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Abstract. Security compliance auditing is a viable solution to ensure the accountability and transparency of a cloud provider
to its tenants. However, the sheer size of a cloud, coupled with the high operational complexity implied by the multi-tenancy
and self-service nature, can easily render existing runtime auditing techniques too expensive and non-scalable. To this end, a
proactive approach, which prepares for the auditing ahead of critical events, is a promising solution to reduce the response time
to a practical level. However, a key limitation of such approaches is their reliance on manual efforts to extract the dependency
relationships among events, which greatly restricts their practicality. What makes things worse is the fact that, as the most
important input to security auditing, the logs and configuration databases of a real world cloud platform can be unstructured
and not ready to be used for efficient security auditing. In this paper, we first propose a log processing technique, which
prepares raw cloud logs for different analysis purposes, and then design a learning-based proactive security auditing system,
namely, LeaPS+. To this end, we conduct case studies on current log formats in different real-world OpenStack (a popular
cloud platform) deployments, and identify major challenges in log processing. Later, we design a stand-alone log processor for
clouds, which may potentially be used for various log analyses. Consequently, we leverage the log processor outputs to extract
probabilistic dependencies from runtime events for the dependency models. Finally, through these dependency models, we
proactively prepare for security critical events and prevent security violations resulting from those critical events. Furthermore,
we integrate LeaPS+ to OpenStack and perform extensive experiments in both simulated and real cloud environments that show
a practical response time (e.g., 6ms to audit a cloud of 100,000 VMs) and a significant improvement (e.g., about 50% faster)
over existing proactive approaches. In addition, we successfully and efficiently apply our log processor outputs to other learning
techniques (e.g., executing sequence pattern mining algorithms within 18ms for 50,000 events).

Keywords: Proactive auditing, security auditing, cloud security, automatic learning, log formatting, log processing, OpenStack

1. Introduction

Security threats such as isolation breach in multi-tenant clouds cause persistent fear among tenants

while adopting clouds [1]. To this end, security auditing in clouds can possibly ensure the accountabil-
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ity and transparency of a cloud provider to its tenants. However, the traditional approach of auditing,

a.k.a. retroactive auditing, becomes ineffective with the unique nature (e.g., dynamics and elasticity) of

clouds, which means the configurations of a cloud is frequently changed and hence, invalidates the au-

diting results. To address this limitation and offer continuous auditing, the intercept-and-check approach

verifies each cloud event at runtime. However, the sheer size of the cloud (e.g., 1,000 tenants and 100,000

users in a decent-sized cloud [2]), can usually render the intercept-and-check approach expensive and

non-scalable (e.g., over four minutes for a mid-sized cloud [3]). Since the number of critical events

(i.e., events that may potentially breach security properties) to verify usually grows with the number of

security properties supported by an auditing system, auditing larger clouds could incur prohibitive costs.

To this end, the proactive approach (e.g., [4]) is a promising solution and specifically designed to

ensure a practical response time. Such an approach prepares for critical events in advance based on the

so-called dependency models that indicate which events lead to the critical events [4, 5]. However, a key

limitation of existing proactive approaches (including our previous work [4]) is that their dependency

models are typically established through manual efforts based on expert knowledge or user experiences,

which can be error-prone and tedious especially for large clouds. Moreover, existing dependency models

are typically static in nature in the sense that the captured dependencies do not reflect runtime patterns.

A possible solution is to automatically learn probabilistic dependencies from the historical data (e.g.,

cloud logs). However, the log formats in current cloud platforms (especially, in OpenStack [6], which

is one of the most popular cloud management platforms) are unstructured and not ready to be fed into

different learning tools. Furthermore, due to the diverse formats of logs in different versions of the cloud

platform, the log processing task becomes more difficult. Therefore, to enable log analysis (e.g., learning

dependency models for proactive auditing), the need of a log processing approach addressing different

real-world challenges (which are discussed in Section 3.2) and preparing raw logs for different learning

tools is evident.

To address those limitations, our key idea is to design a log processor, which prepares the inputs

for different learning techniques, to learn probabilistic (instead of deterministic) dependencies, and to

automatically extract such a model from processed logs. Based on these dependency models, we propose

a learning-based proactive security auditing system, namely, LeaPS+. We describe our implementation

of the proposed system based on OpenStack [6], and demonstrate how the system may be ported to other

cloud platforms (e.g., Amazon EC2 [7] and Google GCP [8]). Finally, we evaluate our solution through

extensive experiments with both synthetic and real data. The results confirm our solution can achieve

practical response time (e.g., 6ms to audit a cloud of 100,000 VMs) and significant improvement over

existing proactive approaches (e.g., about 50% faster), and our log processor can be adopted by different

learning techniques efficiently (e.g., only 18ms to execute different sequence pattern mining algorithms

for 50,000 events).

In summary, our main contributions are threefold.

• To the best of our knowledge, this is the first approach for processing OpenStack logs for identify-

ing event sequences to learn dependencies. First, our study investigates cloud logs from both real

and testbed clouds, and enumerates all challenges in log processing. Second, our log processing

technique addresses these challenges, and supports different learning techniques (e.g., Bayesian

network and sequence pattern mining).

• We propose an automated learning-based proactive auditing system, namely, LeaPS+, which au-

tomatically learns probabilistic dependencies using the proposed log processor to allow handling

the uncertainty that is inherent to runtime events, and hence, addresses the major limitations of
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existing proactive solutions. As demonstrated by our implementation and experimental results,

LeaPS+ provides an automated, efficient, and scalable solution for different cloud platforms to

increase their transparency and accountability to tenants.

• Unlike most learning-based security solutions, since we are not relying on learning techniques to

detect abnormal behaviors, we avoid the well-known limitations of high false positive rates; any

inaccuracy in the learning phase would only affect the efficiency, as will be demonstrated through

experiments later in the paper. We believe this idea of leveraging learning for efficiency, instead

of security, may be adapted to benefit other security solutions.

A preliminary version of this paper, covering learning probabilistic dependency models and conduct-

ing pre-computation-based verification, has appeared in [9]. In this paper, we significantly extend our

previous work, which was mainly based on synthetic data and simulations, by examining the practical

challenges of obtaining useful inputs from real world clouds to the learning module and consequently

providing a comprehensive log processing solution. Specifically, our major extensions are as follows:

i) we present demonstration cases on the formats and contents of logs from different cloud deployments

including a real community cloud (in Section 3.1); ii) we enumerate real-world challenges in log pro-

cessing for different analysis purposes including learning probabilistic dependencies (in Section 3.2);

iii) we propose a new log processing approach which supports different formats of cloud logs and ad-

dresses all previously identified challenges (detailed in Section 3.3); iv) we demonstrate that the new

log processing solution can facilitate other learning techniques (e.g., sequence pattern mining) including

learning Bayesian network parameters (in Section 7.2); v) we re-design the LeaPS+ architecture based

on the new extensions (in Section 6.2); vi) we design new algorithms based on the above-mentioned

extensions and implement the newly proposed log processor for OpenStack (in Section 6.3); and vii) fi-

nally, we conduct new experiments with both real and synthetic data to measure the efficiency of the log

processor and to show its applicability in other learning techniques beyond LeaPS+ (in Section 7.2).

The remainder of the paper is organized as follows. Section 2 provides an overview of LeaPS+. Sec-

tion 3 describes the demonstration cases on cloud logs and its results, and presents the LeaPS+ log

processor. Section 4 discusses the methodology of our learning system. Section 5 details our proactive

verification system. Section 6 provides the implementation details, and Section 7 presents the experi-

mental results. Section 8 discusses several aspects of our approach. Section 9 reviews related works.

Section 10 concludes the paper.

2. LeaPS+ Overview

In this section, we present a motivating example, describe the threat model, and provide an overview

of our proposed solution.

2.1. Motivating Example

The upper part of Figure 1 depicts several sequences of events in a cloud (from Session N to Session

N +M). The critical events, which can potentially breach some security properties, are shown shaded

(e.g., E2, E5 and E7). The lower part of the figure illustrates two different auditing approaches of such

events. We discuss their limitations below to motivate our solution.
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Fig. 1. Identifying the main limitations of both traditional runtime verification and existing proactive solutions, and positioning
our solution.

• With a traditional runtime verification approach, most of the verification effort (depicted as boxes

filled with vertical lines) is performed after the occurrence of the critical events, while holding

the related operations blocked until a decision is made; consequently, such solutions may cause

significant delays to operations.

• In contrast, a proactive solution will pre-compute most of the expensive verification tasks well

ahead of the critical events in order to minimize the response time. However, this means such a

solution would need to first identify patterns of event dependencies, e.g., E1 may lead to a critical

event (E2), such that it may pre-compute as soon as E1 happens.

• Manually identifying patterns of event dependencies for a large cloud is likely expensive and non-

scalable. Indeed, a typical cloud platform allows more than 400 types of operations [6], which

implies 160,000 potential dependency relationship pairs may need to be examined by human ex-

perts.

