Security Compliance Auditing of Identity and Access
Management in the Cloud: Application to OpenStack

Suryadipta Majumdar*, Taous Madi*, Yushun Wang*, Yosr Jarraya',
Makan Pourzandif, Lingyu Wang* and Mourad Debbabi*
*Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC, Canada
Email: {su_majum,t_madi,yus_wang,wang,debbabi } @encs.concordia.ca
TEricsson Security Research, Ericsson Canada, Montreal, QC, Canada
Email: {yosr.jarraya,makan.pourzandi} @ericsson.com

Abstract—Cloud computing has seen a lot of interests and
adoption lately. Nonetheless, the widespread adoption of cloud
is still being hindered by the lack of transparency and account-
ability, which has traditionally been ensured through security
compliance auditing techniques. Auditing in cloud, however,
presents many new challenges in data collection and processing
(e.g., data format inconsistency and lack of correlation due to the
heterogeneity of cloud infrastructures) and in verification (e.g.,
prohibitive performance overhead due to the sheer scale of cloud
infrastructures and their self-provisioning, elastic, and dynamic
nature). In this paper, we propose a security compliance auditing
framework for cloud, with special focus on identity and access
management, and we implement and evaluate the framework
based on OpenStack, one of the most popular cloud management
systems. Our experimental results show that auditing with formal
methods in large cloud environment is realistic (e.g., our auditing
solution can handle 60 thousand users in less than one minute).

I. INTRODUCTION

While cloud computing has seen increasing interests and
adoption lately, the fear of losing control and governance still
persists due to the lack of transparency and trust [1]. Security
auditing and compliance validation may increase cloud tenants’
trust in the service providers by providing assurance on the
compliance with the applicable laws, regulations, policies, and
standards. However, there are currently many challenges in
the area of cloud auditing and compliance validation. There
exists a significant gap between the high-level recommenda-
tions provided in most cloud-specific standards (e.g., Cloud
Control Matrix (CCM) [2] and ISO 27017 [3]) and the low-
level logging information currently available in existing cloud
infrastructures (e.g., OpenStack [4]). Furthermore, the unique
characteristics of cloud computing may introduce additional
complexity to the task, e.g., the use of heterogeneous solutions
for deploying cloud systems may complicate data collection
and processing and the sheer scale of cloud, together with
its self-provisioning, elastic, and dynamic nature, may render
the overhead of many verification techniques prohibitive. In
practice, limited forms of auditing may be performed by cloud
subscriber administrators [5], and there does not exist any
automated compliance tool to the best of our knowledge.

One of the key security aspects to put under the scope
of auditing and compliance is identity and access manage-
ment [2]. It is essential for the cloud management system to
enable auditing of all activities related to the authentication

(© 2015 IEEE. DOI 10.1109/CloudCom.2015.80

of user identities and the management and control of user ac-
cesses and actions inside a cloud. Although there already exist
various efforts on cloud auditing (a detailed review of related
works will be given in Section II), to the best of our knowledge,
none has facilitated automated auditing of identity and access
management. On the other hand, existing approaches to the
verification of traditional access control policies are generally
insufficient for auditing the cloud since they cannot directly
deal with multi-domain cloud environments ([6], [7]).

Motivating example. Here we provide a sketch of the gap
between high-level standards and low-level input data.

e Section 13.2.1 of ISO 27017 [3], which provides security
guidelines for the use of cloud computing, recommends
“checking that the user has authorization from the owner
of the information system or service for the use of the
information system or service...”.

e The corresponding logging information is available in
OpenStack [4] from at least three different sources:

o Logs of user events (e.g., router.create.end
1c73637 94305b c7e62 2899 meaning user
1¢73637 from domain 94305b is creating a router).

o Authorization policy files (e.g., "create_router":
"rule:regular_user" meaning a user needs to be
a regular user to create a router).

o Database record (e.g., 1c73637 Member meaning
user 1¢73637 holds the Member role).

Clearly, to audit the security compliance, an automated system
must locate and collect all such relevant information from
different sources inside a cloud, convert the collected data
into a consistent format, while reconstructing any missing
correlation between the data, before it can feed the data
into a verification tool to check against the security property
suggested in the high level standard. In this specific case, no
automated tool exists yet in OpenStack for those purposes.

Objective and Contributions. In this paper, we propose a
cloud auditing framework, in which we focus on identity and
access management in a multi-domain cloud environment. We
compile a set of security properties from both the existing
literature on authorization and authentication and common
cloud security standards. We rely on formal methods to enable
automated reasoning and allow providing formal proofs or
counterexamples of compliance. We implement and integrate
the proposed auditing framework into OpenStack, and report
real-life experiences and challenges. Our experimental results

confirm the scalability and efficiency of our approach. The
main contributions of this paper are as follows:

e To the best of our knowledge, this is the first effort on
auditing identity and access management in a multi-domain
cloud environment based on formal methods.

e The list of security properties provides a bridge between the
cloud security standards and the literature on multi-domain
access control and token-based authentication.

e Our prototype system may potentially become an integral
part of OpenStack providing a practical auditing solution.

e The experimental results show that security auditing us-
ing formal methods in large scale cloud environments is
realistic, which we believe may generate more interest in
applying formal methods to cloud.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III describes our
methodologies. Section IV presents the necessary formaliza-
tion for the access control model and security properties.
Section V details the integration of our auditing framework
into OpenStack. Section VI experimentally evaluates the per-
formance of our approach. Finally, we conclude our paper
discussing future directions in Section VII.

