
Auditing Security Compliance of the Virtualized
Infrastructure in the Cloud: Application to OpenStack

Taous Madi
CIISE

Concordia University
Montreal, QC, Canada

t_madi@encs.concordia.ca

Suryadipta Majumdar
CIISE

Concordia University
Montreal, QC, Canada

su_majum@encs.concor
dia.ca

Yushun Wang
CIISE

Concordia University
Montreal, QC, Canada

yus_wang@encs.concordia.ca

Yosr Jarraya
Ericsson Security Research

Ericsson Canada
Montreal, QC, Canada

yosr.jarraya@ericsson.com

Makan Pourzandi
Ericsson Security Research

Ericsson Canada
Montreal, QC, Canada

makan.pourzandi@ericss
on.com

Lingyu Wang
CIISE

Concordia University
Montreal, QC, Canada

wang@encs.concordia.ca

ABSTRACT
Cloud service providers typically adopt the multi-tenancy
model to optimize resources usage and achieve the promised
cost-effectiveness. Sharing resources between different ten-
ants and the underlying complex technology increase the
necessity of transparency and accountability. In this regard,
auditing security compliance of the provider’s infrastructure
against standards, regulations and customers’ policies takes
on an increasing importance in the cloud to boost the trust
between the stakeholders. However, virtualization and scal-
ability make compliance verification challenging. In this
work, we propose an automated framework that allows au-
diting the cloud infrastructure from the structural point of
view while focusing on virtualization-related security prop-
erties and consistency between multiple control layers. Fur-
thermore, to show the feasibility of our approach, we inte-
grate our auditing system into OpenStack, one of the most
used cloud infrastructure management systems. To show
the scalability and validity of our framework, we present
our experimental results on assessing several properties re-
lated to auditing inter-layer consistency, virtual machines
co-residence, and virtual resources isolation.

Keywords
Cloud, Virtualization, OpenStack, Security Auditing, For-
mal Verification, Co-residence, Isolation

1. INTRODUCTION
Several security challenges faced by the cloud, mainly the

loss of control and the difficulty to assess security compliance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’16, March 09-11, 2016, New Orleans, LA, USA
c© 2016 ACM. ISBN 978-1-4503-3935-3/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2857705.2857721

of the cloud providers, leave potential customers reluctant
towards its adoption. These challenges stem from cloud-
enabling technologies and characteristics. For instance, vir-
tualization introduces complexity, which may lead to new
vulnerabilities (e.g., incoherence between multiple manage-
ment layers of hardware and virtual components). At the
same time, concurrent and frequent updates needed to meet
various requirements (e.g., workload balancing) may create
even more opportunities for misconfiguration, security fail-
ures, and compliance compromises. Cloud elasticity mecha-
nisms may cause virtual machines (VMs) belonging to dif-
ferent corporations and trust levels to interact with the same
set of resources, causing potential security breaches [30].
Therefore, cloud customers take great interest in auditing
the security of their cloud setup.

Security compliance auditing provides proofs with regard
to the compliance of implemented controls with respect to
standards as well as business and regulatory requirements.
However, auditing in the cloud constitutes a real challenge.
First, the coexistence of a large number of virtual resources
on one side and the high frequency with which they are cre-
ated, deleted, or reconfigured on the other side, would re-
quire to audit, almost continuously, a sheer amount of infor-
mation, growing continuously and exponentially [14]. Fur-
thermore, a significant gap between the high-level descrip-
tion of compliance recommendations (e.g., Cloud Control
Matrix (CCM) [15] and ISO 27017 [21]) and the low-level
raw logging information hinders auditing automation. More
precisely, identifying the right data to retrieve from an ever
increasing number of data sources, and correctly correlat-
ing and filtering it constitute a real challenge in automating
auditing in the cloud.

We propose in this paper to focus on auditing security
compliance of the cloud virtualized environment. More pre-
cisely, we focus primarily on virtual resources isolation based
on structural properties (e.g., assignment of instances to
physical hosts and the proper configuration of virtualization
mechanisms), and consistency of the configurations in dif-
ferent layers of the cloud (infrastructure management layer,
software-defined networking (SDN) controller layer, virtual
layer and physical layer). Although there already exist var-

http://dx.doi.org/10.1145/2857705.2857721

ious efforts on cloud auditing (a detailed review of related
works will be given in Section 2), to the best of our knowl-
edge, none has facilitated automated auditing of structural
settings of the virtual resources while taking into account
the multi-layer aspects.

Motivating example. The following illustrates the chal-
lenges to fill the gap between the high-level description of
compliance requirements as stated in the standards and the
actual low-level raw audit data. In CCM [15], the control on
Infrastructure & Virtualization Security Segmentation rec-
ommends “isolation of business critical assets and/or sen-
sitive user data, and sessions”. In ISO 27017 [21], the re-
quirement on segregation in virtual computing environments
mandates that“cloud service customer’s virtual environment
should be protected from other customers and unauthorized
users”. Moreover, the segregation in networks requirements
recommends “separation of multi-tenant cloud service cus-
tomer environments”.

Clearly any overlap between different tenants’ resources
may breach the above requirements. However, in an SDN/-
Cloud environment, verifying the compliance with the re-
quirements requires gathering information from many sources
at different layers of the cloud stack: the cloud infrastructure
management system (e.g., OpenStack [27]), the SDN con-
troller (e.g., OpenDaylight [24]), and the virtual components
and verifying that effectively compliance holds in each layer.
For instance, the logging information corresponding to the
virtual network of tenant 0848cc1999-e542798 is available
from at least these different sources:

• Neutron databases, e.g., records from table “Routers”
associating tenants to their virtual routers and inter-
faces of the form 0848cc1999e542798 (tenants_id) ‖
420fe1cd-db14-4780 (vRouter id) ‖ 6d1f6103-9b7a-
4789-ab16 (vInterface_id).

• Nova databases, e.g., records from table “Instances”
associating VMs to their owners and their MAC
addresses as follows: 0721a9ac-7aa1-4fa9 (VM_ID)

‖ 0848cc1999e542798 (tenants_id) and fa:16:-
3e:cd:b5:e1 (MAC)‖ 0721a9ac-7aa1-4fa9(VM_ID).

• Open vSwitch databases information, where ports and
their associated tags can be fetched in this form
qvo4429c50c-9d (port_name)‖1084(VLAN_ID).

As illustrated above, it is difficult to identify all the relevant
data sources and to map information from those different
sources at various layers to the standard’s recommendations.
Furthermore, potential inconsistencies in these layers make
auditing tasks even more challenging. Additionally, as dif-
ferent sources may manipulate different identifiers for the
same resource, correctly correlating all these data is critical
to the success of the audit activity.

To facilitate automation, we present a complied list of
security properties relevant to the cloud virtualized environ-
ment that maps into different recommendations described
in several security compliance standards in the field of cloud
computing. Our auditing approach encompasses extract-
ing configuration and logged information from different lay-
ers, correlating the large set of data from different origins,
and finally relying on formal methods to verify the security
properties and provide audit evidence. We furthermore im-
plement the verification of these properties and show how

the data can be collected and processed in the cloud envi-
ronment with an application to OpenStack. Our approach
shows scalability as it allows auditing a dataset of 300,000
virtual ports, 24,000 subnets, and 100,000 VMs in less than
8 seconds.
The main contributions of our paper are as follows:

• To the best of our knowledge, this is the first effort on
auditing cloud virtualized environment from the struc-
tural point of view taking into account consistency be-
tween multiple control layers in the cloud.

• We identify a list of security properties from the lit-
erature that may fill the gaps between security stan-
dards recommendations and actual compliance valida-
tion and allows audit automation.

• We report real-life experience and challenges faced when
trying to integrate auditing and compliance validation
into OpenStack.

• We conducted experiments whose results show scala-
bility and efficiency of our approach.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 describes our
methodology. Section 4 provides an overview of our auditing
framework. Section 5 describes the formalization of security
properties. Section 6 details the integration of our auditing
framework into OpenStack. Section 7 experimentally evalu-
ates the performance of our approach. Finally, we conclude
our paper discussing future directions in Section 8.