• Furthermore, this only covers the static dependency relationships implied by the cloud design,

whereas runtime patterns, e.g., those caused by business routines and user habits, cannot be cap-

tured in this way.

• Another critical limitation is that existing dependency models are deterministic in the sense that

every event can only lead to a unique subsequent event. Therefore, the case demonstrated in the

last two sessions (N+2, N+M) where the same event (E3) may lead to several others (E4 or E6)

will not be captured by such models.

2.2. Threat Model

We assume that the cloud infrastructure management systems a) may be trusted for the integrity of

the API calls, event notifications, logs and database records (existing techniques on trusted computing
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may be applied to establish a chain of trust from TPM chips embedded inside the cloud hardware,

e.g., [10, 11]), and b) may have implementation flaws, misconfigurations and vulnerabilities that can be

potentially exploited by malicious entities to violate security properties specified by the cloud tenants.

The cloud users including cloud operators and agents (on behalf of a human) may be malicious.

The out-of-scope threats include attacks that do not violate the specified security properties, attacks

not captured in the logs or databases, and attacks through which the attackers may remove or tamper

with their own logged events. We also assume that the logging system of different services in the cloud

is synchronized. We assume that, before our proactive approach is launched, an initial auditing is per-

formed and potential violations are resolved. However, if our solution is added from the commencement

of a cloud, obviously no prior security verification is required. This work focuses on attacks directed

through the cloud management interfaces and more specifically cloud management operations (e.g., cre-

ate/delete/update tenant, user, VM, etc.). Any violation bypassing the cloud management interface is

beyond the scope of this work. We assume a comprehensive list of critical events are provided upon

which the accuracy of our auditing solution depends (however, we provide a guideline on identifying

critical events in Section 8). Table 1 describes the terminologies that we frequently use in this paper. To

make our discussions more concrete, the following shows an example of in-scope threats based on a real

vulnerability.

Terminology Description

Event Type The generic name of each cloud event independent of any cloud platform (e.g., create VM and delete port)

Event Instance An instance of an event type that is observed in logs

Runtime Event An event instance that is intercepted at runtime

Session The period within which a user remains active

Watchlist A list of resources that are allowed as parameters

Critical Event The events that may violate a security property

Table 1

Description of frequently used terminologies in this paper.

VMA1 VMA2 VMA3 VMA3 VMB1 VMB2 VMB3 VMB3

VMB1: 1.10.0.7 Tenant BVMA1: 1.10.1.117 Tenant A

SGA1 SGA2 SGA3 SGA4 SGB1 SGB2 SGB3 SGB4

Virtual SwitchVirtual Switch

Security Group A1
Allow src 1.10.0.7

(requested to be deleted)

Allow src 10.0.0.12

           ….. 

Security Group B1

Allow src 1.10.1.117

Allow src 19.0.0.30

           ….. 

Virtual network 101
Virtual network 103
Virtual network 207
Virtual network 205

Fig. 2. An exploit of a vulnerability in OpenStack [12], leading to bypassing the security group mechanism.

Running Example. A real world vulnerability in OpenStack1, CVE-2015-7713 [12], can be exploited

to bypass security group rules (which are fine-grained, distributed security mechanisms in several cloud

1OpenStack [6] is a popular open-source cloud infrastructure management platform.
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platforms including Amazon EC2, Microsoft Azure and OpenStack to ensure isolation between in-

stances). Figure 2 shows a potential deployment configuration which might be exploited using this
vulnerability. The pre-requisite steps of this scenario are to create VMA1 and VMB1 (step 1), create

security groups A1 and B1 with two rules (i.e., allow 1.10.0.7 and allow 1.10.1.117) (step 2), and start

those VMs (step 3). Next, when Tenant A tries to delete one of the security rules (e.g., allow 1.10.0.7)

(step 4), the rule is not removed from the security group of the active VMA1 due to the afore-mentioned

vulnerability. As a result, VMB1 is still able to reach VMA1 even though Tenant A intends to filter out

that traffic. According to the vulnerability description, the security group bypass violation occurs only

if this specific sequence of event instances (steps 1-4) happens in the mentioned order (namely, event

sequence). In the next section, we present an overview of our approach and show how we automatically

capture probabilistic dependencies among cloud events for proactive security auditing.

2.3. Approach Overview

In the following, we briefly describe our learning-based proactive auditing techniques used by LeaPS+.

• First, it parses raw cloud logs into a structured format after marking each field of log entries so that
log processing in the next step can be efficient.

• Next, it processes these parsed logs to interpret event types, aggregate log entries from different

services (e.g., compute and network), and prepare inputs (as event sequences) for learning techniques.

• Then, it learns probabilistic dependencies between different event types captured as a Bayesian net-

work from sequences of events processed from different cloud logs.

• Afterwards, based on the decreasing order of critical events’ conditional probabilities in these depen-

dency models, LeaPS+ incrementally prepares the ground for the runtime verification.

• Finally, once one of these critical events is about to occur, we simply verify the parameters associated

with its event instance with respect to the pre-computed conditions of that event, and enforce the

security policy according to the verification result.

Learning SystemLog 
Processor Learning 

Engine

Proactive Verification System

Pre-Computation
Manager

Proactive Verifier

LeaPS+

Dependency Model

Events

Decision/Feedback

Tenant

Cloud

Security Properties 
& Critical Events

Activity 
Logs

P1 P2

P3 P4 P5

Dependency Model
Parser

Filter

Interpreter

Sequence 
Identifier

Fig. 3. An overview of LeaPS+ log processing, learning and auditing mechanisms.

Figure 3 shows an overview of LeaPS+. It consists of three major modules: log processor, learning

system and proactive verification system. The log processor is related to processing the unstructured and

incomplete raw log files, which will be detailed in Section 3.1, and prepares the data to be used by the

learning system. Our log processor consists of four major parts. The parser is responsible to identify
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fields for each log entries and parse them into a structured format. The filter extracts the relevant log

entries and groups them based on tenant IDs. The interpreter is to mark event types for each log entry.

Finally, the sequence identifier is responsible to extract the sequence out of those log entries and pre-

pare inputs for various learning techniques. The learning system is dedicated for learning probabilistic

dependencies for the model. The proactive verification system consists of two major parts. The pre-

computation manager prepares the ground for the runtime verification. At runtime, a light-weight veri-

fication tool (e.g., proactive verifier [4]), which basically executes queries in the pre-computed results,

is leveraged for the verification purpose. Based on the verification result, LeaPS+ provides a decision on

the intercepted critical event instance.

3. Demonstration Cases and Log Processing

In this section, we detail our approach for processing unstructured raw cloud logs and present the

challenges and lessons learned from the analysis of the formats of real world cloud logs in OpenStack [6].

3.1. Demonstration Cases on Real-World Cloud Logs

As a first step, we conducted an investigation on how the executed operations at the cloud manage-

ment level are logged in OpenStack [6], one of the major cloud management systems in today’s cloud

environments. To this end, we used two different OpenStack deployments; a real-life community cloud

hosted at a real data center of a large telecommunication vendor and a cloud testbed managed within our

institution. All sensitive information in the logs is anonymized based on the data owner’s policies.

User ID

Same log entries can be mapped 
to different event types

Tenant ID

Request  ID

Process  ID
Create port event

Timestamp

ID of the 
deleted resource

Hashed IP addresss

Fig. 4. Identification of useful information in one of the logs collected from the real cloud.

Background on OpenStack Logging. OpenStack [6] logs different user and system actions performed

within the cloud. The most commonly used log format in OpenStack services starts with the timestamp,

process ID, log level, the program generating the log, an ID, followed by a message field, which might

be divisible into smaller informative segments such as request method and URL Path. Furthermore,

different OpenStack services write their log files to their corresponding subdirectory of the /var/log

directory in the node they are installed in. For example, the log location of Nova is /var/log/nova. Figure 4
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depicts an excerpt of the logs collected from a real cloud highlighting the useful information stored in

these logs.

Selecting Sample Logs. In the following, we describe how we select different sample logs for our

demonstration cases from both real and test-bed environments. We mainly include logs from two major

cloud services: network and compute for the following reasons. Firstly, these two services are always

present in any cloud deployment. Secondly, the formats of logs from other services (e.g., storage and

identity management) are quite similar to the format of logs of those two services. Therefore, our ap-

proach can be easily applicable to other services. Furthermore, the selected logs contain user requests

(e.g., API calls to the cloud management interface) and system-initiated events (e.g., inter-module pro-

cedure calls) with event information at different levels (e.g., DEBUG and INFO) similarly as the syslog

format. In our demonstration case, we mainly focus on user requests logged at the INFO level, because

our targeted log analyses are to observe user behavior, and this level of logging is less verbose and also

set by default in OpenStack.