II. RELATED WORK

Several existing efforts consider the verification of access
control policies at the design time expressed in the standard
eXtensible Access Control Markup Language (XACML) using
formal reasoning. Among them, Fisler et al. [8] propose
Binary Decision Diagrams (BDD) and custom algorithms to
verify access-control policies. Ahn et al. [9] use answer set
programming (ASP) and leverage existing ASP reasoning
models to conduct policy verification. Arkoudas et al. [10]
propose a Satisfiability Modulo Theory (SMT) policy analysis
framework. In most of those work, multi-domains access
control models are not considered.

To accommodate the need of secure collaborative envi-
ronments such as cloud computing, there have been some
efforts towards proposing multi-domain/multi-tenant access
control models (e.g., [11], [6], [7]). Gouglidis and Mavridis
[7] leverage graph theory algorithms to verify a subset of the
access control security properties. Gouglidis et al. [12] utilize
model-checking to verify custom extensions of RBAC with
multi-domains [7] against security properties. Lu et al. [13] use
set theory to formalize policy conflicts in the context of inter-
operation in the multi-domain environment. However, auditing
encompasses more than a verification approach. In contrast to
these works, we are dealing with the verification of not only the
policies but also their implementations, which involve efficient
techniques to collect, process, and verify large amount of data.

In the context of cloud auditing, there are several work that
target auditing data location and storage in the cloud (e.g., [14])
and others target infrastructure change auditing (e.g., [15]).
Particularly, Ullah et al. [16] propose an architecture to build
automated security compliance tool for cloud computing plat-
forms focusing on auditing clock synchronization and remote
administrative & diagnostic port protection. Doelitzscher [17]
proposes on-demand audit architecture for IaaS clouds and an
implementation based on software agents to enable anomaly
detection system to identify anomalies in IaaS clouds for the

purpose of auditing. The works in [16], [17] have the same
general objective, which is cloud auditing, as ours, but they
use empirical techniques to perform auditing whereas we use
formal techniques to model and solve the auditing problem.
Tang et al. [6] formalize the core OpenStack access control
(OSAC) and propose a domain trust extension for OSAC
to facilitate secure cross-domain authorization. We adapt this
model in our work. To the best of our knowledge, none of the
aforementioned works support auditing multi-domain identity
and access management in the cloud.

Several industrial efforts include solutions to support cloud
auditing in specific cloud environments. For instance, Mi-
crosoft proposes SecGuru [18] to audit Azure datacenter
network policy using the SMT solver Z3. IBM also provides
a set of monitoring tool integrated with QRadar [19], which
is their security information and event management system, to
collect and analyze events in the cloud. Amazon is offering
web API logs and metric data to their AWS clients by AWS
CloudWatch & CloudTrail [20] that could be used for the
auditing purpose. Although those efforts may potentially assist
auditing tasks, none of them directly supports auditing identity
and access management compliance based on cloud standards.

I1II. METHODOLOGY

In this section, we present some preliminaries, and describe
our approach to auditing and compliance validation.

A. Preliminaries

In the following, we describe the multi-domain RBAC
model [6] and threat model, followed by a list of security
properties for auditing.

Access control model. We focus on auditing multi-domain
role-based access control (RBAC), which is known to be scal-
able and suitable for cloud [21] and being adopted in real world
platforms (e.g., OpenStack [4] and Microsoft Azure [22]). In
particular, we assume the extended RBAC model as proposed
in [6], which adds support for multi-tenancy in the cloud.
Beyond the basic components of the standard RBAC model,
e.g., users and roles, whose definitions can be found in [6], we
only review here the additional entities specific to the cloud.

e Tenant': A tenant is a collection of users who share a com-
mon access with specific privileges to the cloud instances.

e Domain: A domain is a collection of tenants, which draws
an administrative boundary within a cloud.

e Token: Token is a package of necessary information used
to authenticate prior to avail any operation.

e Group: Groups are formed for better user management.

e Service: A service means a distributed cloud service.

e Object and Operation: An object represents a cloud resource
e.g., VM. An operation is an access method to an object.
Object and operation together represent permissions.

Example 1 Figure 1 depicts our running example, which is
an instance of the access control model presented in [6]. In
this scenario, Alice and Bob are the admins of domains, Da
and Db, respectively, with no collaboration (trust) between the
two domains; Pa and Pb are two projects respectively owned

'We interchangeably use the terms, tenant and project, described in Figure 1

Domain
{Da}

Project-role pair
(Pa,Admin), (Pa,Member)}

Domain
{Db}

PO {(Pb,Db)}

uo
{(Alice,Db)}

Project-role pair
{(Pb,Admin), (Pb,Member)}

Project Role
{Pb} Admin, Member},

User, .~ “User b
tokenprﬂl:tsb'{‘Ma"%)i Alice} Je”
{(Bob,(Pa,Admin)) (Alice, (Pb,Admin)),
(Mallory,(Pb,Member))}
@ User_token

Fig. 1. Two example instances of the access control model of [6] depicting the
resultant state of the access control system after the exploit of the vulnerability,
OSSN-0010. The shaded region and dotted arrows show an instance of the
exploit described in Example 1.

uo

Project Role
{Pa} {Admin, Member})

by the two domains. To show what may go wrong in such a
scenario, we consider a real world vulnerability, OSSN-001 0%,
found in OpenStack, which allows a tenant admin to become
a cloud admin and acquire privileges to bypass the boundary
protection between tenants, and illicitly utilize resources from
other tenants while evading the billing. Suppose Bob has
exploited this vulnerability to become a cloud admin. Figure 1
depicts the resultant state of the access control system after
this attack. As a result, Mallory belonging to domain Da is
assigned a role (Pb,Member), which is from domain Db. This
violates the security requirement of these domains as they do
not trust each other.