2. RELATED WORK
To the best of our knowledge, no work has been tack-

ling auditing consistency views between different layers and
structural configuration of virtualization in the cloud. Sev-
eral works target the verification of forwarding and routing
rules, particularly in OpenFlow networks (e.g., [34, 17]). For
instance, Libra [34] uses a divide and conquer technique to
verify forwarding tables in large networks. It encompasses a
technique to capture stable and consistent snapshots of the
network state and a verification approach based on graph
search techniques that detects loops, black-holes and other
reachability failures. Sphinx [17] enables incremental real-
time network updates and constraints validation. It allows
detecting both known and potentially unknown security at-
tacks on network topology and data plane forwarding. These
works are complementary to our work as they aim at verify-
ing operational properties of networks including reachabil-
ity, isolation and absence of network misconfiguration (e.g.,
loops, black-holes, etc.). However, they target mainly SDN
environments and not necessarily the cloud.

In the context of cloud auditing, several works (e.g., [9,
29]) focus on firewalls and security groups. Probst et al.
[29] present an approach for the verification of network ac-
cess controls implemented by stateful firewalls in cloud com-
puting infrastructures. Their approach combines static and
dynamic verification with a discrepancy analysis of the ob-
tained results against the clients’ policies. However, the pro-
posed approach does not address challenges related to the
cloud such as virtualization and resources sharing. Bleikertz
[9] analyzes Amazon EC2 cloud infrastructure using reach-
ability graphs and vulnerability discovery and builds attack

graphs to find the shortest paths, which represents the crit-
ical attack scenarios against the cloud. These works are
complementary to our work as they only focus on layer 3
and layer 4 components, whereas layer 2 components can be
at the origin of several problems, which is addressed in our
work.

Other works focus on virtualization aspects. For instance,
Bleikertz et al. [11] propose a general purpose security anal-
ysis of the virtualized cloud infrastructure based on formal
verification techniques (e.g., model checking, theorem prov-
ing, etc.). Therein, the configuration of the infrastructure
is captured using graph-based representations and security
goals are expressed using VALID specifications [10]. The au-
tomated analysis mechanisms allow checking configuration
states (against zone isolation and single point of failure prob-
lems) and configuration states changes against high-level se-
curity policies. In contrast to our work, their work is more
oriented towards detecting attack states than auditing secu-
rity controls compliance.

Bleikertz et al. [12] extend the previous work to tackle
near-real time security analysis of the virtualized infras-
tructure in the cloud. Their objective is mainly the de-
tection of configuration changes that impact the security. A
differential analysis based on computing graph deltas (e.g,
added/removed nodes and edges) is proposed based on change
events. The graph model is maintained synchronized with
the actual configuration changes through probes that are de-
ployed over the infrastructure and intercept events that may
have a security impact. In contrast to our work, they aim at
the verification of operational properties such as reachabil-
ity analysis. Furthermore, their analysis relies only on the
information on the virtualized infrastructure configuration
provided by the cloud infrastructure management system,
namely VMware, and thus they do not verify consistency
between the cloud infrastructure management system and
the actual virtual implementation. In our case, we use direct
querying of virtual resources to assess multi-layer configura-
tions consistency.

In [18], an autonomous agent-based incident detection
system is proposed. The system detects abnormal infras-
tructure changes based on the underlying business process
model. The framework is able to detect cloud resource and
account misuse, distributed denial of service attacks and VM
breakout. This related work is more oriented towards mon-
itoring changes in cloud instances and infrastructures and
evaluating the security status with respect to security busi-
ness flow-aware rules.

Xu et al. [33] investigate network inconsistencies between
network states extracted from OpenStack and the configura-
tion of network devices. They use Binary Decision Diagrams
(BDDs) to represent and verify these states. Similarly to our
work, they tackle inconsistency verification. However, this
represents only one example of the problem we tackle. Fur-
thermore, we are interested in auditing, thus our approach
supports a wider view than simple verification, where log
files are as important source of information as configuration.

Congress [2] is an open policy framework for cloud ser-
vices. It enforces policies expressed by tenants and then
monitors the state of the cloud to check its compliance.
Furthermore, Congress attempts to correct policy violations
when they occur. Our work shares the policy inspection as-
pect with Congress. Thus, the properties we are audit in
the current paper can be integrated in Congress.

3. METHODOLOGY
In this section, we present some preliminaries and describe

our approach for auditing and compliance validation.

3.1 Threat Model
We assume that the cloud infrastructure management sys-

tem has implementation flaws and vulnerabilities, which can
be potentially exploited by malicious entities. For instance,
a reported vulnerability in OpenStack Nova networking ser-
vice, OSSN-0018/2014 [26], allows a malicious VM to reach
the network services running on top of the hosting ma-
chine, which may lead to serious security issues. We trust
cloud providers and administrators, but we assume that
some cloud users and operators may be malicious [13]. We
trust the cloud infrastructure management system for the
integrity of the audit input data (e.g., logs, configurations,
etc.) collected through API calls, events notifications, and
database records (existing techniques on trusted auditing
may be applied to establish a chain of trust from TPM
chips embedded inside the cloud hardware to auditing com-
ponents, e.g., [7]). We assume that not all tenants trust
each other. They can either require not to share any phys-
ical resource with all the other tenants, or provide a white
(or black) list of trusted (or untrusted) customers that they
are (not) willing to share resources with. Although our au-
diting framework may catch violations of specified security
properties due to either misconfiguration or exploits of vul-
nerabilities, our focus is not on detecting specific attacks or
intrusions.

Example 1. For illustrating purposes in our running ex-
ample, we consider two tenants. Tenant Alpha can be ex-
posed to malicious outsiders and insiders. A malicious in-
sider could be either an adversary (tenant Beta) sharing the
same cloud resources with tenant Alpha or a malicious op-
erator with a higher access privilege.

3.2 Modeling the Virtualized Infrastructure
In a multi-tenant cloud Infrastructure as a Service (IaaS)

model, the provider’s physical and virtual resources are
pooled to serve on demands from multiple customers. The
IaaS cloud reference model [32] consists of two layers: The
physical layer composed of networking, storage, and pro-
cessing resources, and the virtualization layer that is run-
ning on top of the physical layer and enabling infrastructure
resources sharing. Figure 1 refines the virtualization layer
abstraction in [32] by considering tenant specific virtual re-
sources such as virtual networks and VMs. Accordingly, a
tenant can provision several VM instances and virtual net-
works. VMs may run on different hosts and be connected
to many virtual networks through virtual ports. Virtual-
ization techniques are used to ensure isolation among mul-
tiple tenants’ boundaries. Host virtualization technologies
enable running many virtual machines on top of the same
host. Network virtualization mechanisms (e.g., VLAN and
VXLAN) enable tenants’ network traffic segregation, where
virtual networking devices (e.g., Open vSwitches) play a vi-
tal role in connecting VM instances to their hosting ma-
chines and to virtual networks.

In addition to these virtual and physical resources illus-
trated as nodes, Figure 1 shows the relationships between
tenants’ specific resources and cloud provider’s resources.
These relations will be used in section 5 for the formalization

of both the virtualized infrastructure model and the security
properties. For instance, IsAttachedOnPort is a relationship
with arity 3. It attaches a VM to a virtual subnet through
a virtual port. This model can be refined with several levels
of abstraction based on the properties to be checked.

