 channels,
as shown in Figure 11'. The reader can verify the assignment given by the greedy algorithm.

The following theorem is a consequence of Lemmas 3 to 8 and the discussion in the
paragraph above:

Theorem 3 For reuse distance 3:

1. The offline greedy algorithm has performance ratio p where % <p< %.

2. There is a weighted hexagon graph (G,w) such that the offline greedy algorithm uses
12D3(G,w)/5 channels.

Corollary 2 G-R, the online greedy algorithm with reassignments, has competitive ratio p
where % <p< % for reuse distance 3.

4.2 The online case

For this case, the cluster partitioning strategy given in [9] can easily be shown to have
competitive ratio 3, as mentioned in Section 5. We show here that the greedy algorithm
has competitive ratio between 3 and 4.

Theorem 4 G-NR, the online greedy algorithm with no reassignments, has competitive
ratio p where 3 < p < 4 for reuse distance 3.

"However, this graph does not appear to have an assignment with fewer than 6k channels.

12

Proof: The upper bound on p follows simply from the fact that for any node v, N3(v)
is covered by 4 cliques, each with weight at most D, which implies that mc(v) < Hz(v) <
4D. To show the lower bound, we construct a hexagon graph and a series of call arrivals
and departures so that the algorithm is forced to use 9 channels while the optimal offline
algorithm needs only 3 channels. The proof is similar to that of Theorem 2, but the sequence
of call arrivals and terminations as well as the graph used are much larger. In what follows,
we use (z,w,[c1,c2]) to denote the arrival of w new calls at node x, which increases the
weight of node x to w from 0. This in turn forces the greedy algorithm to use the contiguous
channels ¢; to ¢y at node z. The notation 4 denotes the removal of all calls at node z, thus
reducing the weight to 0, and causing the release of all channels currently being used at
node x. We note that many of the steps in this sequence can be performed in parallel,
thus shortening the sequence, as well as the number of steps required. We give this longer
sequence here for clarity and ease of verification.

Since the number of nodes involved is quite large, we break up the sequence into three
sequences, given in Tables 3, 4 and 5. The first sequence, given in Table 3, is intended
to make the node o use the channel 8. The corresponding graph is given in Figure 12. In
order to make this happen, we have to first make the neighbors of o use all channels [1, 7].
These goals are listed in the first column on Table 3. These in turn lead to other sub-goals
listed in the second column. Similarly, Table 4 in conjunction with Figure 12 describes the
sequence to force node C to use channel 7 given that node o is already using channel 8.
Finally, Table 5 in conjunction with Figure 13 gives the sequence to force node p to use
channel 9 given that nodes o and C are using channels 8 and 7. The reader can also verify
that the optimal offline algorithm can perform the assignment with 3 channels. O

5 Arbitrary reuse distance

In this section, we consider the problem of channel assignment with respect to an arbitrary
reuse distance r. We show a lower bound on the performance of any algorithm, and analyze
the worst-case performance of the greedy strategy as well as a straightforward borrowing
strategy.

Lemma 9 For any reuse distance >3, there are hexagon graphs G such that G" contains
a 5-cycle as an induced subgraph.

Proof: If r is odd, we choose vy, vs,...,v5, at coordinates (0,0), (r — 1,0),(r — 1,r —
1), (0, 3T;3), and (—Tgl,r — 1) respectively. Otherwise, we choose them at coordinates
(0,0),(r — 1,0),(r — 1,7 — 1), (0, z—r —2), and (—%,r — 1) respectively. It follows from
Lemma 2 that for any two nodes (v;,v;), d(v;,v;) < r if and only if i = j mod 5 + 1. For
example, in Figure 14(a), given reuse distance 3, the 5-cycle consists of the five nodes at
(0,0),(2,0),(2,2),(0,3),(—1,2), and in Figure 14(b), given reuse distance 4, the 5-cycle

consists of the five nodes at (0,0), (3,0), (3,3), (0,4), (-2, 3). O

Theorem 5 For any reuse distance r > 3, there exists a weighted hexagon graph (G, w)
such that any algorithm for channel assignment must use 5D, (G, w)/4 channels.

Proof: Let G be a hexagon graph that contains a 5-cycle as an induced subgraph (its
existence is confirmed by Lemma 9). We assign every node in the 5-cycle with weight k.