Threat model. We assume the cloud system may have imple-
mentation flaws, misconfigurations and vulnerabilities that can
be potentially exploited by malicious entities to violate security
properties specified by the cloud tenants. We also assume
any cloud users, including cloud operators, except those who
initiate the auditing process, may be malicious. However, we
assume the cloud infrastructure management systems may be
trusted for the integrity of the audit input data (e.g., logs,
configurations, etc.) collected through API calls, and events
notifications, and database records (existing techniques on
trusted auditing may be applied to establish a chain of trust
from TPM chips embedded inside the cloud hardware to the
auditing components, e.g., [23]). Although our framework may
catch violations of specified security properties due to either
misconfigurations or exploits of vulnerabilities, our focus is
not to detect specific attacks or intrusions.

Cloud auditing properties. As a major goal of this work is
to establish a bridge between high-level guidelines provided
in security standards and low-level logs provided by current
cloud systems, we start by extracting a list of concrete security
properties from those standards and the literature in order to
more clearly formulate the auditing problem. Table I presents
an excerpt of the list of auditing properties that we identify
from the access control literature, relevant standards (e.g., ISO
27002, CCM) and the real-world cloud implementation (e.g.,
OpenStack). The list covers relevant sections related to identity
and access management in several common standards, namely
ISO 27002 [24], NIST SP 800-53 [25], CCM [2] and ISO
27017 [3], in which ISO 27002 and NIST SP 800-53 provide

2Sample Keystone v3 policy exposes privilege escalation vulnerability,
available at: https://wiki.openstack.org/wiki/OSSN/OSSN-0010

recommendations for the information security management,
and CCM and ISO 27017 recommend security controls specific
to cloud. For our running example, we will focus on following
two properties. Common ownership: based on the challenges
of multi-domain cloud discussed in [12], [6], users must not
hold any role from another domain. Minimum exposure: each
domain in a cloud must limit the exposure of its information
to other domains [6].

Example 2 The exploitation of the vulnerability mentioned in
Example 1 violates the common ownership property. Accord-
ing to the property, Mallory must not hold a role member in
project Pb belonging to domain Db, because Mallory belongs
to domain Da and there exists no collaboration between
domains Da and Db. We will show how we can formalize
and verify this property in the coming sections.

Properties [Standards |
[ISO27002 [24] 1SO27017 [3] NIST800 [25] CCM [2] |

Role activation [26] 11.2.2.b 13.2.2b AC-1 IAM-09

Permitted action [26] 11.2.1.b, 1.2.2¢ 13.2.1b, 13.2.2¢ AC-14 IAM-10

Minimum exposure [6] 11.6.1 134.1 AC-4 IAM-04,06

Separation of duties [6] 11.6.2 13.6.2 AC-5 IAM-02,05

Common ownership [12] 11 13 AC IAM

Privilege escalation [12] 11.2.2.b 13.2.2b AC-6 IAM-08

Cardinality [26] 11.2.4 13.2.4 AC-1

Cyclic inheritance [12]