Investigated Factors. In the following, we describe different factors in the logs that are relevant to

automate the learning of dependency models in LeaPS+.

i) Layouts. The first factor that we investigated is the general layout of logs. While comparing

the layouts of the logs, we found that there are different attributes in each log entry, and those

attributes vary based on the version and the logging service of OpenStack. This was exasper-

ated by the lack of detailed documentation describing the meaning of these attributes. Through

our study, we identified 11 fields are used in OpenStack logging: timestamp, process-ID,

log-type, method, request-ID, user-ID, tenant-ID, IP address, API URL,

HTTP response and request-length. Apart from common layout issues, we also ob-

served discrepancies in layouts of the logs collected from the two different cloud deployments

as both environments were managed by different versions of OpenStack1. The following example

depicts the latter observation.

Fig. 5. Excerpts of unique fields and entries found only in either studied version of OpenStack in (a) real cloud or (b) testbed
cloud.

Figure 5 shows three examples of fields that are only present in one of the studied versions2 of

OpenStack i) The logs from the real cloud does not have any user IDs; instead they store none;

1We avoid disclosing the exact version details for the sake of security
2Despite that the studied versions are directly consecutive, there are multiple differences in the logging system
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ii) the real cloud logs have entries starting with OPTIONS; and iii) the testbed log entries contain

user-ID and tenant ID.

ii) Log Entries. After identifying these differences in the layout, we scrutinize each log entry to en-

able the understanding of the meaning of these entries and their related attributes. We observe that

OpenStack logs a wide-range of system-initiated events related to the coordination between differ-

ent cloud services (e.g., compute, network and storage). Such events are usually logged with a spe-

cial tenant ID (tenant-service). The first row of Table 2 shows an example of such a log en-

try, where the ID of the tenant-service is dsfre23de8111214321def6e1e834re31.

Moreover, there are requests to list resources or their corresponding details, which are made with

GET in their method field. For instance, the second row of Table 2 shows a logged event for the

tenant ID (77c433dsf43123edcc12349d9c16fcec) to render the Flavors (the component

to show different resource consumptions by a VM). Both resource rendering and system-initiated

logged events has no effect on changing cloud configurations, and therefore, these events are not

useful for the auditing purpose.

Additionally, we notice that user-generated requests made under different tenants, are jointly

logged into the same log file. Furthermore, their log entries could be distinguished from each

other based on the associated tenant ID field identifying the tenant initiating the request. Figure 6

highlights the different tenant IDs present in some entries within the log files of both real and

testbed clouds.

Fig. 6. Parts of log entries belonging to different tenants (highlighting corresponding tenant IDs) in (a) real cloud or (b) testbed
cloud.

OpenStack Log Entry

"...POST /v2/dsfre23de8111214321def6e1e834re31/os-server-external-events HTTP/1.1..."

"...GET /v2/77c433dsf43123edcc12349d9c16fcec/flavors/detail HTTP/1.1..."

Table 2

An excerpt of the log entries corresponding to system-initiated events in the real cloud.

iii) Type of Events. In this part of the demonstration cases, we investigate the process of identifying

event types from user-generated requests. Usually, OpenStack user requests are transmitted to the
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server as REST API calls. Thus, our next step is to obtain the event type from each log entry.

However, relying only on the REST methods (e.g., POST, GET, PUT, etc.) does not help as it does

not uniquely map to a specific event type. Therefore, we study the API documentation of Open-

Stack to identify specific path information along with the REST methods (called URL path) to

pinpoint each corresponding event type. Figure 7 shows examples of log entries highlighting URL

paths corresponding to different event types. The URL paths in the figure actually refer to the

event types create VM, delete VM and create port, respectively. However, there are event types

for which we observe the same URL paths. For instance, Table 3 shows three examples of such

URL paths from some log entries in the real cloud. Even though the three rows in the table cor-

respond to three different events, their URL paths look identical except the VM ID field, which

indicates that these are VM related events, but does not help to uniquely identify the event type. As

a result, using only those URL paths to identify their corresponding event types is insufficient.

Fig. 7. The format (highlighted URL paths as REST APIs) of OpenStack logs collected from (a) real cloud and (b) testbed
cloud, to show different cloud events (e.g., delete VM, create VM).

OpenStack Log Entry Event Name

"POST /v2.1/a6627ffa0c4f4a3ebaefe05c0b93f4c6/servers/f6128951-0c48-4a11-8b8b-5e96da77b698/" Stop VM

"POST /v2.1/a6627ffa0c4f4a3ebaefe05c0b93f4c6/servers/1223d052-bc35-485a-9237-1830bca80fd7/" Start VM

"POST /v2.1/a6627ffa0c4f4a3ebaefe05c0b93f4c6/servers/4c886192-43ad-4f98-90dd-34e24c84fcd0/" Add security group

Table 3

Examples of similar URL paths corresponding to different cloud event types.

iv) Correlations of Events. Once event types of different log entries are identified, we need to inves-

tigate the relationships between these events and how they correlate. We find out that multiple log

entries in different log files of different services correspond to the same user request; which implies

that to complete certain user-requests, OpenStack internally calls multiple APIs involving different

services, thus generating multiple logged events. Table 4 shows an example where the actual user

request is to create a VM. However, we observe at least two entries (create VM and create

port) in nova-api.log and neutron-server.log log files, respectively, to complete

the related request. Additionally, we notice that there are log entries in nova-api.log and

neutron-server.log with the same timestamps (2017-11-01 18:17:16.345)

corresponding to two different events (Add security group and Create port). Thus,

distinguishing the right precedence relations between events cannot only rely on logged times-

tamps.
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OpenStack Log Entry Log File

2017-04-09 15:56:14.866 ... "POST /v2/e04c7abb844a422cbfd892f68b88a14f/servers HTTP/1.1"... nova-api.log

2017-04-09 15:56:11.848 ... "POST /v2.0/ports.json HTTP/1.1"... neutron-server.log

Table 4

Multiple entries in different logs corresponding to the same user request (i.e., create VM).

v) Session Identification. Finally, we need to split the log files into groups of events mainly based

on the contexts (e.g., same user events) or session. The main intention behind this step is to pre-

pare inputs for different learning techniques, many of which accept inputs as a sequence of events.

However, in OpenStack logs, we observe that there exists no session specific information. More-

over, most log entries do not include the requestor ID, which could have been useful to identify

the context.

3.2. Real-World Challenges to Log Processing

In this section, we summarize the main challenges in processing cloud logs, from the above-mentioned

study.

• Diverse Abstraction Levels: The cloud is composed of heterogeneous systems. As a result, the logs

collected from these various systems at least differ in format and in level of abstraction. Second,

the various cloud components (e.g., cloud management system, virtual switches and SDN controller)

residing at different abstraction layers (e.g., virtual layer 3, virtual layer 2 and SDN) store event

information in the logs at various abstraction levels. However, for most log analyses, homogeneous

processed log is necessary. To uniform the abstraction levels in the log contents, it is required to have

comprehensive understanding of these layers of clouds including the proper mapping between the

contents from them. Otherwise, there is a risk of obtaining useless logs either with heterogeneous

abstractions or with erroneous contents.

• Heterogeneous Log Formats: Our study shows that the cloud logs may have heterogeneous formats.

We observe that the log formats vary for different cloud platforms as well as for different versions

of the same platform; which includes varieties of different specifications (e.g., fields or attributes). In

most cases, the logged information (fields) is not explicitly labeled in the log file. As a result, it is

non-trivial to interpret the log entries. Additionally, the log entries are not systematically generated.

Therefore, processing such logs efficiently and storing them systematically are challenging.

• Lack of Documentation on Logging Specification: Processing the above-mentioned diverse logs

both in abstraction and formats are more challenging due to the lack of proper documentation on

logging specification. Therefore, each log file requires a tremendous amount of manual study to iden-

tify its formats. Furthermore, any change in the log specification in a newer version of the cloud will

invalidate at least a part of the previous study. Such manual process may render the log processing

time-consuming, error-prone and incomplete.

• Centrally Maintaining Logs for Multi-Tenant: There generally exist multiple tenants in a cloud.

The number of tenants may vary depending on the size of the cloud. However, these tenants are usu-

ally considered as individual entities. Therefore, most log analyses (including our auditing model)

are performed at the tenant side. To facilitate such log analyses, cloud logs must be grouped based

on tenants. However, major cloud platforms store the detailed logs corresponding to actions from

different tenants centrally and in possession of the cloud provider; even a single log file contains en-

tries corresponding to multiple tenants. As a result, grouping log entries based on their corresponding

tenants becomes an important and challenging task for a log processor.
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• Identifying In-Scope Log Entries: Due to the vast scope of the cloud, its logs store varieties of

information about different events (including user requests and system-initiated events). However,

usually each log analysis targets specific log information. For instance, in our auditing system, we

focus on the user-initiated requests. On the other hand, a system monitor may only concentrate on the

system-initiated events instead. Therefore, a log processor needs to extract the in-scope log entries

based on the goal of the log analysis.