TENANT

Physical

Resource

Storage

Resource

Processing

Resource

Networking

Resource

IsLocatedAt

VM

Instance

DoesNotTrust

Open vSwitch

Net

HasRunningVM

Port

Relationship

Extention

Dependancy

SubNet

vPort

VLAN

VXLAN

HasPort

HasNet

IsDefinedOn

IsAttachedOnPort

HasSubNet

Tenant- Virtual

Resources

IsTaggedwith

VM

IsAttachedTo

IsTaggedwith

IsLocatedAt

Cloud Provider’s Virtual

Layer

Cloud Provider’s

Physical Layer

Router

HasRouter

HasInterface

IsAttachedOnPort

IsLocatedAt

vRouter

HasInterface

IsConnectedTo

Figure 1: A generic model of the virtualized infras-
tructures in the cloud

3.3 Cloud Auditing Properties
We classify virtualization related-properties into two

different categories: Structural and operational properties.
Structural properties are related to the static configuration
of the virtualized infrastructure such as the assignment
of instances to physical hosts, the assignment of virtual
networking devices to tenants, and the proper configuration
of isolation mechanisms such as VLAN configuration of each
port. Operational properties are related to the forwarding
network functionality. Those are mainly reachability-related
properties such as loop-free forwarding and absence of black
holes. Since the latter category has received significant
attention in the literature (e.g. [34], [9], [17]), the former
category constitutes the main focus of the current paper.
As the major goal of this work is to establish a bridge
between high-level guidelines in the security standards
and low-level logs provided by current cloud systems, we
start by extracting a list of concrete security properties
from those standards and the literature in order to more
clearly formulate the auditing problem. Table 1 presents an
excerpt of the list of security properties we consider for au-
diting relevant standards (e.g., ISO 27002 [20], CCM [15]).
Therein, we also classify properties based on their relevance
to the stakeholders. In the following, we provide a brief
description followed by an illustrating example for the
sample properties, namely, absence of common ownership
of resources, no co-residence, and topology consistency.
More detailed properties’ descriptions are provided in
Appendix A.

Virtual resources isolation (no common ownership)
The no common ownership property aims at verifying that
no virtual resource is co-owned by multiple tenants.

Example 2. (No common ownership) Neutron Open-

Stack service allows tenant administrators to create virtual
routers to connect their subnets. It also allows creating in-
terfaces on those routers. OSSA-2014-008 [25] is a Neutron
vulnerability that allows a tenant to create a virtual port on
another tenant’s router without checking his identity. Ex-
ploiting such vulnerability leads to the violation of no com-
mon ownership property, as virtual ports are tenant specific
resources that should not be shared among tenants. As il-
lustrated in Figure 2, Port 84 belongs to Beta as he is the
initiator of the command for port creation. Since the port is
connected to Router A5 initially belonging to Alpha, the port
would be considered as a common resource for both tenants.

Alpha Beta

Port_16 Port_84 Port_52

HasInterface HasInterface HasInterface

Router_B2Router_A5

HasRouter HasRouter
BelongsTo

BelongsTo

BelongsTo

Figure 2: Model instance for No common ownership

No co-residence This property consists of verifying the
effective physical isolation of tenants’ resources.

Example 3. (No co-residence) According to [36], it is
possible to successfully identify the location of a target VM
and to trigger the creation of malicious VMs to co-reside
in the same host as the target VM. Once co-located with its
target, a malicious VM can exploit vulnerabilities in the hy-
pervisor[28] or use side channel techniques to violate other
guests confidentiality and integrity and the hypervisor’s avail-
ability. Suppose that VM 01 and VM 02 are two VMs be-
longing to tenant Alpha and running initially at Compute
Node 85, and VM 03 is owned by tenant Beta and runs
initially at Compute Node 96. Assume that tenant Alpha
requires to physically isolate its VMs from those of tenant
Beta, however, for load balancing reasons, VM 02 is mi-
grated from Compute Node 85 to Compute Node 96. It is
clear that this VM migration event will lead to a violation of
the physical isolation property (See Figure 3).

Alpha Beta

VM_01 VM_02 VM_03

Compute

Node_85

Compute

Node_96

HasRunningVM HasRunningVM HasRunningVM

IsLocatedAt IsLocatedAt IsLocatedAt

DoesNotTrustAlpha Beta

VM_01 VM_02 VM_03

Compute

Node_85

Compute

Node_96

HasRunningVM HasRunningVM HasRunningVM

IsLocatedAt IsLocatedAt IsLocatedAt

DoesNotTrust

After Migration

of VM_02

Figure 3: Model instance for No co-residence

Topology consistency Topology consistency consists of
checking whether the topology view in the cloud infrastruc-
ture management system, matches the actual implemented
topology, while considering different mappings between the
physical infrastructure, the virtual infrastructure, and the
tenants’ boundaries.

Example 4. (Port consistency) We suppose that a ma-
licious insider managed to deliberately create a virtual port

vPort 40 on Open vSwitch 56 and label it with the VLAN
identifier VLAN 100 that is already assigned to tenant Al-
pha. This would allow the malicious insider to sniff tenant’s
Alpha traffic by mirroring the VLAN 100 traffic to the cre-
ated port vPort 40. This clearly would lead to the violation
of the network isolation property.

As illustrated in Figure 4, we build two views of the virtu-
alized topology: The actual topology is built based on data col-
lected directly from the networking devices running at the vir-
tualization layer (Open vSwitches), and the perceived topol-
ogy is obtained from the infrastructure management layer
(Nova and Neutron OpenStack databases). The dashed lines
map one to one the entities between the two topologies (not
all the mappings are shown for more readability). We can
observe that vPort 40 is attached to VLAN 100, which maps
to Net 01 (tenant Alpha’s network), but there is no entity at
the infrastructure management layer that maps to the entity
vPort 40 at the virtualization layer, which reveals a potential
security breach.

4. AUDIT READY CLOUD FRAMEWORK
Figure 5 illustrates a high-level architecture of our audit-

ing framework. It has five main components: data collection
and processing engine, compliance validation engine, audit
report engine, dashboard, and audit repository database.
The framework interacts mainly with the cloud manage-
ment system, the cloud infrastructure system (e.g., Open-
Stack), and elements in the data center infrastructure to
collect various types of audit data. It also interacts with
the cloud tenant to obtain the tenant requirements and to
provide the tenant with the audit result. Tenant require-
ments encompass both general and tenant-specific security
policies, applicable standards, as well as audit queries. For
the lack of space, we will only focus on the following major
components.

Our data collection and processing engine is composed of
two sub-engines: the collection engine and the processing
engine. The collection engine is responsible for collecting
the required audit data in a batch mode, and it relies on the
cloud management system to obtain the required data. The
role of the processing engine is to filter, format, aggregate,
and correlate this data. The required audit data may be
distributed throughout the cloud and in different formats.
The processing engine must pre-process the data in order
to provide specific information needed to verify given prop-
erties. The last processing step is to generate the code for
compliance validation and then store it in the audit repos-
itory database to be used by the compliance validation en-
gine. The generated code depends on the selected back-end
verification engine.

The compliance validation engine is responsible for per-
forming the actual verification of the audited properties and
the detection of violations, if any. Triggered by an audit
request or updated inputs, the compliance validation en-
gine invokes our back-end verification and validation algo-
rithms. We use formal methods to capture formally the sys-
tem model and the audit properties, which facilitates auto-
mated reasoning and is generally more practical and effective
than manual inspection. If a security audit property fails,
evidence can be obtained from the output of the verification
back-end. Once the outcome of the compliance validation
is ready, audit results and evidences are stored in the audit
repository database and made accessible to the audit report-

ing engine. Several potential formal verification engines can
serve our needs, and the actual choice may depend on the
property being verified.