User-access validation [3] 11.5.2 13.4 AC-3 IAM-10

User-access revocation [24] 11.2.1h 13.2.1h AC-2 IAM-11

No duplicate ID [2] 11.5.2 13.5.2 AC-2 IAM-12

Remote access [3] 11.4.2 13.4.2 AC-17 IAM-02,07

Secure log-on [3] 11.5.1 13.4.2 AC-7,9 IAM-02

Session time-out [25] 11.5.5 13.2.8 AC-12

Concurrent session [25] 13.5.4 AC-10

TABLE 1. AN EXCERPT OF OUR SECURITY PROPERTIES

B. Audit ready cloud framework

~~~~~~~~ Logs and Configuration
data Requirements (General/ tenant- T

Audit
reports

specific security policies and
Events X N
standards) and Audit queries

Cloud
Event- Compliance ARC Dashboard
Management 1 =il -
| handle Validation Engine
——
i Handler
Cloud l CoI[I):ctfion V&Y engine
Infrastructure | | - ol selector Qusry
System___..1. A N\ —Interreter
e.g. OpenStack f V&V toolset
(ee o ) Data. Report
Processing Handler
Engine

£

Data Center
Infrastructure
(switches compute
nodes, middleboxes,...)

Compliance
Validation
Trigger

Results Processing

1% ‘ Audit Report

Audit Repository
e

Fig. 2. A high-level architecture of our auditing framework

Data Collection and Engine

Processing Engine

Figure 2 shows a high-level architecture of our auditing
framework. It has five main components: data collection and
processing engine, compliance validation engine, audit report
engine, ARC dashboard, and audit repository database. The
framework interacts mainly with the cloud management sys-
tem, the cloud infrastructure system (e.g., OpenStack), and
elements in the data center infrastructure to collect various
types of audit data. It also interacts with the cloud tenant to
obtain the tenant requirements and to provide the tenant with



the audit result in a report. Tenant requirements encompass
both general and tenant-specific security policies, applicable
standards, as well as audit queries. For the lack of space, we
will only focus on the main components in the following.

Our data collection and processing engine is composed
of two sub-engines: the collection engine and the processing
engine. The collection engine is responsible for collecting the
required audit data in a batch mode, and it relies on the cloud
management system to obtain the required data. The role of the
processing engine is to filter, format, aggregate, and correlate
this data. The required audit data may be distributed throughout
the cloud and in different formats (e.g., files and databases).
The processing engine must pre-process the data in order to
provide specific information needed to verify given properties.
A last processing step is to generate the code for compliance
validation and then store it in the audit repository database to
be used by the compliance validation engine. The generated
code depends on the selected back-end verification engine.

The compliance validation engine is responsible for per-
forming the actual verification of the audited properties and the
detection of violations, if any. Triggered by an audit request
or updated inputs, the compliance validation engine invokes
our back-end verification and validation algorithms. We use
formal methods to capture formally the system model and the
audit properties, which facilitates automated reasoning and is
generally more practical and effective than manual inspection.
If a security audit property fails, evidences can be obtained
from the output of the verification back-end, e.g., a valid
assignment of the variables that does not satisfy all constraints
from which a mapping to real data in the cloud can be inferred
to provide a meaningful feedback. Once the outcome of the
compliance validation is ready, audit results and evidences are
stored in the audit repository database and made accessible to
the audit reporting engine. Several potential formal verification
engines (e.g., SAT-based engines) can serve our needs. This
may depend on the property and/or the model being verified.

IV. FORMALIZATION FOR AUDITING IDENTITY AND
ACCESS MANAGEMENT

As a back-end verification mechanism, we propose to
formalize audit data and properties as Constraint Satisfaction
Problems (CSP) and use a constraint solver, namely Sugar
[27], to validate the compliance. CSP allows formulation of
many complex problems in terms of variables defined over
finite domains and constraints. Its generic goal is to find a
vector of values (a.k.a. assignment) that satisfies all constraints
expressed over the variables. If all constraints are satisfied, the
solver returns SAT, otherwise, it returns UNSAT. In the case
of a SAT result, a solution to the problem is provided.

A. Model Formalization

Referring to Figure 1, entities are encoded as CSP variables
with their domains definitions (over integer), where instances
are values within the corresponding domain. For example,
User is defined as a finite domain ranging over integer such
that (domain User 0 max_user) is a declaration of a domain
of users, where the values are between 0 and max_user. Rela-
tionships and their instances are encoded as relation constraints
and their supports, respectively. For example, AuthorizedR

is encoded as a relation, with a support as follows: (relation
AuthorizedR 3 (supports (rl,ul,tl) (r2,u2,t2))). The support
of this relation (e.g., (rl,ul,tl)) will be fetched and pre-
processed in the data processing step. The CSP code mainly
consists of four parts:

o Variable and domain declaration. We define different enti-
ties and their respective domains. For example, v and op are
entities (or variables) defined respectively over the domains
User and Operation, which range over integers.

o Relation declaration. We define relations over variables and
provide their support from the audit data.

e Constraint declaration. We define the negation of each
property in terms of predicates over the involved relations
to obtain a counter-example in case of a violation.

e Body. We combine different predicates based on the prop-
erties to verify using Boolean operators.

B. Properties Formalization

Security properties would be expressed as predicates over
relation constraints and other predicates. We select two repre-
sentative properties to detail in this paper: common ownership
and minimum exposure. We first express these properties in
first order logic [28] and then present their CSP formaliza-
tion (using Lisp-like Sugar syntax). Table II summarizes the
relations that we use in these properties.

Common ownership. Users are authorized for the roles that
are only defined within their domains.

Vu € User,Vd € Domain, Vr € Role,Vt € Tenant @))]
BelongsToD(u,d) A AuthorizedR(u,t,r) —
TenantRoleDom(t,r,d)

The corresponding CSP constraint is

(and BelongsToD(u,d)AuthorizedR(u,t,r) 2)
(not TenantRoleDom(t,r,d)))

Minimum exposure. We assume that the user access is
revoked properly and that each domain’s administrator may
share a set of objects (resources) with other domains. The