13

Goal

Sequence

(h, 1,[7])

generate node h’s neighborhood
@LM%MLM%@LMH@Z%%
(p, 1,3), (2,1, 1)), (5,2, [2,3]), (I, 1, [4]), (i,
(d,1,11]), (a, 1, [2]), (b, 2, [3,4])

clean up neighborhoods of i, b, and o
did, & ¢ fi b 94

raise h’s weight

(h.1,[7)

clean up h’s neighborhood

i b o

2,15,6])

generate node u’s neighborhood
(52 [1,2), (.1, 8. & (L, 1)
(N,2,[1,2)), (1. 1,[4]), (F,1, 1)), (B.2,[2,
(d,1, 1)), (G 1, [2]), (g, 2. [3, 4]
(0,2,[1,2)

clean up neighborhoods of A, ¢, and o
d, §, 4 H, I, N, B, K

raise u’s weight

(s, 1,[6])

clean up u’s neighborhood

4,49

3]), (A, 1,[5])

(k, 1, [5])

generate k’s neighborhood

(0, 1.[1]), (d, 1, [1]). (G, 1,[2]). (g, 2. 3, 4))
(0,2,11,2))

clean up neighborhoods of ¢ and o

d, v, 4

raise k’s weight
(k. 1,[5])
clean up k’s neighborhood

¢, ¢

(D,2,[1,2]), (=, 1,[3]), (p, 2, [1,2]), (r, 1, [4])

Table 3: Sequence of calls as a result of which node o uses channel 8. See Figure 12.

14

Goal Sub-goal | Sequence
(4,2,05,6]) | (M, 1,[4]) | (R,2,[1,2]),(Q,1,[3]),(G,2,[1,2]), (M, 1,[4])
(D,1,[3]) | (D,1,[3])
(P, 1,12]) | (O,1,1]), (P, 1,[2])
(£, 1L[0) | (F 1 [1))
£ Q QG
(J,2,]5,6])
M, D, B, K
(E,2,[3,4]) | (L,1,12]) | (0,1,1]), (L, 1,[2])
(w,1,[1]) | (w,1,][1])
(E,2,[3,4))
Q. u, I
(y,2,[1,2]) (y, 2,1, 2])
(C,1,[7]) (€, 1,[7])
J.H, 4

Table 4: Sequence of calls as a result of which node C' uses channel 7, given that node o is
already using channel 8. See Figure 12.

Goal Sub-goal | Sequence
(1, 1,[6]) | (4,1,[4]) | (e,2,[1,2]),(d,1,[3]), (5,2 [1,2]), (4,1, [4])
(6,1,2]) | (a,1,[1]), (b,1,[2])
(c,1,[5]) | (e, 1,[5])
(u, 1,[3]) | (9,2,[1,2]), (u,1,[3])
(. 1,1]) | (p,1,[1])
(1,1, [6])
¢4 4 b ¢ U pdd s
(¢, 1,[5]) | (m,1,[2]) | (h,1,[1]), (m,1,[2]), A
(v, 1,3]) | (4, 1,[1]), (v, 1,[3])
(z,1,[4]) | (D,1,[2), (z,1,[4]), 4, 1}
(. 1,[1]) | (p,1,[1])
(t,1,[5])
m, 4, T, B
(n. L [4]) | (f£.1,02]) | (f,1,02])
(,1,[2]) | (1,1,[2])
(v, 1,3]) | (2,1, [1]), (v, 1,[3]).4
(n, 1,[4])
R
(g1, [3]) (r,2,[1,2]), (g, 1, [3]).4
(w, 1,[2]) (B,1,[1]), (w, 1,[2]), B
(9,1,[1]) (9,1,[1])
(p,1,[9]) (p,1,[9])

Table 5: Sequence of calls as a result of which node p uses channel 9, given that nodes o
and C are already using channels 8 and 7 respectively. See Figure 13.

15

Then D,(G,w) = 2k. Further, since 5k calls need to be served, and each channel can be
used at most 2 nodes, the optimal number of channels required is % =5D,(G,w)/4. DO

5.1 Static case

In this section, we analyze the performance of a simple borrowing strategy, along the lines
of the algorithm for reuse distance 3 in [4]. The following lemma was derived independently
in [13] and [18]. We give a simple construction below for convenience.