Cloud
Infrastructure

System
(e.g. OpenStack)

Cloud
Management

System

Data Center
Infrastructure

(switches compute
nodes, middleboxes,…)

Data Collection and
Processing Engine

Event-
handler

Data
Collection

Engine

Data
Processing

Engine

Compliance
Validation Engine

V&V toolset

CSP
solver

Other
Engine

ARC Dashboard

Query
Interpreter

Audit
reports

Requirements (General/ tenant-
specific security policies and
standards) and Audit queries

Logs and Configuration data

Events

V&V engine
selector

Results Processing
Compliance
Validation

Trigger

Query
Handler

Audit Report
Engine

Report
Handler

Audit Repository
Database

SDN Controller
(e.g., OpenDaylight)

Figure 5: A high-level architecture of our cloud au-
diting framework

5. FORMAL VERIFICATION
As a back-end verification mechanism, we propose to for-

malize audit data and properties as Constraint Satisfaction
Problems (CSP) and use a constraint solver, namely Sugar
[31], to validate the compliance. CSP allows formulation of
many complex problems in terms of variables defined over
finite domains and constraints. Its generic goal is to find a
vector of values (a.k.a. assignment) that satisfies all con-
straints expressed over the variables. If all constraints are
satisfied, the solver returns SAT, otherwise, it returns UN-
SAT. In the case of a SAT result, a solution to the problem is
provided. The key advantage of using CSP comes from the
fact that it enables uniformly presenting the system’s setup
and specifying the properties in a clean formalism (e.g., First
Order Logic (FOL) [8]), which allows to check a wide vari-
ety of properties [35]. Moreover using CSP avoids the state
space traversal, which makes our approach more scalable for
large data sets.

5.1 Model Formalization
Depending on the properties to be checked, we encode the

involved instances of the virtualized infrastructure model as
CSP variables with their domains definitions (over integer),
where instances are values within the corresponding domain.
For example, Tenant is defined as a finite domain ranging
over integer such that (domain TENANT 0 max tenant)
is a declaration of a domain of tenants, where the values are
between 0 and max tenant. Relations between classes and
their instances are encoded as relation constraints and their
supports, respectively. For example, HasRunningVM is
encoded as a relation, with a support as follows: (relation
HasRunningVM 2 (supports(vm1, t1)(vm2, t2))). The sup-
port of this relation will be fetched and pre-processed in the
data processing step. The CSP code mainly consists of four
parts:

• Variable and domain declaration. We define different
entities and their respective domains. For example, t is

Network

service

Compute

service

Tenant Alpha

vPort_661

VLAN_100

Open_vSwitch_35

vPort_40
vPort_586

Open_vSwitch_56

Port_661
Port_586

Neutron

DB

Nova

DB

Open-

vSwitch

Log files

Compute

Node_85 Compute

Node_96

IsLocatedAt
IsLocatedAt

Switch_24

VM

Instance_02VM

Instance_01

HasRunningVM
HasRunningVM

VM_02
VM_01

IsLocatedAt
IsLocatedAt

Switch_25

Switch_21

IsTaggedwith

HasPort HasPort HasPort

IsTaggedwith
IsTaggedwith

IsAttachedTo IsAttachedTo

VXLAN_72

HasPort HasPort

IsAttachedOnPort

Net_01

HasNet

SubNet_010 SubNet_012

IsDefinedOn IsDefinedOn

HasSubNet HasSubNet

IsAttachedOnPort
O

p
e

n
S

ta
c
k
 R

e
p
re

s
e

n
ta

ti
o

n
 o

f
T

e
n

a
n

t

A
lp

h
a

's
 N

e
tw

o
k

A
c
tu

a
l
v
ir

tu
a

l
Im

p
le

m
e
n

ta
ti
o

n

Open-

vSwitch

DB
vPort_314 vPort_142

IsTaggedwith IsTaggedwith

IsConnectedTo

IsConnectedTo

?
x

Data sourcesNetwork instance representation built from collected and processed data

Figure 4: Virtualized infrastructure model instance showing an OpenStack representation and the corre-
sponding actual virtual layer implementation. VXLAN 72 and its ports are part of the infrastructure imple-
mentation and do not correspond to any component in tenant Alpha’s resources.

Subject Properties and Sub-Properties
Standards

ISO27002 [20] ISO27017 [21] NIST800 [23] CCM [15]

Tenant

Data and proc. location correctness 18.1.1 18.1.1 IR-6, SI-5 SEF-01, IVS-04
Virt. resource isolation (e.g., No Common Ownership) - - - STA-5
Physical isolation (e.g., No Co-residency) - 13.1.3 SC-2 IVS-8, IVS-9

Fault tolerance
Facility duplication

17.1, 17.2 12.1.3, 17.1, 17.2 PE-1, PE-13 BCR-03Storage service duplication
Redundant network connectivity

Provider
No abuse of resources

Max number of VMs
- - - IVS-11

Max number of virtual networks
No resource exhaustion - - - IVS-05

Both Topology consistency
inf. management view/virtual inf.

- 13.1.3 SC-2 IVS-8, IVS-9
SDN controller view/ virtual inf.

Table 1: An excerpt of security properties

a variable defined over the domain TENANT , which
range over integers.

• Relation declaration. We define relations over variables
and provide their support from the audit data.

• Constraint declaration. We define the negation of each
property in terms of predicates over the involved rela-
tions to obtain a counter-example in case of a violation.

• Body. We combine different predicates based on the
properties to verify using Boolean operators.

5.2 Properties Formalization
Security properties would be expressed as predicates over

relation constraints and other predicates. We express the
sample properties in FOL. The corresponding CSP formal-
ization is given in Appendix B. Table 2 summarizes the pred-
icates required for expressing the properties. Those predi-
cates correspond to CSP relation constraints used to de-

Relations in Properties Evaluate to True if
BelongsTo(r, t) The resource r is owned by tenant t
HasRunningVM(vm, t) The tenant t has a running virtual

machine vm
DoesNotTrust(t1, t2) Tenant t2 is not trusted by tenant t1

which means that t1’resources should
not share the same hardware with t2’
instances

IsLocatedAt(vm, cn) The instance vm is located at the
compute node cn

IsAssignedPortVLAN
(p,v,t)

the port p is assigned to the VLAN v
which is in turn assigned to tenant t

HasPortV LAN(vs, p, v) The port p is created at the virtual
switch vs and assigned to VLAN v

Table 2: First Order Logic predicates

scribe the current configuration of the system. Note that
predicates that do not appear as relationships in Figure 1
are inferred by correlating other available relations.
No common ownership. We check that a tenant specific

virtual resource belongs to a unique tenant.

∀r ∈ Resource, ∀t1, t2 ∈ TENANT (1)

BelongsTo(r, t1) ∧ BelongsTo(r, t2) → (t1 = t2)

No co-residence. Based on the collected data, we check
that the tenant’s instances are not co-located in the same
compute node with adversaries’ instances.

∀t1, t2 ∈ TENANT, ∀vm1, vm2 ∈ INSTANCE, (2)

∀cn1, cn2 ∈ COMPUTEN :

HasRunningVM(vm1, t1) ∧ HasRunningVM(vm2, t2)∧
DoesNotTrust(t1, t2) ∧ IsLocatedAt(vm1, cn1)∧

IsLocatedAt(vm2, cn2)→ cn1 6= cn2

Topology consistency. We check that mappings between
virtual resources over different layers are properly main-
tained and that the current view of the cloud infrastructure
management system on the topology, matches the actual
topology of the virtual layer. In the following, we consider
port consistency as a specific case of topology consistency.
We check that the set of virtual ports assigned to a given
tenant’s VLAN by the provider correspond exactly to the
set of ports inferred from data collected from the actual in-
frastructure’s configuration for the same tenant’s VLAN.

∀vs ∈ vSWITCH, ∀p ∈ Port ∀t ∈ TENANT ∀v ∈ VLAN (3)

HasPortVlan(vs, p, v)⇔ IsAssignedPortVLAN(p, v, t)

Example 5. Listing 1 presented in Appendix B is the
CSP code to verify the no common ownership, no co-
residence and port consistency properties for our running
example. Variables along with their respective domains are
first declared (see Listing 1 lines 2-10). Based on the prop-
erties of interest, a set of relations are defined and populated
with their supporting tuples, where the support is generated
from actual data in the cloud (see Listing 1 lines 12-17).
Then, the properties are declared as predicates over these re-
lations (see Listing 1 lines 19-24). Finally, the disjunction
of the predicates is instantiated for verification (see Listing
1 line 26). As we are formalizing the negation of the proper-
ties, we are expecting the UNSAT result, which means that
none of the properties holds (i.e., no violation of the prop-
erties). We present the verification outputs in Section 6.