administrator defines accordingly a policy governing the shared
objects, the allowed domains for a given object and the allowed
actions for a given domain with respect to a specific object.
During data processing, we recover for each domain, the set
of foreign objects (belonging to other domains) and the actual
operations performed on those objects (from the logs). This
property allows checking whether the collected and correlated
data complies with the defined policy of each domain.

Vd, od € Domain, Vo € Object, Vop € Operation, (3)
Vr € Role, Vt € Tenant, Vu € User
LogEntry(d, t,u,r, 0,0p) A BelongsTo(u,d)A
OwnerD(od,t,0) — AuthorizedOp(d,t,u,, 0, 0p))
The CSP constraint for this property is:
(and(and LogEntry(d,t,u,r,o0,0p) )
OwnerD(od, t, 0)BelongsTo(u, d))

(not (AuthorizedOp(d,t,u,r,o0,0p))))



- N S )

Relations in Properties Evaluate to T'rue if

Corresponding Relations in Fig 1

AuthorizedOp(d, t,u,r, 0, op)
o

In domain d, and tenant ¢, the user w, with the role r is authorized to perform operation op on object

UA, PO, Project-role pair, PA,
PRMS

OwnerD(od, t, 0)

Domain od is the owner of the object o in tenant ¢

PO, Project-role pair, PA

AuthorizedR(u, t, )

User u belonging to tenant ¢ is authorized for the role r

UA, Project-role pair

BelongsToD(u, d) User u belongs to the domain d

Uo

TenantRoleDom(t,r, d)

Role 7 is defined within the domain d in tenant ¢

PO, Project-role pair

LogEntry(d,t,u,r, o, op)

Operation op on object o is actually performed by user w having role 7 in tenant ¢ and domain d ND

TABLE II. CORRESPONDENCE BETWEEN RELATIONS IN OUR FORMALISM AND RELATIONSHIPS/ENTITIES IN FIGURE 1. NOTE THAT ONE OF THE
RELATIONS (IN THIRD COLUMN) IS DENOTED BY ND AS IT IS INFERRED FROM DYNAMIC DATA (E.G., LOGS).
Listing 1. Sugar source code for the common ownership property Ceilometer:

/] Declaration

(domain Domain 0 500) (domain Tenant 0 1000)

(domain Role 0 1000) (domain User 0 60000)

(int D Domain) (int R Role)

(int P Tenant) (int U User)

// Relations Declarations and Audit Data as their Support
( relation BelongsToD 2 (supports (100 401) (40569 123)

s | (102 452) (145 404) (156 487) (128 463)))

( relation AuthorizedR 3 (supports (100 301 225)
(40569 1233 9) (102 399 230) (101 399 231)))
( relation TenantRoleDom 3 (supports (301 225 401)

2| (1233 9 335) (399 230 452) (399 231 452)))

/I Security property : common ownership
( predicate (ownership D R U P)
(and (AuthorizedR U P R ) (BelongsToD U D)

;| (not(TenantRoleDom P R D)) ))

(ownership D R U P)

Example 3 Listing [ is the CSP code to verify the com-
mon ownership property. Each domain and variable are
first declared (see Listing 1 lines 2-5). Then, the set of
involved relations, namely BelongsToD, AuthorizedR, and
TenantRoleDom are defined and populated with their sup-
porting tuples (see Listing I lines 7-12 ), where the support is
generated from actual data in the cloud. Then, the common
ownership property is declared as a predicate, denoted by
ownership, over these relations (see Listing 1 lines 14-16).
Finally, the predicate should be instantiated (see Listing 1
line 17) to be able to be verified. As we are formalizing
the negation of the properties, we are expecting the UNSAT
result, which means that all constraints are not satisfied (i.e.,
no violation of the property). Note that the predicate will be
unfolded internally by the Sugar for all possible values of the
variables, which allows to verify each instance of the problem
among possible values domains, users and roles. We present
the verification outputs in Section V.

V. APPLICATION TO THE OPENSTACK

This section describes how we integrate our audit and com-
pliance framework into OpenStack. First, we briefly present
the OpenStack services that are relevant to the scope of this
paper, namely the identity management service (Keystone) and
the logging service (Ceilometer). We then detail our auditing
framework implementation and its integration in OpenStack
along with the challenges that we face and overcome.

A. Background

OpenStack [4] is an open-source cloud infrastructure man-
agement platform that is being used almost in half of private
clouds and significant portions of the public clouds (see [29]
for detailed statistics). The major components of OpenStack to
control large collections of computing, storage and networking
resources are respectively Nova, Swift and Neutron along with
Keystone. Following is the brief description of Keystone and

Keystone [4]. This is the identity service in OpenStack
for authentication and authorization. Keystone’s internal data
including domains, projects, users, and role assignments are
stored in a database. Keystone implements the RBAC model.
Ceilometer [4]. This is an OpenStack project aiming to
facilitate monitoring and metering. Each component of Open-
Stack generates notifications, which are triggered by predefined
activities such as user creation, role assignment, and are sent
to Ceilometer for monitoring purposes. Ceilometer extracts the
information from the notifications and transforms it to events
with the predefined formats and store all events in its database.

B. Audit framework integration into OpenStack

We focus mainly on three components in our implemen-
tation: the data collection engine, the data processing engine,
and the compliance validation engine. The collection engine
involves several components of OpenStack e.g., Keystone and
Neutron for collecting audit data from log files, different
OpenStack databases along with policy files and configuration
files from the OpenStack ecosystem to fully capture the con-
figuration. The data is then converted into a consistent format
and missing correlation is reconstructed. The results are used
to generate the code for the validation engine based on Sugar
input language. The compliance validation engine performs
the verification of the properties by feeding the generated
code to Sugar. Finally, Sugar provides the results on whether
the property holds or not. In the following, we describe our
implementation details along with the related challenges.

Data collection engine. We present hereafter different
sources of data in OpenStack along with the current
support for auditing offered by OpenStack. The main
sources of audit data in OpenStack are logs, configura-
tion files, and databases. Table III shows some sample
data sources. The OpenStack logs are maintained separately
for each service, e.g., Neutron, Keystone, and they are
stored in a directory named var /log/component_name, e.g.,
keystone.log and keystone_access.log are stored in the
directory var/log/keystone. Two major configuration files,
namely policy.json and policy.v3cloudsample.json, contain
policy rules defined by both the cloud provider and tenant
admins, and are stored in keystone/etc/ directory. The third
source of data is a collection of databases, hosted in a MySQL