• Synchronizing Logs from Different Cloud Services: Activities in different services (e.g., compute,

network and storage) are logged separately. However, most log analysis efforts require logs from dif-

ferent services. Therefore, aggregating logs from these services is essential, but not trivial, especially

because of the time synchronization issues as reported in [13] in a distributed system like clouds. In

the following, we summarize the major challenges in synchronizing log entries in a cloud environ-

ment.

∗ The clocks in different services may not be synchronized; which might result in wrong ordering

between events after aggregation from these services.

∗ The time of an event occurrence and the time of recording that event in the log may not be

the same. In addition, different logging systems may have different time lags in recording the

events. This situation may cause a wrong ordering between events once we aggregate logs from

different logging systems.

∗ Additionally, due to the above-mentioned lagging in logging system, the reported timestamp of

an event may not be precise even within a single system and hence, an analysis may not rely on

them.

In this work, we assume that the logging system of different services in the cloud is synchronized,

and consider the above-mentioned problem of appropriate ordering of logs as a potential future work.

• Retrieving the Semantics of Log Entries: Understanding the semantics of each log entry is manda-

tory to conduct log analysis. However, retrieving the semantics of an entry becomes non-trivial,

mainly due to the diverse API design of different cloud platforms and even of different versions

of the same platform. For instance, even though most clouds support REST APIs to request different

operations (e.g., create VM, create port and update port), the event types are not obvious from the

APIs and require a mapping between API calls and their corresponding event types; which can be

obtained by studying the API documentation of each cloud platform. Also, in some cases, different

event types are logged similarly, and hence, the above-mentioned mapping becomes insufficient to

identify these events uniquely. This kind of event types may or may not be identified by performing

special log processing. For instance, in OpenStack, we leverage a special log option called request

body to distinguish them. We detail the solutions to this challenge in Section 3.3.4.

• Facilitating Various Log Analysis Techniques: The main purpose of log processing is to prepare

the raw logs for varieties of log analysis techniques. However, these analysis techniques may expect

different formats of inputs, and therefore, a log processor must pre-process the log entries to extract

information in the required format. For instance, many learning techniques (e.g., Bayesian network,

sequence pattern mining and time series prediction) accept sequence of events as inputs. Therefore,

there is a need for a log processor to identify sequences of events from processed logs without chang-

ing the semantics of the data (e.g., preserving transitions and their relative order). To this end, we

propose a custom algorithm to identify sequences of events, in which all transitions and their rela-

tive orders of the actual log entries are preserved, and formats of different learning techniques are

maintained. More details on this solution are presented in Section 3.3.6.
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3.3. Our Solution: LeaPS+ Log Processing

In this section, we discuss our log processing approach, which addresses all of the above-mentioned

challenges, and provides more structured and meaningful processed logs for different analyses. A high-
level algorithm of our log processor is shown in Algorithm 1.

Algorithm 1: High-Level Algorithm of LeaPS+ Log Processing

Input: Predefined parsing and matching rules
Output: Sequences of events to different log analysis tools (e.g., LeaPS+ and sequence pattern mining)

1: procedure PROCESSLOGS(CloudOS)
2: for each component ∈ CloudOS do
3: Parse the raw logs;
4: Group parsed logs based on tenant IDs;
5: Prune irrelevant log entries (system-initiated and UI rendering);
6: Mark event types based on information in URL path and request body;

7: Combine logs from different services (e.g., compute and network)
8: for each log entry ∈ combinedLogs do
9: Identify Sequences from the combined logs

10: return Sequences

In the following, we briefly describe main steps of the log processing algorithm.

• Line 3: parses raw logs into a structured format. This step extracts identified fields in the log

entries and uses them together with a set of pre-defined rules to parse the raw log into a structured
log (e.g., CSV) file. This allows handling the heterogeneity of log formats.

• Line 4: groups parsed logs based on tenant IDs. The latter, easily identified in the obtained struc-
tured log file, allows grouping log entries based on the tenants under which the events are being

logged. This tackles the issue of ungrouped events.

• Line 5: prunes irrelevant log entries. System-initiated log entries can be grouped and discarded
easily based on the system tenant ID (i.e., tenant-service) present in each of the related log entries.

Those related to the UI rendering actions are identified by inspecting the method used in the URL
(e.g., GET) in the entries related to the logged API calls.

• Line 6: identifies the type of events for each log entry. We first identify event types from the
method and path information available from Line 3. However, there are several event types (a.k.a.

ambiguous events) which have the same method and path information. To tackle this, we further
check the request body, which contains detailed information for each log entry, mainly by tuning

logging options to include the missing information.

• Line 7: combines logs from different services (e.g., compute, network) based on different at-
tributes fields (e.g., tenant id, request id) and timestamps. This step draws the correlation among

events logged in different services so that it can handle the challenges mentioned in Section 3.2.

• Lines 8-10: constructs the event sequences based on the occurrences of events in the actual log

fulfilling the requirements mentioned in Section 3.2. Our log processor provides these event se-
quences as outputs, which can be later used by different analysis methods (e.g., LeaPS+ learning

system in Section 4 and sequence pattern mining algorithms in Section 7.2).

Figure 8 illustrates an example of the outputs of each of these steps. In the following, we first describe

the inputs to our log processing and then provide more details on each processing step.
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3.3.1. Inputs to LeaPS+ Log Processing

Apart from raw cloud logs, our log processing algorithm requires two inputs: parsing rules to handle
different log entries into a structured format and matching rules to identify the event types. Building
these inputs is a one-time effort obtained from our investigations in the aforementioned demonstration
cases.

Building Parsing Rules. To build the parsing rules, we first study different formats of logs and their
corresponding structure. Next, we obtain different fields (e.g., timestamp, process ID and tenant ID) in
the log entries and their relative positions in the logs. Finally, we build rules based on the fields and their

corresponding orders in logs to support the parsing in Section 3.3.2.

Building Matching Rules. To identify the matching rules, we study the API documentation of Open-
Stack along with the log formats. To build a relationship between those fields in the logs and their
corresponding event types. However, there exist several events for which all these fields are identical
and hence, the event types of those events cannot be identified using this procedure. To tackle this, we
leverage the request body, which contains detailed information for each log entry. Finally, we provide a
complete mapping to identify different event types in Section 3.3.4.

3.3.2. Parsing Logs

The main purposes of this step are to mark all useful fields of different cloud logs and store them
in a more structured way to enhance log analysis effort in terms of efficiency. We achieve these
purposes, by parsing logs based on the pre-defined rules so that each identified field is marked with

a meaningful name, and storing the logs in a more structured manner (e.g., in CSV) converting from
a text-based file. For example, as shown in Step 1 of Figure 8, we collect OpenStack logs from
compute and network services. The first log entry 2017-12-03 18:50:03.410 .. [req-

- - -] 10.0.0.101 "POST /v2.1/a6627ffa0c4f4a3ebaefe05c0b93f4c6/

servers/4c886192-43ad-4f98-90dd-34e24c84fcd0/ action HTTP/1.1" con-
tains the fields timestamp, process ID, request ID, IP address, method, path info,
tenant ID, respectively. The next step is to parse each entry of the logs based on these fields and
their relative positions, and to store them in a table (Parsed Logs in Figure 8).

3.3.3. Grouping and Pruning of Parsed Logs

Extracting the contextual information, and separating both system and user initiated activities from
the logs are the main goals of this step. First, we identify different contextual information such as ten-

ant ID and accessed resource IDs (e.g., port ID, VM ID and subnet ID). Then, we group log entries
based on the tenant ID so that we can obtain tenant specific activities together. Next, we extract the
accessed resource IDs by the activities of all log entries. Finally, we separate log entries of user initi-
ated activities from that of system-initiated activities. Note that, the tenant ID field of the log entries for
system-initiated events contains a special value (i.e., tenant-service) in OpenStack. However, there exist
exceptions where system-initiated events are stored under an existing tenant. Therefore, we maintain a
list of such exceptions and match them with the log entries while separating user-initiated events.

For instance, the Parsed Logs in Figure 8 contain entries from tenants T-1234, T-4567,

T-6789, T-Service. After Step 2, in the Grouped and Pruned Logs, we first store all entries from
the T-1234 tenant, and then similarly store entries for T-4567, T-6789, T-Service. After-
wards, we identify all log entries with the tenant ID T-Service and store them separately.

3.3.4. Marking Event Types

Marking the corresponding event types using the pre-defined matching rules (as shown) for each log
entry is the main objective of this step. Based on the set of fields used in marking, there are two categories
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2017-12-03 18:50:03.410 .. [req- - - -] 

10.0.0.101 "POST /v2.1/

a6627ffa0c4f4a3ebaefe05c0b93f4c6/servers/

4c886192-43ad-4f98-90dd-34e24c84fcd0/

action HTTP/1.1" ...

2017-11-01 19:14:27.014 30929 ...  [req- - - -] 

10.0.0.101 "POST /v2.1/

a6627ffa0c4f4a3ebaefe05c0b93f4c6/servers/

565f9b28-2665-470d-a440-556a456b9613/

action HTTP/1.1" ...