6. APPLICATION TO THE OPENSTACK
This section describes how we integrate our audit and

compliance framework into OpenStack. First, we briefly
present the OpenStack networking service (Neutron), the
compute service (Nova) and Open vSwitch [1], the most
popular virtual switch implementation. We then detail our
auditing framework implementation and its integration in
OpenStack along with the challenges that we faced and over-
came.

6.1 Background
OpenStack [27] is an open-source cloud infrastructure man-

agement platform that is being used almost in half of private

clouds and significant portions of the public clouds (see [16]
for detailed statistics). The major components of OpenStack
to control large collections of computing, storage and net-
working resources are respectively Nova, Swift and Neutron
along with Keystone. Following is the brief description of
Nova and Neutron:
Nova [27] This is the OpenStack project designed to pro-
vide massively scalable, on demand, self service access to
compute resources. It is considered as the main part of an
Infrastructure as a Service model.
Neutron [27] This OpenStack system provides tenants with
capabilities to build rich networking topologies through the
exposed API, relying on three object abstractions, namely,
networks, subnets and routers. When leveraged with the
Modular Layer 2 plug-in (ML2), Neutron enables support-
ing various layer 2 networking technologies. For our testbed
we consider Open vSwitch as a network access mechanism
and we maintain two types of network segments, namely,
VLAN for communication inside of the same compute node,
and VXLAN for inter compute nodes communications.
Open vSwitch [1]. Open vSwitch is an open source soft-
ware switch designed to be used as a vSwitch in virtualized
server environments. It forwards traffic between different
virtual machines (VMs) on the same physical host and also
forwards traffic between VMs and the physical network.

6.2 Integration to OpenStack
We focus mainly on three components in our implementa-

tion: the data collection engine, the data processing engine,
and the compliance validation engine. The data collection
engine involves several components of OpenStack e.g., Nova
and Neutron for collecting audit data from databases and
log files, different policy files and configuration files from
the OpenStack ecosystem, and log files from various virtual
networking components such as Open vSwitch to fully cap-
ture the configuration. The data is then converted into a
consistent format and missing correlation is reconstructed.
The results are used to generate the code for the validation
engine based on Sugar input language. The compliance val-
idation engine performs the verification of the properties by
feeding the generated code to Sugar. Finally, Sugar provides
the results on whether the properties hold or not. Figure 6
illustrates the steps of our auditing process. In the follow-
ing, we describe our implementation details along with the
related challenges.

Data collection engine. We present hereafter different
sources of data in OpenStack along with the current sup-
port for auditing offered by OpenStack and the virtual net-
working components. The main sources of audit data in
OpenStack are logs, configuration files, and databases. Ta-
ble 3 shows some sample data sources. The involved sources
for auditing depend on the objective of the auditing task
and the tackled properties. We use three different sources
to audit configuration correctness of virtualized infrastruc-
tures:

• OpenStack. We rely on a collection of OpenStack
databases, hosted in a MySQL server, that can be read
using component-specific APIs such as Neutron APIs.
For instance, in Nova database, table Compute-node
contains information about the hosting machines such
as the hypervisor’s type and version, table Instance
contains information about the project (tenant) and

Neutron DB Nova DB

Open_vSwitch

DB

(Tenant_ID,

Router_ID).

�..

(Tenant_ID, VM_ID)

�..

D
a

ta
 C

o
lle

ctio
n

(Tenant_ID, Router_ID)

(VM_ID, Src_compute, Dest_compute)

(vPort_ ID, VLAN_ID)

�

IsAssignedPortVNet (Port_ID, VLAN_ID_Tenant_ID)

IsLocatedAt(VM_ID, Compute_ID)

…..

(Port_ ID, VLAN_ID)

(VLAN_ ID, VXLAN_ID)

…..
(Port_ ID, VLAN_ID)

…..

Open_vSwitch_35

Open_vSwitch_56

……..

(and (BelongsTo T1 R1) (BelongsTo T2 R2) (= R1 R2) (not (= T1 T2))))

(and (HasPortVLAN VS P V) (not(IsAssignedPoprtVLAN P V T))))

(or (NoCommonOwnership T1 R1 T2 R2) (NocoResidence T1 T2 VM1 VM2 H1

H2) (portConsistency P V T)) ……………..

Requirements

-Physical isolation

requirement: Alone

…..

Tenant Beta

Tenant Alpha

D
a

ta
 P

ro
ce

ssin
g

F
o

rm
a

l v
e

rifica
tio

n

Data Filtering

Data Correlation and Aggregation

Verification and Validation Engine (Sugar) Code

Network

Topology

Figure 6: An instance of our OpenStack-based au-
diting solution with the example of data collection,
formatting, correlation building and Sugar source
generation

Relations Sources of Data
BelongsTo Table Instances in Nova database and

Routers, Subnets and Ports in Neu-
tron database, Neutron logs

DoesnotTrust The tenant physical isolation require-
ment input

IsLocatedAt Tables Instances in Nova database
IsAssignedPortV LAN Networks in Nova database and Ports

in Neutron database
HasPortV LAN Open vSwitch instances located at

various compute nodes
HasRunningVM Table Instances in Nova database

Table 3: Sample Data Sources in OpenStack, Open
vSwitch and Tenants’ requirements

the hosting machine, table Migration contains migra-
tion events’ related information such as the source-
compute and the destination-compute. The Neutron
database includes various information such as security
groups and port mappings for different virtualization
mechanisms.

• Open vSwitch. Flow tables and databases of Open
vSwitch instances located in different compute nodes
and in the controller node constitute another impor-
tant source of audit data for checking whether there
exist any discrepancies between the actual configura-
tion and the OpenStack view.

• Tenant policies. We consider security policies expressed
by the customers, such as physical isolation require-
ments. As expressing tenants’ policies is out of the
scope of this paper, we assume that they are parsable
XML files.

Data processing engine. Our data processing engine,
which is implemented in Python, mainly retrieves necessary
information from the collected data according to the tar-
geted properties, recovers correlation from various sources,
eliminates redundancies, converts it into appropriate for-
mats, and finally generates the source code for Sugar.

• Firstly, for each property, our plug-in identifies the
involved relations. The relations’ support is either
fetched directly from the collected data such as the

support of the relation BelongsTo, or recovered after
correlation, as in the case of the relation IsAssigned-
PortVLAN.

• Secondly, our processing plug-in formats each group of
data as an n-tuple, i.e., (resource, tenant),(port, vlan,
tenant), etc.

• Finally, our plug-in uses the n-tuples to generate the
portions of Sugar’s source code, and append the code
with the variable declarations, relationships and pred-
icates for each security property (as discussed in Sec-
tion 5). Different scripts are needed to generate Sugar
source code for the verification of different properties.

Compliance Validation. The compliance validation en-
gine is discussed in details in Section 5. In the following
example, we discuss how our auditing framework can detect
the violation of the no common ownership, no co-residence
and port inconsistency security properties caused by the at-
tack scenarios of our running example.

Example 6. In this example, we describe how a viola-
tion of no common ownership, no co-residence and port-
consistency properties may be caught by auditing.

Firstly, our program collects data from different tables in
the Nova and Neutron databases, and logs from different
Open vSwitch instances. Then, the processing engine cor-
relates and converts the collected data and represents it as
tuples; for an example: (18038 10) (6100 11000) (512 6020
18033) where Port 84: 18038, Alpha: 10, VM 01: 6100,
Open vSwitch 56: 512, vPort 40: 18033 and VLAN 100:
6020. Additionally, the processing engine interprets each
property and generates the associated Sugar source code (see
Listing 1 for an excerpt of the code) using processed data
and translated properties. Finally, Sugar is used to verify
the security properties.