server, that can be read using component-specific APIs such as
Keystone and Neutron APIs. OpenStack further provides log
data through the Ceilometer database to leverage monitoring
and metering. With the proper configuration of pyCADF
library [30] as a middleware, notifications for specific events
in Keystone, Neutron and Nova can be gathered from the
Ceilometer database.

The following describes our techniques to collect audit
data from these aforementioned sources and provide im-



Relations Sources of Data

AuthorizedOp user, assignment, role in Keystone database and
policy.json and policy.v3cloudsample.json
OwnerD user, assignment in Keystone database and
policy.json

AuthorizedR user, project, assignment in Keystone database
BelongsToD user, domain tables in Keystone database
TenantRoleDom project, assignment, domain tables in Keystone database
LoggedEntry keystone_access.log and Ceilometer database
TABLE III. SAMPLE DATA SOURCES IN OPENSTACK

plementation details. The main task of the collection en-
gine is to retrieve audit data by executing our collec-
tion plug-in written in Python. We initially identify all
the aforementioned input sources for collecting audit data
from the OpenStack realization. Afterwards, our plug-in re-
trieves keystone.log and keystone_access.log along with
policy.json and policy.v3cloudsample.json. Moreover, our
plug-in makes API requests, e.g., keystone user-role-list, which
lists roles granted to a user, to fetch necessary audit data from
the Keystone database. Additionally, to collect notifications
through Ceilometer, we make the necessary configurations
to enable the pyCADF options in the Keystone middleware.
Finally, our collection plug-in fetches data from the Ceilometer
database. All audit data collected in this step are stored in the
audit repository, which is a MySQL database.

Data processing engine. Our data processing engine, which
is implemented in Python, mainly retrieves necessary infor-
mation from the collected data, converts it into appropriate
formats, recovers correlation, and finally generates the source
code for Sugar. First, our plug-in fetches the necessary data
fields, e.g., API calls, timestamps. Similarly, it fetches access
control rules, which contain API names and role names, from
policy.json and policy.v3cloudsample.json files. In the next
step, our processing plug-in formats each group of data as an
n-tuple, i.e., (user, tenant, role, etc.). To facilitate auditing, we
additionally correlate different data fields. In the final step, our
plug-in uses the n-tuples to generate the portion of Sugar’s
source code, and append the code with the relationships for
security properties (discussed in Section IV). Different scripts
are needed to generate Sugar source codes for the verification
of different properties, since relationships are usually property-
specific.

Compliance Validation. The compliance validation engine
is discussed in details in Section IV. Now we show how
the auditing results may help detect violation of security
properties. In the following example, we discuss how our
auditing framework can detect the violation of the common
ownership security property, caused by the attack scenario of
our running example in Section III-A.

Example 4 In this example, we describe how a violation of
the common ownership property may be caught by auditing.
Firstly, our program collects data from different tables in
the Keystone database including users, assignments, and
roles. Then, the processing engine converts the collected
data and represents as tuples; for our example: (40569
123) (40569 1233 9) (1233 9 335), where Mallory: 40569,
Da: 123, Pb: 1233, member: 9 and Db: 335. Additionally,
the processing engine interprets the property and gener-
ates the Sugar source code (see Listing 1 for an excerpt
of the code) using processed data and translated prop-
erty. Finally, Sugar is used to verify the security proper-

ties. We recall the expression for the ownership property,
(and BelongsToD(u,d) AuthorizedR(u,t,r) (not
TenantRoleDom(t,r,d)). As Mallory belongs to domain
Da, BelongsToD(Mallory, Da) evaluates to true. Mal-
lory has been authorized a project-role pair (Pb,member),
thus AuthorizedR(Mallory, Pb, member) evaluates to true.
However, TenantRoleDom(Pb, member, Da) evaluates to
false, as the pair (Pb, member) does not belong to domain
Da. Then, the whole predicate ownership unfolded for that
case, would evaluate to true. In this case, the output of sugar
(SAT) is the solution of the problem, (d = 335,r = 9,t =
1233, u = 40569), which is actually the proof that Mallory
violates the common ownership property.

Challenges. OpenStack usually provides significant amounts
of logs, e.g., we observe logs of size 16 GB in our experimental
environment. Given the amount of logs generated, processing
large log files is a major challenge. In addition, there exist
difficulties in locating relevant information, e.g., the initiator
of Keystone API calls is missing. To overcome this limitation,
we additionally leverage pyCADF and Ceilometer to gather
missing information. Unfortunately, notifications provided by
the Ceilometer is also inadequate for Keystone, i.e., initiator
of an API call is not available. Therefore, to obtain sufficient
information about user events to conduct the auditing, we
choose to collect Neutron notifications from the Ceilometer
database.

The logs generated by each component of OpenStack
usually lack correlation. Even though Keystone processes
authentication and authorization steps prior to a service access,
Keystone does not reveal any correlated data. For this work,
we extend our data processing plug-in to deduce correla-
tion between data. For an example, we infer the relation
(user operation) from the available relations (user role) and
(role operation). In our settings, we have 61,031 entries in
the (user role) relations for 60,000 users. The number of
entries is larger than the number of users, because there are
some users with multiple roles. With the increasing number
of users having multiple roles, the size of this relation grows,
and as a result, it increases the complexity of the correlation
step. Note that, correlation is required for several of our listed
properties and possibly for new properties not in our list.
As an example, for the cyclic inheritance property, which
verifies any existence of cycle in an inheritance relationship,
a recursive inheritance relationship is required based on the
available direct inheritance relations.

An auditing solution becomes less effective if all needed
audit evidences are not collected properly. Therefore, to be
comprehensive in our data collection process, we firstly check
fields of all varieties of log files available in Keystone and more
generally in OpenStack, all configuration files and all Keystone
database tables (18 tables). Through this process, we identify