2017-11-01 19:14:27.154 4811...  "GET /v2.0/

security-

. . ..

Raw Logs from Cloud Parsed Logs Grouped and Pruned Logs

1 2

Marked Event Types

3a

Compute Logs

3b

Network Logs

4

5

Output of the Log Processor

Resolved Ambiguous Events

Timestamps

2017-11-01 17:50:03.410

2017-11-01 18:12:27.014

2017-11-01 18:16:28.111

2017-11-01 19:14:27.014

2017-11-01 19:14:27.154

... 

2017-02-07 10:23:28.109

Process ID

6027

30929

4811

8374

12304

…

39102

Tenant ID

T-1234

T-4567

T-Service

T-4567

T-Service

…

T-Service

Method

POST

POST

GET

GET

POST

…

GET

Path Info

/v2.1/x..

/v2.1/s..

/v2.1/3..

/v2.1/y..

/v2.1/e...

…

/v2.1/z..

Timestamps

2017-11-01 17:50:03.410

2017-11-01 18:12:27.014

2017-11-01 19:14:27.014

2017-11-01 18:16:28.111

2017-11-01 19:14:27.154

...

2017-02-07 10:23:28.109

Tenant ID

T-1234

T-4567

T-4567

T-Service

T-Service

…

T-Service

Method

POST

POST

GET

GET

POST

…

GET

Type of Events

Create VM

Create Security Group

TBD

TBD

…

TBD

Method

POST

POST

POST

POST

…

POST

Path Info

/v2.1/../servers/...

/v2.1/…/os-security-groups

/v2.1/…/servers/…/action

/v2.1/…/servers/…/action

…

/v2.1/…/servers/…/action

Method

POST

POST

POST

Path Info

/v2.1/…/servers/…/action

/v2.1/…/servers/…/action

/v2.1/…/servers/…/action

Request Body

{“os-stop”:null

{“os-start”:null}

{“addfloatingip”:null}

Type of Events

Stop VM

Start VM

Add floating IP

Type of Events

Create port

Create Security Group

Method

POST

POST

Path Info

/v2.1/../ports

/v2.1/…/os-security-groups

Type of Events

Create VM

Create security group

Start VM

…

Stop VM

Add floating IP

Create Port

Aggregated Logs

Sequeence #

1

2

3

Sequence of Events

[‘Create router’, ‘Update router’, ‘Create network’, ‘Create subnet’, ‘Add interface to router’, ‘Create securi ty group’, ‘stop VM’]

[‘stop VM’, ‘Create VM’, ‘Add security group rule’, ‘Delete VM’]

[‘Delete VM’, ‘Start VM’, ‘Create security group’]/v2.1/…/servers/…/action

Fig. 8.: An excerpt of outputs after each step of our log processor.
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of event types. For the first category, we use the URL path (which includes method, resources, etc.).

For example, from the Grouped Logs in Figure 8, we identify method, resources, resource

ID and action as the potential fields which together may provide unique information about each

event type. Based on this assumption, we build the matching rules as shown in Table 5. The first entry

in the table shows that the fields method: POST and resources: ports indicate the create

port event type. Whereas, to identify the add interface to router event type, we require the

action: add_router_interface field along with the method, resources and resource

ID fields. However, for the last entry in the table, these fields are not sufficient to obtain the event

type, as they have the same values for method, resources, resource ID and action fields

for multiple event types. These event types are considered as the second category and marked in the

following manner.

Method Resources Resoruce ID Action Event Type

POST ports NaN NaN Create port

PUT ports port ID NaN Update port

DELETE ports port ID NaN Delete port

PUT routers router ID add_router_interface Add interface to router

PUT routers router ID remove_router_interface Remove interface to router

POST floating-IPs NaN NaN Create floating IP

PUT floating-IPs VM ID NaN Associate floating IP

POST servers VM ID actions TBD

Table 5

An excerpt of the mapping to obtain the event types from URL-method and path_info. Note that, the term ’NaN’ is used by
OpenStack to indicate the unrepresentable value for the specific fields, and the term ‘TBD’ is to indicate that the corresponding
event type is not conclusive based on the identified fields.

For the second category of event types, we identify event type of a log entry, we match the request

ID in the log file and request body and look into the matching rules for that particular request body.

For instance, Table 6 shows examples of matching rules between request body and event types. The

first and second rows of the table shows that the request body values {"os-start": null} and

{"os-stop": null} ensure that the requested event types are start VM and stop VM, respec-

tively. The third and fourth rows provide event types (Add security group and Add floating

IP) along with their involved security group name (essential) and instance name (leapsVM), re-

spectively.

Request Body Event Type

req_body: {"os-start": null} Start VM

req_body: {"os-stop": null} Stop VM

req_body: {"addSecurityGroup": {"name": "essential"}} Add security group

req_body: {"addFloatingIp": {"name": "leapsVM"}} Add floating IP

Table 6

Examples of identifying event types from request bodies for the event types as the last row of Table 5.

In summary, we utilize the method, resource, resource id, action and request body fields to mark all

event types.
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3.3.5. Aggregating Logs

Merging logs from different services (e.g., compute, network, storage) is the main goal of this step.

To this end, we first combine multiple log files and sort them based on timestamp. Next, we identify

entries with the same timestamp (if any), and mark them specially to later identify that they occurred

at the same time in different services (if that helps any log analysis mechanism). Also, we identify any

duplicate entry in different logs (as mentioned in Section 3.1 that the same event might be logged in

multiple services), and only keep the corresponding log to the actual user request.

For example, Stage 5 in Table 7 shows two entries each from the compute service (Nova) and network

service (Neutron), respectively. The first row of the table is for the Create VM event, which is

actually initiated by a cloud user. On the other hand, the Create port event is a system-initiated

event as a result of the user request. In other words, OpenStack creates a port by itself while creating a

VM.

OpenStack Log Entry Event Type Initiated by

"POST /v2.1/a6627ffa0c4f4a3ebaefe05c0b93f4c6/servers HTTP/1.1" Create VM User

"POST /v2.0/ports.json HTTP/1.1" Create Port System

Table 7

Showing part of multiple log entries in compute and network services referring to one user request (Create VM).

3.3.6. Generating Outputs

Our log processor provides outputs as sequences of events. In this work, we mainly observe the follow-

ing three requirements for identifying events sequences. First, we preserve all transitions that are present

in the actual logs. Second, we maintain the relative order between events. Third, in each sequence, we

avoid cycles (by starting a new sequence when there is repetition) to facilitate capturing relationships

between events (e.g., dependencies in our model), flowing from top to bottom. To validate our approach,

we use the generated events sequences to build a Bayesian Network and to perform sequence pattern

mining in Sections 4 and 7.2, respectively.

To generate the final output (i.e., sequences of events), the log processor performs the following steps:

• Read event types sorted by timestamp in the Aggregated Logs, and group event types in a sequence

till any event type is observed for the second time. In other words, a sequence Seqi contains all

event types from Eventm to Eventn−1, where the Eventn (the successor of Eventn−1) has already

been observed in the sequence Seqi. Thus, no sequence contains any repeated event types and

hence, we avoid cycles in sequences.

• Start the next sequence from the last element of the previous sequence so that all transitions

within the sequences are preserved. In other words, the following sequence Seqi+1 starts with the

Eventn−1, which is the last event of the Seqi sequence.

In summary, our log processing approach addresses all challenges discussed in Section 3.2. As an

example, it provides sequences of events as shown in Table 8. Later, these sequences will be utilized by

our learning system to learn the dependency model presented in next section. The implementation details

including the algorithms for our log processing are presented in Section 6.3. Also, the performance

evaluation of our log processor is shown in Section 7.2.
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Aggregated Log Content

{Create router, Update router, Create network, Create VM, Add interface to

router, Create security group, Start VM, Create VM, Add security group rule,

Delete VM, Create VM, Create security group, Start VM}

Output

Seq1 = {Create router, Update router, Create network, Create VM, Add interface

to router, Create security group, Start VM}

Seq2 = {Start VM, Create VM, Add security group rule, Delete VM}

Seq3 = {Delete VM, Create VM, Create security group, Start VM}

Table 8

An excerpt of outputs from LeaPS+ log processor.

4. LeaPS+ Learning System

This section first describes the dependency model and then presents the steps to learn probabilistic

dependencies for this model.

4.1. The Dependency Model

We first demonstrate our dependency model through an example and then formally define the model.

The model will be the foundation of our proactive auditing solution (detailed in Section 5).

Figure 9 shows an example of a dependency model, where nodes represent different event types in

a cloud and edges represent transitions between event types. For example, nodes create VM and create

security group represent the corresponding event types, and the edge from create VM to create security

group indicates the likely order of occurrence of those event types. The label of this edge, 0.625, means

62.5% of the times an instance of the create VM event type will be immediately followed by an instance

of the create security group event type.

Our objective is to automatically construct such a model from logs in clouds. As an example, the

following shows an excerpt of the event types event-type and historical event sequences hist for four

days related to the running example of Section 2.2.