We show for each property how the violation is detected:

a) No common Ownership. The predicate CommonOwner-
ship will evaluate to true if there exists a resource be-
longing to two different tenants. As Port 84 has been
created by Beta, BelongsTo(Port 84, Beta) evaluates to
true based on collected data from Neutron logs. Port 84 is
defined on Alpha’s router, hence, BelongsTo(Port 84, Al-
pha) evaluates to true based on collected data from Neu-
tron database. Consequently, the predicate CommonOwn-
ership evaluates to true. In this case, the output of sugar
(SAT) is the solution of the problem, (r1 = 18038; r2
=18038; t1 =10; T2=11), which is actually the proof that
Port 84 violates the no common ownership property.

b) No co-residence. In our example (see Figure
3), the supports HasRunningVM((VM 02, Al-
pha)(VM 03, Beta)), IsLocatedAt((VM 02, Com-
pute Node 96)(VM 03,Compute Node 96) and DoesNot-
Trust(Alpha, Beta), where VM 02:6101, VM 03:6102,
and Compute Node 96:11100, make the predicate eval-
uate to true meaning that the no co-residence property
has been violated.

c) Port-consistency. The predicate PortConsistency eval-
uates to true if there exists a discrepancy be-
tween the OpenStack view of the virtualized infras-
tructure and the actual configuration. The support

HasPortVLAN(Open vSwitch 56, vPort 40, VLAN 100)
makes the predicate evaluate to true, as long as there is no
tuple such that IsAssignedPortVLAN (Port, VLAN 100,
Alpha) where Port maps to vPort 40:18033.

Challenges. Checking the configuration correctness in vir-
tualized environment requires considering logs generated by
virtualization technologies at various levels, and checking
that mappings are properly maintained over different layers.
Unfortunately, OpenStack does not maintain such overlay
details.

At the OpenStack level, ports are directly mapped to
VXLAN IDs, whereas at the Open-vSwitch level, ports are
mapped to VLAN tags and mappings between the VLAN
tags and VXLAN IDs are maintained. To overcome this
limit, we devised a script that generates logs from all the
Open vSwitch instances. The script recovers mappings be-
tween VLAN tags and the VXLAN IDs from the flow tables
using the ovs-ofctl command line tool. Then, it recovers
mappings between ports and VLAN tags from the Open-
vSwitch data base using the ovs-vsctl command line utility.

Checking the correct configuration of overlay networks
requires correlating information collected both from Open
vSwitch instances running on top of various compute nodes
and the controller node, and data recovered from OpenStack
data bases. To this end, we extended our data process-
ing plug-in to deduce correlation between data. For exam-
ple, we infer the relation (portvlantenant) from the avail-
able relations (vlanvxlan) recovered from Open vSwitch and
(portvxlantenant) recovered from the Nova and Neutron
databases. In our settings, we consider a ratio of 30 ports
per tenant, which leads to 300,000 entries in the relation
(portvxlantenant) for 10,000 tenants. The number of entries
is considerably larger than the number of tenants, because
a tenant may have several ports and virtual networks. As
a consequence, with the increasing number of tenants, the
size of this relation grows and complexity of the correlation
step also increases proportionally. Note that, correlation is
required for several of our listed properties.

An auditing solution becomes less effective if all needed
audit evidences are not collected properly. Therefore, to be
comprehensive in our data collection process, we firstly check
fields of all varieties of log files available in OpenStack, all
configuration files and all Nova and Neutron database tables.
Through this process, we identify all possible types of data
with their sources.

7. EXPERIMENTS
This section discusses the performance of our solution by

measuring the execution time, memory, and CPU consump-
tion.

7.1 Experimental setting
We deployed OpenStack with one controller node and

three compute nodes, each having Intel i7 dual core CPU
and 2GB memory running Ubuntu 14.04 server. Our Open-
Stack version is DevStack Juno (2014.2.2.dev3). We set up
a real test bed environment constituted of 10 tenants, 150
VMs and 17 routers. To stress the verification engine and
assess the scalability of our approach as a whole, we further-
more simulated an environment with 10,000 tenants, 100,000
VMs, 40,000 subnets, 20,000 routers and 300,000 ports with

a ratio of 10 VMs, 4 subnets, 2 routers and 30 ports per
tenant. To comply verification, we use the V&V tool, Sugar
V2.2.1 [31]. We conduct the experiment for 20 different au-
dit trail datasets in total.

All data processing and V&V experiments are conducted
on a PC with 3.40 GHz Intel Core i7 Quad core CPU and
16 GB memory and we repeat each experiment 1, 000 times.

360 100K 200K 300K
100

200

300

400

of Ports

T
im

e
(m

s)

120 25K 50K 75K 100K
0

500

1000

1500

2000

of VMs

48 10K 20K 30K 40K
0

2000

4000

6000

of Subnets

Verification Data processing

(a) Time required for data processing and verification for
the port consistency (left), no co-residence (middle) and
no common ownership (right) by varying number of ports,
VMs and subnets respectively.

0 2K 4K 6K 8K 10K
0

5,000

10,000

15,000

20,000

of Tenants

S
iz

e
(K

B
)

No common ownership No co−residence Port consistency Three properties

12 2K 4K 6K 8K 10K
0

2000

4000

6000

8000

10000

of Tenants

T
im

e
(m

s)

(b) Total size (left) of collected audit data and time re-
quired (right) for auditing the port consistency, no co-
residence, no common ownership and sequentially auditing
three properties (worst case) by varying number of tenants.

Figure 7: Execution time for each auditing step, to-
tal size of the collected audit data and total time for
different properties using our framework

7.2 Results
The first set of our experiment (see Figure 7) demonstrates

the time efficiency of our auditing solution. Figure 7(a) illus-
trates the time in milliseconds required for data processing
and compliance verification steps for port consistency, no co-
residence and no common-ownership properties. For each
of the properties, we vary the most significant parameter
(e.g., the number of ports, VMs and subnets for port consis-
tency, no co-residence and no common ownership properties
respectively) to assess the scalability of our auditing solu-
tion. Figure 7(b) (left) shows the size of the collected data
in KB for auditing by varying the number of tenants. The
collected data size reaches to around 17MB for our largest
dataset. We also measure the time for collecting data as ap-
proximately 8 minutes for a fairly large cloud setup (10,000
tenants, 100,000 VMs, 300,000 ports, etc.). Note that data
collection time heavily depends on deployment options and
complexity of the setup. Moreover, the initial data collec-
tion step is performed only once for the auditing process
(later on incremental collection will be performed at regular
intervals), so the time may be considered reasonable. Fig-
ure 7(b) (right) shows the total execution time required for
each property individually and in total. Auditing no com-
mon ownership property requires the longest time, because
of the highest number of predicates used in the verification
step; however, it finishes in less than 4 seconds. In total, the

auditing of three properties completes within 8 seconds for
the largest dataset, when properties are audited sequentially.
However, since there is no interdependency between verify-
ing different security properties, we can easily run parallel
verification executions. The parallel execution of the veri-
fication step for different properties reduces the execution
time to 4 seconds, the maximum verification time required
among three security properties. Additionally, we can in-
fer that the execution time is not a linear function of the
number of security properties to be verified. Indeed, audit-
ing more security properties would not lead to a significant
increase in the execution time.

0 1 2 3 4 5
0

20

40

60

80

Time (s)

C
P

U
 (

%
)

 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

Time (s)

M
em

or
y

(%
)

0−1 sec: Data processing 1−5 sec: Verification

(a) Peak CPU and memory usage for each step of our audit-
ing solution over time when there are 10,000 tenants, 40,000
subnets, 100,000 VMs and 300,000 ports.

12 2.5K 5K 7.5K 10K
0.1

0.2

0.3

0.4

0.5

0.6

0.7

of Tenants

M
em

or
y

(%
)

12 2.5K 5K 7.5K 10K
0

20

40

60

80

of Tenants

C
P

U
 (

%
)

No common ownership Port consistency No co−residence

(b) CPU (left) and memory (right) usage for each step of
our auditing solution over time when there are 6,000 tenants,
24,000 subnets, 60,000 VMs and 180,000 ports.