all possible types of data with their sources. Due to the diverse
sources of data, there exist inconsistencies in formats of data.
On the other hand, to facilitate auditing, presenting data in
a uniform manner is very important. Therefore, we facilitate
proper formatting within our data processing plug-in.

VI. EXPERIMENTS

This section evaluates the performance of our solution by
measuring the execution time, memory, and CPU consumption.



A. Experimental setting

We collect audit data from the OpenStack setup inside a
lab environment. Our OpenStack version is DevStack Juno
(2014.2.2.dev3) with Keystone API version v3. There are one
controller node and three compute nodes, each having Intel i7
dual core CPU and 2GB memory with the Ubuntu 14.04 server.
To make our experiments more realistic, we follow statistics
in [31], [32] on sizes of real OpenStack environments, which
shows 98% of OpenStack clouds (including private, public and
hybrid) are having around 50,000 users. Also, 98% of them
contain about 10, 000 tenants. Accordingly, our largest dataset
consists of 60,000 users, 10,000 tenants, and 500 domains.
For verification, we use the V&V tool, Sugar V2.2.1 [27]. We
conduct the experiment for 12 different datasets in total.

All data processing and V&V experiments are conducted
on a PC with 3.40 GHz Intel Core i7 Quad core CPU and
16GB memory and we repeat each experiment 1,000 times.

— © —data processing — + — verification
2000 —— 8000

— + —data collection

—t
o —+ + +*
__ 1500 A __ 6000 + ok
z + 2 a
£ + + = &
o 1000 S 4000 *
£ £ A
= 500 o & 20000 4 *
—0-0- O +
olae 00900 0
0 20,000 40,000 60,000 0 20,000 40,000 60,000
# of users # of users

(a) Time required for each step of our auditing solution for the common
ownership property while varying the number of users. Time for the data
collection (right) is shown separately, as it is a one-time effort. In all cases,
number of domains is 500 and number of tenants is 10, 000.

— © — common ownership — * — minimum exposure — + — two properties

15000 15000
el - T
% 10000 + ? %10000 -
z b a® ] E Elo%
~ PEGPC ~ 4T ¥
g so00| + T LT € 5000 TR
= s R = &=
0 0
0 20,000 40,000 60,000 0 2500 5000 7500 10000
# of users # of tenants

(b) Total time required to audit common ownership, minimum exposure
and both properties together, by varying the number of users with fixed
5,000 tenants (left) and the number of tenants with fixed 30,000 users
(right). In all cases, number of domains is 500. Note that time for curves
encompass all three steps (collection, processing and verification). For the
curve of two properties, data collection is performed one time.

Fig. 3. Execution time for each auditing step and total time for different
properties using our framework

B. Results

The objective of the first set of our experiment (see Fig-
ure 3) is to demonstrate the time efficiency of our auditing so-
lution. Firstly, Figure 3(a) shows time in milliseconds required
for data collection, data processing and compliance validation
to verify the common ownership property for different cloud
sizes (e.g., the number of users). Unlike the processing and
verification steps, the data collection step is performed only
once for the whole auditing process. Therefore, we show its
execution time separately. During this experiment, we change
the number of users from 5, 000 to 60,000 with fixed number
of tenants and domains. We can see from the results that
the verification execution time is less than 2 seconds for
fairly large numbers of users. Knowing that this task happens
only once upon each audit request, we believe this is an

acceptable overhead for auditing a large setup. Figure 3b
shows the total time required for separately auditing common
ownership and minimum exposure properties, and also for both
of the properties together. We can easily observe that the
execution time is not a linear function of the number of security
properties to be verified. In fact, we can see that auditing more
security properties would not lead to a significant increase in
the execution time.

& 0-7s: data collection 0-7s: data collection
7-9s: data processing| — 0.2 7-9s: data processing
. IO S DS
§4() 9-12s: verification EO.‘IS 9-12s: verification
2 o
a £ 0.1
O 20 @
Eo.05
0 0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

time (s) time (s)

(a) CPU usage (left) and memory usage (right) for each step of our auditing
solution over time when there are 60,000 users, 10,000 tenants and 500
domains.

— © — common ownership

60 60
0-0~ -~

< 40 o < 40 o
2 D/O’ 2 -
> e® > v
S 200 o % 20 o~

) -

/ 7

0% 0
0 20,000 40,000 60,000 0 5000 10000
# of users # of tenants

(b) Peak CPU usage to audit common ownership property by varying the
number of users with 10,000 tenants (left) and number of tenants with
60, 000 users (right). In both cases, there are 500 domains. We experienced
similar results for other properties.

— © — common ownership

0.2 o4 0.2 _ 4

L 015 o {Eo015 e
> oo® > __-®
g 01} e 8 ©0©© (EJ 01t - —--©
@ @
£ 0.05 £ 0.05

0 0

0 20,000 40,000 60,000 2000 4000 6000 8000 10000
# of users # of tenants

(c) Peak memory usage to audit common ownership property by varying
the number of users with 10, 000 tenants (left) and number of tenants with
60, 000 users (right). In both cases, there are 500 domains. We experienced
similar results for other properties.

Fig. 4. CPU and memory usage for each auditing step using our framework

Our second experiment (see Figures 4a(left) and 4b) mea-
sures the CPU usage (in %). The left chart in Figure 4a depicts
the fact that the data collection step requires significantly
higher CPU usage than the other two steps. However, the
average CPU usage for data collection is 30%, which is
reasonable since the auditing process lasts only a few seconds.
Note that, we conduct our experiment in a single PC; if
the security properties can be verified through concurrent
independent Sugar executions, we can easily parallelize this
task by running several instances of Sugar on different VMs
in the cloud environment. Thus, performing auditing using
the cloud or even with multiple servers possibly reduces the
cost significantly. For the other two steps, the CPU cost is
around 15%. In Figure 4b, we measure the peak CPU usage
(in %) consumed by different steps while auditing the common
ownership property. Accordingly, the CPU usage grows almost
linearly with the number of users and tenants. We observe a
significant reduction in the increase rate of CPU usage for
datasets with 45, 000 users or more. Note that, other properties



show the same trend in CPU consumption, as the CPU cost is
mainly influenced by the data collection step.

Our final experiment (Figures 4a(right) and 4c) measures
the memory usage of our auditing solution. The right chart in
Figure 4a shows that the data collection step is the most costly
in terms of memory usage. However, the highest memory usage