Lemma 10 ([13, 18]) Given G a hexagon graph, and reuse distance r,

3r?

w(G") = x(G") = { 3241
4

if ris even
otherwise

Let G be the infinite triangular lattice. We construct the maximum-sized clique in G"
by finding nodes in G that are at distance at most r — 1 from each other. If r is even,
we build layers moving outwards from a triangle. The first layer consists of 3 nodes, the
second layer consists of 9 nodes, and the %th layer, which is the outermost layer, consists
of 3+ 6(5 —1) = 3r — 3 nodes. It is easy to verify that this set of nodes comprises a
clique, and in fact, a maximum-sized clique. The total number of nodes in the clique is
3+9+..+B+6(5 1)) = %. For example, Figure 6(a) shows that w(G?) = 3, and
Figure 6(b) shows that w(G4) = 12. It is also easy to construct a tiling of the infinite
triangular lattice using these cliques, thereby showing that the chromatic number equals
the clique number.

If instead r is odd, in building the maximum-sized clique we move outwards from a
single node. The first layer consists of 1 node, the second layer consists of 6 nodes, the

third layer consists of 12 nodes, and the %”h layer consists of 3r — 3 nodes. Therefore the
total number of nodes in the clique is WTH. For example, Figure 6 shows that w(G?) =7,

and Figure 6 shows that w(G5) = 19. Once again, these cliques can be used to tile the
triangular lattice, showing that the chromatic number equals the clique number.

Theorem 6 For any weighted hexzagon graph (G,w) and any reuse distance r > 1, there is
1872 187246

32420 50751 When v is odd.

an algorithm that has performance ratio if r is even, and

Proof: The algorithm uses ¢x(G") channels (where ¢ will be specified later), and parti-
tions them into x(G") sets of £ channels each. A node v is called heavy if w(v) > ¢ and light
otherwise. Each node v of color 7 in G" assigns the smallest min{w(v),¢} channels from
channel set 7. At this point, all light nodes have received enough channels and drop out.
Any remaining heavy node now borrows any channel that is unused among its neighbors in
G".

For any heavy node v, it is easy to see that H,(v) < w(v) + 6(D,(G,w) — w(v))

6D, (G, .

= 6D, (G, w) — 5w(v). For £ = ST, since w(v) > ¢, Hy(v) < 6D, (G, w) =50 = X(G")L.
This means that v has sufficient channels to borrow and to complete its assignment.

From Lemma 10, we know the x(G") is % for even r and # for odd r, so H,(v) <

18r° D, (G, w) for even r and 187“2+GDT(G',U)) for odd r. It follows from Lemma 1 that

3r2420 3r2+21) ,

s 18r 18r°46
mc(v) < H,(v) and thus the performance ratio is at most 575 for even r and 57557 for
odd r. O

16

We note that this ratio is always lower than 6 for any bounded value of r. For the
particular reuse distances of 2, 3, and 4, this algorithm gives us performance ratios of 2.25,
3.5, and approximately 4.24 respectively. The cluster partitioning algorithm described in
the next section has a better performance ratio for all values of reuse distance greater than
2, in addition to having the advantage of not requiring reassignment of calls in the online
case.

5.2 Online algorithms

The best known performance ratio for channel assignment for reuse distance r > 3 is
achieved by an algorithm called cluster partitioning in [9]. The key idea is to partition
the graph into clusters which are maximal cliques, as with FA. However, unlike FA, where
identical sets of channels are assigned to corresponding cells in different clusters, here, sets of
D channels are assigned to entire clusters, in such a way that any pair of clusters containing
cells that are within distance r — 1 are assigned different sets. Calls arising in any cluster
are assigned channels from its nominal set of channels. Furthermore, it turns out that it
is possible to color the clusters with 4 colors such that any two clusters that have nodes
within distance r — 1 of each other get different colors. Thus four sets of channels suffice,
which implies a performance ratio of 4 for the algorithm.

However, we observe that for reuse distance r = 2,3, the clusters can be 3-colored (see
Figure 17). Thus, 3D channels suffice, and a performance ratio of 3 for the algorithm
follows. The existence of a 3-coloring for other values of reuse distance is unclear.

It is easy to show an upper bound on the performance of the greedy algorithm for
arbitrary reuse distance.

Theorem 7 For any weighted hexagon graph (G,w) and any reuse distance r > 1, the
greedy algorithms G-R and G-NR have performance ratio at most 6.

Proof: Since for any node v, the set {v} U N, (v) can be covered by 6 cliques, each with
weight at most D, (G, w), we know that H,(v) < 6D, (G, w). It follows from Lemma 1 that
me(v) < 6D, (G, w). Since D, (G, w) is a lower bound on the number of channels required,
the algorithm has performance ratio at most 6. O

6 Discussion

We have shown that the competitive ratio of the greedy DCA algorithms proposed in
[3, 5, 15] are between 2.5 and 3 for reuse distance 2 and lie between 3 and 4 for reuse
distance 3. Thus the worst-case performance of the greedy strategy with no reassignments
is no worse than the worst-case performance than FA for both values of reuse distance.
For reuse distance 2, there is no known algorithm that has better worst-case performance
than the greedy algorithm or FA among algorithms that do not perform reassignment of
channels. For reuse distance 3, the cluster partitioning algorithm of Jordan and Schwabe
[9] can be seen to have competitive ratio 3, which is at least as good as that of the greedy
algorithm.