Figure 8: CPU and memory usage for each step and
for different properties of our auditing solution over
time

The objective of our second experiment (Figures 8(a)(left)
and 8(b)(left)) is to measure the CPU usage (in %). In
Figure 8(a)(left), we measure the peak CPU usage consumed
by data processing and verification steps while auditing the
no common ownership property. We notice that the average
CPU usage is around 35% for the verification, whereas it is
fairly negligible for the data processing step. According to
Figure 8(b)(left), the CPU usage grows almost linearly with
the number of tenants. However, the speed of increase varies
depending on the property. It reaches a peak of over 70%
for the no common ownership property for 10,000 tenants.
This is due to the huge amount of tenant specific resources
(e.g. for 10,000 tenants the number of the resources involved
may reach 216, 000).

Note that, we conduct our experiments in a single PC; if
the security properties can be verified through concurrent
and independent Sugar executions, we can easily parallelize
this task by running several instances of Sugar on different
VMs in the cloud environment. Thus the parallelization in
the cloud allows to reduce the overall verification time to

the maximum time for any individual security property.

Our final experiment (Figures 8(a)(right) and 8(b)(right))
demonstrates the memory usage of our auditing solution.
Figure 8(a)(right) shows that data processing step has a mi-
nor memory usage (with a peak of 0.05%), whereas the high-
est memory usage observed for the verification step for our
largest setup is less than 0.19% of 16GB memory. The Fig-
ure 8(b) (right) shows that the port consistency property has
the lowest memory usage with a percentage of 0.2% whereas
no common ownership has the highest memory usage, which
is less than 0.6% for 10,000 tenants. Our observation from
this experiment is that memory usage is related to the num-
ber of relations, variables and constraints involved to verify
each property.
Discussion. In our experiments, we audited several secu-

rity properties e.g., no common ownership and port consis-
tency, for up to 10, 000 tenants with a large set of various
resources (300, 000 ports, 100, 000 VMs, 40, 000 subnets) in
less than 8 seconds. The auditing activity occurs upon re-
quest from the auditor (or in regular intervals when the au-
ditor sets regular audits). Therefore, we consider the costs
of our approach to be reasonable even for large data centers.
Although we report results for a limited set of security prop-
erties related to virtualized cloud infrastructure, promising
results show the potentiality of the use of formal methods
for auditing. Particularly, we show that the time required
for our auditing solution grows very slowly with the number
of security properties. As seen in Fig 7a, we anticipate that
auditing a large list of security properties in practice would
still be realistic. The cost generally increases almost linearly
with the number of tenants.

8. CONCLUSION
In this paper, we elaborated a generic model for virtu-

alized infrastructures in the cloud. We identified a set of
relevant structural security properties to audit and mapped
them to different standards. Then, we presented a formal
approach for auditing cloud virtualized infrastructures from
the structural point of view. Particularly, we showed that
our approach is able to detect topology inconsistencies that
may occur between multiple control layers in the cloud. Our
evaluation results show that formal methods can be success-
fully applied for large data centers with a reasonable over-
head. As future directions, we intend to leverage our au-
diting framework for continuous compliance checking. This
will be achieved by monitoring various events, and trigger-
ing the verification process whenever a security property is
affected by the changes. A second area of investigation is
to extend the list of security properties with the operational
properties. This would allow to check the compliance of the
forwarding network functionality with the access control lists
and routing policies.

9. ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their valu-

able comments. This work is partially supported by the Nat-
ural Sciences and Engineering Research Council of Canada
and Ericsson Canada under CRD Grant N01566.

10. ADDITIONAL AUTHORS
Additional authors: Mourad Debbabi (CIISE, Concordia

University, Montreal, QC, Canada, email:
debbabi@encs.concordia.ca).

11. REFERENCES
[1] Open vswitch. Available at: http://openvswitch.org/.

[2] Policy as a service (”congress”). Available at:
http://wiki.openstack.org/wiki/Congress.

[3] Federal data protection act.
http://www.gesetze-im-internet.de/englisch bdsg/
federal data protection act.pdf, August 2009.

[4] IBM Corporation. Ibm point of view: Security and
cloud computing, 2009.

[5] C. S. Alliance. Security guidance for critical areas of
focus in cloud computing v 3.0, 2011.

[6] C. S. Alliance. The notorious nine cloud computing
top threats in 2013, February 2013.

[7] M. Bellare and B. Yee. Forward integrity for secure
audit logs. Technical report, Citeseer, 1997.

[8] M. Ben-Ari. Mathematical logic for computer science.
Springer Science & Business Media, 2012.

[9] S. Bleikertz. Automated security analysis of
infrastructure clouds. Master’s thesis, Technical
University of Denmark and Norwegian University of
Science and Technology, 2010.

[10] S. Bleikertz and T. Gross. A virtualization assurance
language for isolation and deployment. In POLICY,
2011 IEEE International Symposium on, pages 33–40,
June 2011.

[11] S. Bleikertz, T. Groß, and S. Mödersheim. Automated
verification of virtualized infrastructures. In
Proceedings of CCSW, pages 47–58. ACM, 2011.

[12] S. Bleikertz, C. Vogel, and T. Groß. Cloud radar: near
real-time detection of security failures in dynamic
virtualized infrastructures. In Proceedings of the 30th
Annual Computer Security Applications Conference,
pages 26–35. ACM, 2014.

[13] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and
V. Ganapathy. Self-service cloud computing. CCS ’12,
pages 253–264, New York, NY, USA, 2012. ACM.

[14] Cloud Security Alliance. Top ten big data security and
privacy challenges, 2012.

[15] Cloud Security Alliance. Cloud control matrix CCM
v3.0.1, 2014. Available at:
https://cloudsecurityalliance.org/research/ccm/.

[16] datacenterknowledge.com. Survey: One-third of cloud
users’ clouds are private, heavily OpenStack, 2015.
Available at: http://www.datacenterknowledge.com.

[17] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann.
Sphinx: Detecting security attacks in software-defined
networks. In NDSS Symposium, 2015.

[18] F. Doelitzscher, C. Reich, M. Knahl, A. Passfall, and
N. Clarke. An agent based business aware incident
detection system for cloud environments. Journal of
Cloud Computing, 1(1), 2012.

[19] F. H.-U. Doelitzscher. Security Audit Compliance For
Cloud Computing. PhD thesis, Plymouth University,
February 2014.

[20] ISO Std IEC. ISO 27002:2005. Information
Technology-Security Techniques, 2005.

[21] ISO Std IEC. ISO 27017. Information technology-
Security techniques (DRAFT), 2012.

[22] T. E. Network, , and I. S. Agency. Cloud computing
benefits, risks and recommendations for information
security, December 2012.

[23] NIST, SP. NIST SP 800-53. Recommended Security
Controls for Federal Information Systems, pages
800–53, 2003.

[24] Opendaylight. The OpenDaylight platform, 2015.
Available at: https://www.opendaylight.org/.

[25] OpenStack. Ossa-2014-008: Routers can be cross
plugged by other tenants. Available at:
https://security.openstack.org/ossa/OSSA-2014-
008.html.

[26] OpenStack. Nova network configuration allows guest
vms to connect to host services, 2015. Available at:
https://wiki.openstack.org/wiki/OSSN/OSSN-0018.

[27] OpenStack. OpenStack open source cloud computing
software, 2015. Available at:
http://www.openstack.org.

[28] D. Perez-Botero, J. Szefer, and R. B. Lee.
Characterizing hypervisor vulnerabilities in cloud
computing servers. Cloud Computing ’13, pages 3–10,
New York, NY, USA, 2013. ACM.

[29] T. Probst, E. Alata, M. Kaâniche, and V. Nicomette.
An approach for the automated analysis of network
access controls in cloud computing infrastructures. In
Network and System Security, pages 1–14. Springer,
2014.

[30] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud: Exploring information
leakage in third-party compute clouds. CCS ’09, pages
199–212, New York, NY, USA, 2009. ACM.