• event-type = {create VM (CV), create security group (CSG), start VM (SV), delete security group

rule (DSG)}; and

• hist = {day 1 : CV , CSG, SV ; day 2 : CSG, SV ; day 3 : CSG, DSG; day 4 : CV , DSG}, where the

order of event instances in a sequence indicates the actual order of occurrences.

The dependency model shown in Figure 9 may be extracted from such data (note above we only show

an excerpt of the data needed to construct the complete model, due to space limitations). For instance, in

hist, CV has three immediate successors (i.e., CSG, SV , DSG), and their probabilities can be calculated

as P(CSG|CV ) = 0.5, P(SV |CV ) = 0.5 and P(DSG|CV ) = 0.5.

As demonstrated in the above example, Bayesian network [14] suits our needs for capturing proba-

bilistic patterns of dependencies between events types. A Bayesian network is a probabilistic graphical

model that represents a set of random variables as nodes and their conditional dependencies in the form

of a directed acyclic graph. We choose Bayesian network to represent our dependency model for the

following reasons. Firstly, the event types in cloud and their precedence dependencies can naturally be

represented as nodes (random variables) and edges (conditional dependencies) of a Bayesian network.

Secondly, the need of our approach for learning the conditional dependencies can be easily implemented
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Fig. 9. An example dependency model represented as a Bayesian network.

as parameter learning in Bayesian network. For instance, in Figure 9, using the Bayes’ theorem we can

calculate the probability for an instance of add security group rule to occur after observing an instance

of create VM to be 0.52. More formally, the following defines our dependency model.

Given a list of event types Event-type and the log of historical events hist, the dependency model

is defined as a Bayesian network B = (G,θ ), where G is a DAG in which each node corresponds to

an event type in event-type, and each directed edge between two nodes indicates the first node would

immediately precede the other in some event sequences in hist whose probability is part of the list of

parameters θ .

We say a dependency exists between any two event types if their corresponding nodes are connected by

an edge in the dependency model, and we say they are not dependent, otherwise. We assume a subset of

the leaf nodes in the dependency model is given as critical events that might breach some given security

properties. The dependency models are built for each tenant. Furthermore, any disjoint sequences of

events (i.e., output from Section 3.3.6) result a separate dependency model, because a disjoint sequence

refers to a group of events which are independent from the events in the other model. Note that we

currently rely on a manual effort to identify the structure of the model from these sequences.

4.2. Learning Engine

The next step is to learn the probabilistic dependency model from the sequences of event instances in

the processed logs. To this end, we choose the parameter learning technique in Bayesian network [14–

16] (this choice has been justified in Section 4.1). We now first demonstrate the learning steps through

an example, and then provide further details.

Figure 10 shows the dependency model of Figure 9 with the outcomes of different learning steps as the

labels of edges. The first learning step is to define the priori, where the nodes represent the set of event



20 S. Majumdar et al. / Learning Probabilistic Dependencies among Events

types received as input, and the edges represent possible transitions from an event type, e.g., from create

VM to delete VM, start VM and create security group. Then, P(DV |CV ), P(CSG|CV ), P(SV |CV ) and
other conditional probabilities (between immediately adjacent nodes in the model) are the parameters;
all parameters are initialized with equal probabilities. For instance, we use 0.33 to label each of the three

outgoing edges from the create VM node. The second learning step is to use the historical data to train
the model. For instance, the second values in the labels of the edges of Figure 10 are learned from the
processed logs obtained from the log processor. The third values in the labels of Figure 10 represent an
incremental update of the learned model using the feedback from a sequence of runtime events.

Fig. 10. The outcomes of three learning steps for the dependency model.

This learning mechanism mainly takes two inputs: the structure of the model with its parameters, and
the historical data. The structure of the model, meaning the nodes and edges in a Bayesian network,
is first derived from the set of event types received as input. To this end, we provide a guideline on
identifying such a set of event types in Section 8. Initially, the system considers every possible edge be-

tween nodes (and eventually deletes the edges with probability 0), and conditional probabilities between
immediately adjacent nodes (measured as the conditional probability) are chosen as the parameters of
the model. We further sparse the structure into smaller groups based on different security properties
(the structure in Figure 10 is one of the examples). The processed logs containing sequences of event
instances serve as the input data to the learning engine for learning the parameters. Finally, the pa-

rameter learning in Bayesian network is performed as follows: i) defining a priori (with the structure
and initialized parameters of the model), ii) training the initial model based on the historical data, and
iii) continuously updating the learned model based on incremental feedbacks.

5. LeaPS+ Proactive Verification System

This section presents our learning-based proactive verification system.
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5.1. Likelihood Evaluator

The likelihood evaluator is mainly responsible for triggering the pre-computation. To this end, the eval-

uator first takes the learned dependency model as input, and derives offline all indirect dependency rela-

tionships for each node. Based on these dependency relationships, the evaluator identifies the event types

for which an immediate pre-computation is required. Additionally, at runtime the evaluator matches the

intercepted event instance with the event type, and decides whether to trigger a pre-computation or veri-

fication request.2 The data manipulated by the likelihood evaluator based on the dependency model will

be described using the following example.

Pre-compute_Event  Properties

   Create VM (CV)    No bypass   

     Start VM (SV)       No bypass

                    ……….

Property-PEDependency model

O2

O3 O6

O8 O5 O4

0.125

O1

0.625

0.25

1.0

0.250.5

0.125

0.125

0.333

 Property       Critical Event    Threshold         

No bypass   add SG rule (ASG)       0.5

No bypass   delete SG rule (DSG)   0.6

Property-CE-Threshold

               ASG=1  DSG=1  SV=1  CSG=1

CV=1     0.52      0.12        0.68      0.667

Conditional Probability Table

Fig. 11. An excerpt of the likelihood evaluator steps and their outputs.

Figure 11 shows an excerpt of the steps and their outputs in the likelihood evaluator module. In

this figure, the Property-CE-Threshold table maps the no bypass of security group property [17] with

its critical events (i.e., add security group rule and delete security group rule) and corresponding

thresholds (i.e., 0.5 and 0.6). Then, from the conditional probability in the model, the evaluator in-

fers conditional probabilities of all possible successors (both direct and indirect), and stores them in the

Conditional-Probability table. The conditional probability for ASG having CV (P(ASG/CV)) is 0.52 in

the Conditional-Probability table in Figure 11. Next, this value is compared with the thresholds of the

no bypass property in the Property-CE-thresholds table. As the reported probability is higher, the CV

event type is stored in the Property-PE table so that for the next CV event instance, the evaluator triggers

a pre-computation.

5.2. Pre-Computing Module

The purpose of the pre-computing module is to prepare the ground for the runtime verification. In this

paper, we mainly discuss watchlist-based pre-computation [4]; where watchlist is a list containing all

allowed parameters for different security properties. Table 9 shows an excerpt of mapping between se-

curity properties and their corresponding watchlist contents. The specification of contents in a watchlist

is defined by the cloud tenant, and is stored in the Property-WL table. We assume that at the time LeaPS+

is launched, we initialize several tables based on the cloud context and tenant inputs. For instance, inputs

2This is not to respond to the event as in incident response, but to prepare for the auditing, and the incident response following
an auditing result is out of the scope of this paper.
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including the list of security properties, their corresponding critical events, and the specification of con-

tents in watchlists are first stored in the Property-WL and Property-CE-Threshold tables. The watchlists

are also populated from the current cloud context. We maintain a watchlist for each security property.

Afterwards, each time the pre-computation is triggered by the likelihood evaluator, this module incre-

mentally updates the watchlist based on the changes applied to the cloud in the meantime. The main

functionality of the pre-computing module is described using the following example.

Property Watchlist per tenant

No bypass [17] Ports except VM ports

Port consistency [17, 18] Ports at tenant layer

No abuse of resources [17] Counters for VM/vNet

Common port ownership [17] Router-tenant pair

Port isolation [17, 18] vNets in a subnet

No co-residency [17, 18] Hosts with no conflicting

Common role ownership [17, 18] Roles in a tenant

No cross-tenant token User-tenant-tole tuple

Cardinality [19, 20] Counter for each role

Role activation [17, 18] User-role pair

Permitted action [17, 18] Token-operation pair

User-access validation [17, 18] Token-operation pair

Table 9

A mapping between the security properties and their corresponding watchlist contents

Updated Watchlist

Pre-Compute_Event  Properties

  Create VM (CV)     No bypass

   Start VM (SV)   No bypass   

Property-PE

  Property          Watchlist content          

No bypass     Instances allow SG update

Property-WL

Event sequences

       

1 Create VM (1733)

2 Add security group rule (…, 1733)

3 Start VM (1733)

4 Delete security group rule (…, 1733) 

No bypass of security group

1

3

Instance-ID  

1788   

2537

1733

 …

1733

Fig. 12. Showing steps of the updating watchlist for a sample event sequence.