In the static setting, or alternatively while considering online algorithms where reas-
signment of channels is permitted, the greedy algorithm appears to have poor performance.

17

We showed that G-R, the greedy algorithm with reassignments, is outperformed by the
borrowing strategies in [4, 6, 8] for reuse distance 2 as well as 3.

A number of open problems remain. The most interesting problem is to find an optimal
online algorithm for channel assignment that does not perform reassignments. The best
known lower bound on the competitive ratio of such algorithms is 2, while the greedy
algorithm has a competitive ratio of at least 2.5. Another problem is to find tight bounds on
the competitive ratio of both versions of the greedy algorithm for reuse distance r > 3. In the
offline setting, for reuse distance 3, we use a particular base coloring of the underlying graph
for synchronization purposes. This coloring is used to determine in what order the nodes
get channels in the offline greedy algorithm. Changing this ordering could, in principle,
make a difference to the number of channels used. Perhaps a particular ordering may yield
the best result. Finally, it is clear that hexagon graphs with reuse distance 3 contain graphs
other than odd cycles as induced sub-graphs, for which the weighted chromatic number is
greater than the weighted clique number. An investigation of such induced sub-graphs may
yield better lower bound results than those listed in Tables 1 and 2.

References

[1] I. Caragiannis, C. Kaklamanis, and E. Papaionnou. Efficient online communication in
cellular networks. In Symposium on Parallel Algorithms and Architecture, 2000.

[2] J. C.-I. Chuang. Performance issues and algorithms for dynamic channel assignment.
IEEE Journal on Selected Areas in Communications, 11(6):955 963, 1993.

[3] D. C. Cox and D. O. Reudink. Dynamic channel assignment in two dimension large-
scale mobile radio systems. Bell Sys. Tech. J., 51:1611 28, 1972.

[4] T. Feder and S. M. Shende. Online channel allocation in FDMA networks with reuse
constraints. Inform. Process. Lett., 67(6):295-302, 1998.

[5] C.L.Tand P. H. Chao. Local packing-distributed dynamic channel allocation at cellular
base station. Proceedings of GLOBECOM, 1993.

[6] J. Janssen and K. Kilakos. Adaptive multicolourings. Combinatorica, 20(1):87-102,
2000.

[7] J. Janssen, K. Kilakos, and O. Marcotte. Fixed preference frequency allocation for
cellular telephone systems. IEEE Transactions on Vehicular Technology, 48(2):533
541, March 1999.

[8] J. Janssen, D. Krizanc, L. Narayanan, and S. Shende. Distributed online frequency
assignment in cellular networks. J. of Algorithms, 36:119 151, 2000.

[9] S. Jordan and E. J. Schwabe. Worst-case performance of cellular channel assignment
policies. Wireless Networks, 2:265 275, 1996.

[10] I. Katzela and S. Naghshineh. Channel assignment schemes for cellular mobile telecom-
munication systems: A comprehensive survey. IEEE Personal Communications, pages
10 31, 1996.

18

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

V. H. MacDonald. Advanced mobile phone service: The cellular concept. Bell Systems
Technical Journal, 58(1), 1979.

C. McDiarmid and B. Reed. Channel assignment and weighted colouring. Submitted
for publication, 1997.

C. McDiarmid and B. Reed. Colouring proximity graphs in the plane. Discrete Math-
ematics, 199:123 137, 1999.

L. Narayanan and S. Shende. Static frequency assignment in cellular networks. Algo-
rithmica, 29:396-409, 2001.

R. Prakash, N. Shivaratri, and M. Singhal. Distributed dynamic channel allocation for
mobile computing. In Principles of Distributed Computing, pages 47-56, 1995.

J. B. Punt and D. Sparreboom. Mathematical models for the analysis of dynamic chan-
nel selection for indoor mobile wireless communications systems. PIMRC, E6.5:1081 5,
1994.

M. Serizawa and D. Goodman. Instability and deadlock of distributed dynamic channel
allocation. Proc. 43rd IEEE VTC, pages 528-31, 1993.