[31] N. Tamura and M. Banbara. Sugar: A CSP to SAT
translator based on order encoding. Proceedings of the
Second International CSP Solver Competition, pages
65–69, 2008.

[32] TechNet. Nova network configuration allows guest vms
to connect to host services cloud services foundation
reference architecture - reference model, 2013.

[33] Y. Xu, Y. Liu, R. Singh, and S. Tao. Identifying sdn
state inconsistency in openstack. SOSR ’15, pages
11:1–11:7, New York, NY, USA, 2015. ACM.

[34] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju,
J. Liu, N. McKeown, and A. Vahdat. Libra: Divide
and conquer to verify forwarding tables in huge
networks. In (NSDI 14). Seattle, WA: USENIX
Association, pages 87–99, 2014.

[35] S. Zhang and S. Malik. Sat based verification of
network data planes. In D. Van Hung and M. Ogawa,
editors, Automated Technology for Verification and
Analysis, volume 8172 of Lecture Notes in Computer
Science, pages 496–505. Springer International
Publishing, 2013.

[36] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter.
Homealone: Co-residency detection in the cloud via
side-channel analysis. SP ’11, pages 313–328,
Washington, DC, USA, 2011. IEEE Computer Society.

http://openvswitch.org/
http://wiki.openstack.org/wiki/Congress
http://www.gesetze-im-internet.de/englisch_bdsg/federal_data_protection_act.pdf
http://www.gesetze-im-internet.de/englisch_bdsg/federal_data_protection_act.pdf
https://cloudsecurityalliance.org/research/ccm/
http://www.datacenterknowledge.com
https://www.opendaylight.org/
https://wiki.openstack.org/wiki/OSSN/OSSN-0018
http://www.openstack.org

APPENDIX
A. SECURITY PROPERTIES

In the following, we provide a brief description of the most
pertinent properties presented in Table 1.

Data and processing location correctness. One of the
main cloud specific security issues is the increased complex-
ity of compliance with laws and regulations [19]. The cloud
provider might have data centers spread over different conti-
nents and governed by various court jurisdictions. Data and
processing can be moved between the cloud provider’s data
centers without tenants awareness, and fall under conflicting
privacy protection laws. The Germany’s data protection act
[3] stipulates that personal data can only be transferred into
countries with the same adequate level of privacy protection
laws.

Virtual resources isolation (No common ownership).
Resource sharing technology was not designed to offer strong
isolation properties for a multi-tenant architecture and thus
has been ranked by the CSA among the nine notorious threats
related to the cloud [6]. The related risks include the failure
of mechanisms separating virtual resources between differ-
ent tenants of the shared infrastructure, which may lead to
situations where one tenant has access to another tenant’s
resources or data.

No co-residency. Cloud providers consolidate virtual ma-
chines, possibly belonging to competing customers, to be
run on the same physical machine, which may cause major
security concerns as described in [36]. According to the CSA
standard [5], customers should be able to express their will-
ingness to share or not the physical hosts with other tenants,
and they should be provided with the related evidences.

Redundancy and fault tolerance. Cloud providers have
to apply several measures to achieve varying degrees of re-
siliency following the criticality of the customer’s applica-
tions. Duplicating facilities in various locations, and repli-
cating storage services are examples of the measures that
could be undertaken. Considering additional redundancy of
network connectivity and information processing facilities
has been mentioned in ISO 27002:2013 [20] as one of best
practices.
No abuse of resources. Cloud services can be used by

legitimate anonymous customers as a basis to illegitimately
lead criminal and suspicious activities. For example, cloud
services can be used to stage DDoS attacks [6].

No resource exhaustion. The ease with which virtual re-
sources can be provisioned in the cloud introduces the risk
of resource exhaustion [22]. For example, creating a huge
amount of VMs within a short time frame drastically in-
creases the odds of misconfiguration which opens up several
security breaches [5].

Topology consistency. As stated in [4], it is critical to
maintain consistency among cloud layers. The architectural
model of the cloud can be described as a stack of layered
services: Physical layer, system resources layer, virtualized
resources layer, support services layer, and at the top cloud-
delivered services. The presence of inconsistencies between
these layers may lead to security breaches, which in turn
makes the security controls at higher layers inefficient.

B. CSP CONSTRAINTS AND SUGAR CODE

TheCSP constraint to no common ownership property

(and BelongsTo(r1, t1) BelongsTo(r2, t2) (4)

(r1 = r2)(not(t1 = t2))

The CSP constraint for this no co-residence property:

(and DoesNotTrust(t1, t2) HasRunningVM(vm1, t1) (5)

HasRunning(vm2, t2) IsLocatedAt(vm1, h1)

IsLocatedAt(vm2, h2) (h1 = h2))

The CSP constraint corresponding to topology consistency:

(or(and HasPortVLAN(vs, p, v) (6)

(not IsAssignedPortVLAN(p, v, t))

(and IsAssignedPortVLAN(p, v, t)

(not HasPortVLAN(vs, p, v)))

Listing 1: Sugar source code for common ownership,
co-residence and port consistency verification

1 //Declaration
2 (domain TENANT 0 60000) (domain RESOURCE 0

216000)
3 (domain INSTANCE 0 100000) (domain HOST 0 1000)
4 (domain PORT 0 300; 000) (domain VLAN 0 60000)
5 (domain VSWITCH 0 1000)
6 (int T1 TENANT) (int T2 TENANT)
7 (int R1 Resource) (int R2 Resource)
8 (int VM1 INSTANCE) (int VM2 INSTANCE)
9 (int H1 HOST) (int H2 HOST)(int V VLAN)

10 (int T TENANT) (int P PORT) (int vs VSWITCH)
11 //Relations Declarations and Audit data as their support
12 (relation BelongsTo 2 (supports (18037 10)(18038 10) (

18039 10)(18040 10)(18038 11)(18042 11)(18043
11)(18044 11)(18045 11)(18046 12)(18047 12)))

13 (relation HasRunningVM 2 (supports (6100 10)(6101
10)(6102 11)(6103 11)(6104 11)(6105 11)))

14 (relation IsLocatedAt 2 (supports(((6089 11000)(6090
11000)(6093 11000)(6101 11100)(6102 11100))

15 (relation DoesNotTrust 2 (supports(9 11)(9 13)(9 14)))
16 (relation IsAssignedPortVLAN 3 (supports (18028 6017

9)(18029 6018 9)(18030 6019 10)(18031 6019
10)(18032 6020 10)))

17 (relation HasPortVLAN 3 (supports(511 18030 6019)(511
18031 6019 10)(512 18032 6020)(512 18033 6021)))

18 //Security properties expressed in terms of predicates
over relation constraints

19 (predicate (CommonOwnership T1 R1 T2 R2)
20 (and (BelongsTo T1 R1) (BelongsTo T2 R2) (= R1 R2)

(not (= T1 T2))))
21 (predicate (coResidence T1 T2 VM1 VM2 H1 H2) (and

(DoesNotTrust T1 T2) (HasRunningVM VM1 T1)
22 (HasRunningVM VM2 T2) (IsLocatedAt H1 VM1)

(IsLocatedAt H2 VM2) (=H1 H2)))
23 (predicate (portConsistency P V T)(or (and

(IsAssignedPoprtVLAN P V T)(not(HasPortVLAN
VS P V)))

24 (and (HasPortVLAN VS P V)
(not(IsAssignedPoprtVLAN P V T)))))

25 \\The Body
26 (or (CommonOwnership T1 R1 T2 R2) (coResidence T1

T2 VM1 VM2 H1 H2) (portConsistency P V T))

	Introduction
	Related work
	Methodology
	Threat Model
	Modeling the Virtualized Infrastructure
	Cloud Auditing Properties

	Audit ready cloud framework
	Formal Verification
	Model Formalization
	Properties Formalization

	Application to the OpenStack
	Background
	Integration to OpenStack

	Experiments
	Experimental setting
	Results

	Conclusion
	Acknowledgments
	Additional Authors
	References
	Security properties
	CSP constraints and Sugar code