Left side of Figure 12 shows two inputs (Property-WL and Property-PE tables) to the pre-computing

module. We now simulate a sequence of intercepted events (shown in the middle box of the figure) and

depict the evolution of a watchlist for the no bypass property (right side box of the figure). (1) We

intercept the create VM 1733 event instance, identify the event in the Property-PE table, and add VM

1733 to the watchlist without blocking it. (2) After intercepting the add security group rule (..., 1733)

event instance, we identify that this is a critical event. Therefore, we verify with the watchlist keeping

the operation blocked, find that VM 1733 is in the watchlist, and hence we recommend to allow this

operation. (3) We intercept start VM 1733 operation and identify the event in the Property-PE. VM

1733 is then removed from the watchlist, as the VM is active. (4) After intercepting the delete security

group rule (..., 1733) event instance, we identify that this is a critical event. Therefore, we verify with
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the watchlist keeping the event instance blocked, find that VM 1733 is not in the watchlist, and hence,

identify the current situation as a violation of the no bypass property.

5.3. Feedback Module

The main purposes of the feedback module are: i) to provide feedback to the learning engine, and

ii) to provide feedback to the tenant on thresholds for different properties. These purposes are achieved

by three steps: storing verification results in the repository, analyzing the results, and providing the

necessary feedback to corresponding modules.

Firstly, the feedback module stores the verification results in the repository. Additionally, this module

stores the verification result as hit or miss after each critical event, where the hit means the requested

parameter is present in the watchlist (meaning no violation), and the miss means the requested parameter
is not found in the watchlist (meaning a violation). Additionally, we store the sequence of events for a

particular time period (e.g., one day) in a similar format as the processed log described in the learning

module. In the next step, we analyze these results along with the models to prepare a feedback for differ-

ent modules. From the sequence of events, the analyzer identifies whether the pattern is already observed

or is a new trend, and accordingly updater prepares a feedback for the learning engine either to fine-tune

the parameter or to capture a new trend. From the verification results, the analyzer counts the number

of miss for different properties to provide a feedback to the user on their choice of thresholds (stored in

the Property-CE-Threshold table) for different properties. For more frequently violated properties, the

threshold might be set to a lower probability to trigger the pre-computation earlier.

6. Implementation

In this section, we detail the LeaPS+ implementation and its integration into OpenStack along with the

architecture of LeaPS+ (Figure 13) and a detailed algorithm (Algorithm 2).

6.1. Background

OpenStack [6] is an open-source cloud management platform that is being used almost in half of

private clouds and significant portions of the public clouds (see [2] for detailed statistics). Neutron is

its network component, Nova is its compute component, and Ceilometer is its telemetry for receiving

event histories from other components. Each component of OpenStack generates notifications, which

are triggered by predefined activities such as VM creation, security group addition, and are sent to

Ceilometer for monitoring purposes. Ceilometer extracts the information from the notifications, and

transforms them into events.

6.2. LeaPS+ Architecture

Figure 13 shows an architecture of LeaPS+. It has four main components: log processor, learning

system, verification system and dashboard & reporting engine.

• The first component, namely, the log processor, obtains sequences of events from the retrieved raw

cloud logs. To this end, the parser module first processes the raw logs to retrieve identified fields

in each log entry and systematically generates structured content stored as CSV files. Then, the filter

module groups the log entries tenant-wise and separates log entries corresponding to the user initiated
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events. The interpreter module consults the mapping of URL paths and request body to identify the

corresponding event type of a log entry. The merger module combines logs from different services

(e.g., Neutron, Nova) of OpenStack. The sequence builder generates the sequences of events from the

logs.

• The second component, namely, the learning system, is responsible for learning the probabilistic

dependencies using Bayesian network from the output of the log processing component. To this end,

the appropriate input formats of the learning engine are obtained from the log processor. Then, the

learning engine, which is a Bayesian network learning tool, learns the probabilistic dependencies

from the sequences of events.

• The third component, namely, the proactive verification system, incrementally prepares for the ver-

ification and verifies the preconditions of the security critical events that are about to occur. To this

end, the likelihood evaluator consists of three modules. The interceptor intercepts runtime event in-

stances, the event matcher obtains the event type of the intercepted event instances, and the critical

event identifier detects the critical events from the intercepted event type. Triggered by the likelihood

evaluator, the pre-computation manager is to initialize (by the initializer) and update (by updater)

watchlists. LeaPS+ leverages a proactive verification tool [4] to perform the runtime verification uti-

lizing the pre-computed results. The feedback module is to analyze the previous verification results

and to provide feedback to update the probabilities in the model.

• The fourth component, namely, the dashboard & reporting engine, is to provide an interface to LeaPS+

users to interact with the system and to observe different verification results.

Parser (e.g., Logstash)

Filter (e.g., tenant-wise)

Merger (Nova+Neutron)

Sequence Builder

Log Processor Learning System Proactive Verification System

Learned Model
Security 

Properties
Critical
Events

Input Files to 
Learning Engine

Sequences

DecisionNova

Neutron

Keystone

Ceilometer

Tenant Inputs

Watchlist Contents
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Security Properties

Cloud
Verification Tool
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Result 
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Critical 
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Fig. 13. An architecture of LeaPS+ auditing system.

In the following, we describe the implementation details of different components of LeaPS+.

6.3. Log Processor

The log processor first automatically collects logs from different OpenStack components, e.g., Nova,

Neutron, Ceilometer, etc. We use Logstash [21], a popular open source data processing tool, for trans-

forming un-structured and semi-structured logs into CSV format and available for further processing.
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To enable Logstash transformation, we use the parsing rules that we build for OpenStack logs in our

case study. Afterwards, we implement filters in Python to group and eliminate log entries. Then, we

build a mapping between URL paths with request body and event types, and consult this map to identify

event type of each log entry. Next, we merge Neutron and Nova logs based on the timestamps while

handling conflicting issues. For example, while a user requests to create a VM, the event (i.e., create

port) happening at Neutron is done by the tenant-service, and is removed while dividing events

into different tenant groups. Finally, to prepare the logs to be used in the LeaPS+ learning system and

for other log analysis purposes, we run a custom algorithm, which preserves all transitions in the actual

logs, implemented in Python to identify sequences in combined logs.

6.4. Learning System

For learning, we leverage SMILE & GeNIe [22], which is a popular tool for modeling and learning

with Bayesian network. SMILE & GeNIe uses the EM algorithm [23, 24] for parameter learning. The

learning module is responsible for preparing inputs to GeNIe, and conducting the learning process using

GeNIe. The sequences obtained from the log processor are further processed to convert them into the

input format (in .dat) of GeNIe. Additionally, the structure of the Bayesian network and its parameters

are provided to GeNIe. Furthermore, we choose the uniform option, where the assumption is that all

parameters in the network form the uniform distribution with confidence is equal to one. Finally, GeNIe

provides an estimation of the parameters, which are basically probabilities of different transitions in the

dependency model. Additionally, to execute sequence pattern mining algorithms with log processor out-

puts, we leverage SPMF [25], which is a popular open source data mining library. The Learn procedure

in Algorithm 2 implements the learning steps of LeaPS+.

6.5. Proactive Verification System

We intercept requests made to the Nova service as they are passed through the Nova pipeline, hav-

ing the LeaPS+ middleware inserted in the pipeline. The body of requests, contained in the wsgi.input

attribute of the intercepted requests, is scrutinized to identify the type of requested events. Next, the

pre-computing module stores the result of inspection in a MySQL database. The feedback module is im-

plemented in Python. Those modules work together to support the methodology described in Section 5,

as detailed in Algorithm 2.

Algorithm 2: Learning-Based Proactive Verification (CloudOS, Properties, structure, sequence[])

1: procedure LEARN(sequence[], structure, Properties)
2: for each property pi ∈ Properties do
3: learnedParameters = learnModel(structure, sequence[])
4: dependencyModel = buildModel(structure, learnedParameters, pi.critical-events)

return dependencyModels

5: procedure EVALUATE-LIKELIHOOD(CloudOS, Properties, dependencyModels)
6: for each event type ei ∈ CloudOS.event do
7: Conditional-Probability-Table = inferLikelihood(ei, dependencyModels)
8: if checkThreshold(Conditional-Probability-Table,Property-CE-T hreshold) then
9: insertProperty-PE(ei,Property-CE-T hreshold.property)

10: interceptedEvent = intercept-and-match(CloudOS, Event-Operation)
11: if interceptedEvent ∈ Properties.critical-events then
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12: decision = verifyWL(Properties.W L, interceptedEvent.params)
13: return decision
14: else if interceptedEvent ∈ Property-PE then
15: Pre-compute-update(Properties, interceptedEvent.params)

16: procedure PRE-COMPUTE-INITIALIZE(CloudOS, Properties)
17: for each property pi ∈ Properties do
18: W Li= initializeWatchlist(pi.W L, CloudOS)

19: procedure PRE-COMPUTE-UPDATE(Properties, parameters)
20: updateWatchlist(Properties.W L, parameters)

21: procedure FEEDBACK(Result, dependencyModels, Properties)
22: storeResults(Result, dependencyModels)
23: if analyzeSequence(Result.seq) = “new-trend” then
24: updateModel(Result.seq,‘new’)
25: else
26: updateModel(Result.seq,‘old’)

27: for each property pi ∈ Properties do
28: change-in-threshold[i] = analyzeDecision(Result.decision, pi)

6.6. Dashboard & Reporting Engine

LeaPS+ users interact with the system through a dashboard, which is implemented using a web inter-

face in PHP. Through this dashboard, users can enable proactive auditing so that LeaPS+ starts intercept-

ing cloud events and verify them. In the dashboard, tenant admins can initially select security properties

from different standards (e.g., ISO 27017, CCM V3.0.1, NIST 800-53, etc.). Through the monitoring

panel, LeaPS+ continuously updates the summary of the verification results. Furthermore, the details of

any violation with a list of evidence are also provided. Moreover, our reporting engine archives all the

verification reports for a pre-defined period.