J. van den Heuvel, R. A. Leese, and M. A. Shepherd. Graph labeling and radio channel
assignment. Journal of Graph Theory, 29:263 283, 1999.

M. Zhang and T.-S. P. Yum. Comparisons of channel assignment strategies in cellular
mobile telephone systems. IEEE Transactions in Vehicular Technology, 38:211 215,
1989.

19

Mailing address of contact author:

Lata Narayanan

Department of Computer Science
Concordia University

1455 de Maisonneuve Blvd. West
Montreal, Quebec H3G 1MS8
Canada

Phone: (514) 848-2424 x3029
Email: lataQcs.concordia.ca

20

Y axis

Case 3 Case 2 /l Case 1
\ (=2,4)

= X axis

Case 4 / \ I \ Case 6

Case 5

Figure 1: Distances between nodes

21

Figure 2: Ny(v) U {v} is covered by 3 cliques.

22

rl

b2

A Node weighted k

r2

® Node weighted 2k
bl

Figure 3: An example where the greedy algorithm uses 5D9(G, w)/3 channels.

23

Figure 4: Worst case for G-NR for reuse distance 2

24

AVAVAVAVAVAVAY
JAVAVAVAVAVAVAVAVA upgrenmme

7
VAVAVAVAVAVAVAVAVAV/
AVAVAVAVAVAVAVAVAVAR
AV AAVAVAVAVAVAV

B Node weighted 2k

Ty
/

. Clique weighted
at most |

5 Clique weighted
at most w(v)+i

B Node weighted
Dg-W(V)-i

5 6 1 4 7 3 2 5

Figure 6: Deriving the bound on H3(p).

26

561;VQMMMMx

3 AVAVAVAVAV/
AVAVAVAVAVAVAVAVAVAV

AVAVAVAVAVAVAVAVAV/

AVAVAVAVAVAVAVAVAV/

A

Node weighted k

Node weighted 2k

Node weighted 4k

Node weighted 5k

Figure 7: An example showing that a 4-node can use 13D3/7 channels.

27

=

B
Iy
~

A Node weighted k

4 7 3 2

\/\ @ Node weighted 2k
5 6 1 4
\A s e

B Node weighted 3k

Figure 8: An example showing that a 5-node can use 11D3/5 channels. Notice that N3(v)

can be covered by 3 cliques and node 1,. A similar cover using 3 cliques and node 1, can
also be constructed.

28

/_ . Clique shared by
vandu

3 @® Node weighted x

B Node weighted
DyX-y

Figure 9: Deriving the bound on H3(u) when w(l,) < w(1p).

29

3 2 o) 6 1 4 7 3

AVAVAVAYAVAVAYES
JNSAN NN o coearaty
IVAVAVAY VAV VAN
1\/ B Node weighted

7 3 2 5 6 1 4 7

Figure 10: Deriving the bound on Hs(u) when w(l,) > w(1p).

30

P T 4 5 6 3 2

1 7 3 2

AVAV AAAAVAVAAVA

AVAV ’0@&”“&““””’
AVAVAY/ \VAVAVAVAVAVAVAV/
AVAVAVAVAVAV/

5 6 1 4 7 3 2 5 6 1 4 7 A Node weighted k

B Node weighted 2k

@ Node weighted 3k

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV
SGQqummmmmmmmmmmy
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV/

6 1 4 7 3 2 5 6 1 4 7 3 2 5 6 1 4 7

Figure 11: An example showing that a 7-node can use 12D3/5 channels.

31

d e f
g h i

i Kk

m n o] p
q r s t
u

v w X y

z A B C D
E E G
H | J
K L M
N 0 P
Q R

Figure 12: Graph in which nodes C and o are forced to use channels 7 and 8 respectively.
See Tables 3 and 4.

32

b [d e
f 0 g
h i j
k m n p q r S

t u

\Yi W C
X y

z A B

D

Figure 13: Graph in which node p is forced to use channel 9, assuming that nodes o and C
are using channels 8 and 7 respectively. See Table 5.

33

Y axis

/ /Y axis
AVAVAVAVAVAVAVAV,

4 A
. Y
JAVAVAVAVAVAVAVAV/

Figure 14: (a) 5-cycle for reuse distance 3, and (b) 5-cycle for reuse distance 4.

34

VAR

Figure 15: Maximum-sized cliques of hexagon graph with reuse distance (a) 2 and (b) 4.

35

Figure 16: Maximum cliques of hexagon graph with reuse distance (a) 3 and (b)5.

36