observed during this experiment is only 0.2%. Figure 4c shows
that the rise in memory consumption is only observed beyond
50,000 users (left) and 8,000 tenants (right). We investigated
the peak in the memory usage for 50, 000 users and it seems
that this is due to the internal memory consumption by Sugar.
However, it remains under the boundary of 0.2% throughout
our experiment. For the same reason described previously, the
observed memory consumption for the other properties shows
the same behavior as the reported one.

Discussion. In our experiments, we verified a list of security
properties, such as common ownership and minimum expo-
sure, for up to 60,000 users in less than 15 seconds. The
auditing activity occurs upon request from the auditor (or in
regular intervals when the auditor sets regular audits). There-
fore, we consider the costs of our approach to be reasonable
even for large data centers. Although we report results for
a limited set of identity and access management properties,
the use of formal methods for auditing identify and access
management shows very promising results. Particularly, we
show that the time required for our auditing solution grows
very slowly with the number of security properties. As seen
in Fig 3b, an additional security property adds only about
3 seconds. Therefore, we anticipate that auditing a large list
of security properties in practice would still be practical. In
general, the cost increases almost linearly with the number of
users and tenants. Data collection is currently the most costly
part of our approach. However, note that each log entry or
database record only needs to be collected once, and does not
need to be repeated for auditing different properties.

VII. CONCLUSION

Despite existing efforts, auditing in cloud still faces many
challenges. In this paper, we have applied formal methods for
auditing identity and access management in a cloud environ-
ment. We have proposed a general auditing framework and
realized it based on OpenStack. Our evaluation results show
that formal methods can be used for large data centers with a
reasonable overhead. Our future work will extend the list of
security properties presented in sec III. Moreover, we will in-
tegrate into our system existing techniques on trusted auditing
(e.g., [23]) to establish the trust on the cloud infrastructure.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their com-
ments. This material is based upon work partially supported
by the Natural Sciences and Engineering Research Council of
Canada and Ericsson Canada under CRD Grant NO1566.

REFERENCES
[1] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public
cloud,” IEEE Internet Computing, no. 1, pp. 69-73, 2012.

[2] Cloud Security Alliance, “Cloud control matrix CCM v3.0.1,” 2014,
available at: https://cloudsecurityalliance.org/research/ccm/.

(3]

(4]

[5]

(6]

(71

(8]

(91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

ISO Std IEC, “ISO 27017,” Information technology- Security techniques
(DRAFT), 2012.

OpenStack, “OpenStack open source cloud computing software,” 2015,
available at: http://www.openstack.org.

Open Data Center Alliance, “Open data center alliance usage: Cloud
based identity governance and auditing rev. 1.0,” Tech. Rep., 2012.

B. Tang and R. Sandhu, “Extending OpenStack access control with
domain trust,” in Network and System Security, 2014, pp. 54-69.

A. Gouglidis and I. Mavridis, “domRBAC: An access control model
for modern collaborative systems,” computers & security, 2012, 31(4).
K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz,
“Verification and change-impact analysis of access-control policies,” in
ICSE, 2005.

G.-J. Ahn, H. Hu, J. Lee, and Y. Meng, “Representing and reasoning
about web access control policies,” in COMPSAC 10, 2010.

K. Arkoudas, R. Chadha, and J. Chiang, “Sophisticated access control
via SMT and logical frameworks,” TISSEC, vol. 16, no. 4, 2014.

N. Ghosh, D. Chatterjee, S. K. Ghosh, and S. K. Das, “Securing loosely-
coupled collaboration in cloud environment through dynamic detection
and removal of access conflicts,” IEEE Trans. on Cloud Comp., 2014.
A. Gouglidis, I. Mavridis, and V. C. Hu, “Security policy verification for
multi-domains in cloud systems,” Int. Jour. of Info. Sec., 2014, 13(2).
Z. Lu, Z. Wen, Z. Tang, and R. Li, “Resolution for conflicts of inter-
operation in multi-domain environment,” Wuhan University Journal of
Natural Sciences, vol. 12, no. 5, 2007.

H. Kai, H. Chuanhe, W. Jinhai, Z. Hao, C. Xi, L. Yilong, Z. Lianzhen,
and W. Bin, “An efficient public batch auditing protocol for data security
in multi-cloud storage,” in ChinaGrid’13, Aug 2013.

F. Doelitzscher, C. Fischer, D. Moskal, C. Reich, M. Knahl, and
N. Clarke, “Validating cloud infrastructure changes by cloud audits,”
in SERVICES’12, June 2012.

K. Ullah, A. Ahmed, and J. Ylitalo, “Towards building an automated
security compliance tool for the cloud,” in TrustCom’13, July 2013.

F. Doelitzscher, “Security audit compliance for cloud computing,” Ph.D.
dissertation, Plymouth University, 2014.

N. Bjgrner and K. Jayaraman, “Checking cloud contracts in Microsoft
Azure,” in Distributed Computing and Internet Technology, 2015.
IBM Corporation, “Safeguarding the cloud with IBM security solu-
tions,” http://www.ibm.com, Tech. Rep., 2013.

Amazon Web Services, “Security at scale: Logging in AWS,”
http://aws.amazon.com, Tech. Rep., November 2013.

N. Meghanathan, “Review of access control models for cloud comput-
ing,” Computer Science & Information Science, pp. 77-85, 2013.
Microsoft Azure, “Role-based access control in the Azure portal,”
http://azure.microsoft.com/en-us, last Visited May 2015.

M. Bellare and B. Yee, “Forward integrity for secure audit logs,”
Citeseer, Tech. Rep., 1997.

ISO Std IEC, “ISO 27002:2005,” Information Technology-Security
Techniques, 2005.

NIST, SP, “NIST SP 800-53,” Recommended Security Controls for
Federal Information Systems, pp. 80053, 2003.

W. Jansen, “Inheritance properties of role hierarchies,” in 21st National
Information Systems Security Conference, 1998, pp. 6-9.

N. Tamura and M. Banbara, “Sugar: A CSP to SAT translator based on
order encoding,” Proceedings of the Second International CSP Solver
Competition, pp. 65-69, 2008.

M. Ben-Ari, Mathematical logic for computer science.
Science & Business Media, 2012.
datacenterknowledge.com, ““Survey:
clouds are private, heavily OpenStack,”
http://www.datacenterknowledge.com.

Cloud auditing data federation (CADF), “pyCADF: A Python-based
CADF library,” 2015, available at: https://pypi.python.org/pypi/pycadf.

Springer

One-third of cloud users’
2015, available at:

OpenStack, “OpenStack user survey statistics November 2013,” 2013,
available at: http://www.openstack.org.

getcloudify..org, “OpenStack in numbers - the real stats,” 2014, available
at: http://getcloudify.org.