7. Experimental Results

Our work focuses on making compliance auditing more practical in terms of reducing its response

time, and thus our experiments are designed to evaluate the improvement in term of online response

time and pre-computation effort using both synthetic and real data. In the following, we first describe

the experiment settings, and then present LeaPS+ experimental results with both synthetic and real data.

7.1. Experimental Settings

Both experiments on LeaPS+ log processor and proactive verification system involve datasets collected

from our testbed and the real cloud. In the following, we describe both environmental settings.

Testbed Cloud Settings. Our testbed cloud is based on OpenStack version Mitaka. There are one con-

troller node and up to 80 compute nodes, each having Intel i7 dual core CPU and 2GB memory running

Ubuntu 16.04 server. Based on a recent survey [2] on OpenStack, we simulate an environment with

maximum 1,000 tenants and 100,000 VMs. We conduct the experiment for 10 different datasets varying

the number of tenants from 100 to 1,000 while keeping the number of VMs fixed to 1,000 per tenant.

For Bayesian network learning, we use GeNIe academic version 2.1. For sequential pattern mining, we
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Fig. 14. Time (in Seconds) required for different log processing steps: (a) parsing raw logs, (b) grouping log entries based on
tenant IDs, and (c) interpreting event types, while varying the number of events provided in different datasets.

use SPMF v.2.20. Table 10 describes the datasets for experiments on log processing. We repeat each

experiment 100 times.

Dataset Nova Neutron

DS1 9,997 7,998

DS2 20,000 15,998

DS3 29,998 23,999

DS4 39,998 32,000

DS5 48,995 40,293

Table 10

Number of events in both Neutron and Nova logs for different datasets generated in our testbed cloud.

Real Cloud Settings. We further test LeaPS+ using data collected from a real community cloud hosted at

one of the largest telecommunications vendors. To this end, we analyze the management logs (sized more

than 1.6 GB text-based logs) and extract 128,264 relevant log entries for the period of more than 500

days. As Ceilometer is not configured in this cloud, we utilize Nova and Neutron logs which increases

the log processing efforts significantly.

7.2. Results on Log Processor

In the following, we present obtained experiment results for our log processor both in testbed and real

clouds.

Experiments with Testbed Cloud. The objective of the first set of the experiments is to measure the

efficiency of our log processor for two different cloud services, e.g., compute (Nova) and network (Neu-

tron). Figure 14(a) shows the time required (in seconds) to parse logs of different datasets. The results

show that the parsing is the most time consuming step in log processing, as this step parses text-based

logs and stores them into CSV files. The parsing of our largest dataset (DS5) requires around 3 minutes

and around 2 minutes for Nova and Neutron logs, respectively. Figure 14(b) shows the time required



28 S. Majumdar et al. / Learning Probabilistic Dependencies among Events

DS1 DS2 DS3 DS4 DS5

Datasets

0

0.005

0.01

0.015

T
im

e 
(s

)

Aggregatong
Generating Inputs for SPMF

DS1 DS2 DS3 DS4 DS5

Datasets

0

1

2

3

4

5

T
im

e 
(s

)

Eliminating Repeated Entries
Generating Log Processor Output

DS1 DS2 DS3 DS4 DS5

Datasets

0

5

10

15

20

T
im

e 
(m

s)

PrefixSpan
MaxSP
ClaSP

(b)(a) (c)

Fig. 15. Time required (a) (in seconds) for merging nova_api and neutron_server logs, and generating inputs for the pattern
mining library (SPMF) (b) (in seconds) for eliminating repeated entries and generating log processor output, and (c) (in mil-
liseconds) for running PrefixSpan, MaxSP and ClaSP algorithms in the SPMF library.

(in seconds) to group the log entries based on tenant IDs and to eliminate system-initiated entries (from

tenant-service). For the largest dataset of Nova, the required time remains within 80 milliseconds.

Grouping Neutron logs, which is comparatively smaller in size, requires maximum 55 milliseconds. Fig-

ure 14(c) presents the results (in seconds) to interpret event types of all entries from the grouped logs for

Nova and Neutron. The trend for both services shows almost a linear increase while varying the number

of log entries. Interpreting event types for the largest dataset takes 16.72 seconds and 11.14 seconds for

Nova and Neutron, respectively.

The second set of experiments is to measure the efficiency of aggregating logs from different ser-

vices and generating outputs by our log processor. Figure 15(a) shows the time in seconds to aggregate

logs from Nova and Neutron, and to generate inputs to the sequence pattern mining algorithms imple-

mented in the SPMF library [25]. The time to aggregate logs remains within 112 milliseconds for the

largest dataset. The time for the input generation remains within two milliseconds for the largest dataset

and shows a linear increase. Figure 15(b) depicts the time required for the steps, i.e., eliminating and

counting repeated entries, identifying sequences as the outputs of the log processor, performed on the

aggregated logs. In both steps, the larger datasets show less increase in the required time. The time re-

quired for identifying sequences remains within 2.6 seconds, and the eliminating repeated entries step

takes maximum 4.2 seconds for our largest dataset.

Applying Alternative Learning Techniques. To demonstrate the applicability of our log processor, we

further apply its outputs to run three popular sequence pattern mining (which is a data mining approach

with broad range of applications) algorithms. Specifically, we first run the PrefixSpan [26] algorithm,

which mines the complete set of patterns. One potential application could be to identify structures of de-

pendencies among cloud events using this algorithm to further enhance the proactive security solutions.

Second, we execute the MaxSP [27] algorithm, which mines maximal sequential patterns. Using this

algorithm, we can easily identify the most common patterns which potentially can facilitate anomaly-

based security solutions. Third, we run the ClaSP [28] algorithm, which identifies the largest pattern
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with a minimum frequency. This algorithm might be useful to identify unique patterns to profile a secu-

rity violation or a legitimate use. To this end, we generate inputs to SPMF, which is a sequence pattern

mining tool, and report the input generation time in Figure 15(b). We also report the efficiency results

to run these algorithms with the outputs of our log processor in Figure 15(c). We observe constant time

(one millisecond) while running ClaSP algorithm for different datasets. The MaxSP and PrefixSpan

algorithms take around 18 milliseconds and 6.5 milliseconds, respectively, for our largest dataset.

Experiments with Real Cloud. The main objective of this part of the experiments is to evaluate the

applicability of our log processor in a real cloud environment. Table 11 shows the summary of the results

that we obtain for the real data. Due to the much larger size (e.g., 1.6 GB text-based logs) of the real-life

logs, the parsing time is quite long (4 hours and 40 minutes). However, once LeaPS+ is active, it may

potentially log intercepted events in an incremented manner to avoid the delays at the parsing step. After

parsing, we eliminate the log entries related to listing resources and their details, as the corresponding

events to these entries are beyond our interest. The time for the remaining steps is quite similar to what

is measured for our testbed cloud logs with much smaller size of logs. Note that the grouping step is not

measured for Neutron, as the tenant ID is missing in the Neutron logs collected from the real cloud (as

discussed in Section 3.1). However, we group them arbitrarily to measure the time for next steps. From

the results of the real data, our observation is that our log processor is scalable once the parsing step is

performed; which possibly allows our approach to process huge logs in a reasonable time.

Services # of Log Entries Parsing Grouping Interpretation Merging Generating Sequences

Nova 1,450,011
4h 40m

0.0777s 99.271s
0.02206s 1.4483s

Neutron 3,992,644 - 51.820s

Table 11

Summary of the experimental results with real data for Nova and Neutron services. The steps parsing, merging and generating
sequences are performed together for both services. Note that the grouping step is not measured for Neutron, as the tenant ID
is missing in the Neutron logs collected from the real cloud.

7.3. Results on Proactive Verification System

In the following, we discuss the obtained experimental results for our proactive verification system

both in testbed and real clouds.

Experiments with Testbed Cloud. The objective of the first set of experiments with our proactive verifi-

cation system is to demonstrate the time efficiency. Figure 16(a) shows the time in milliseconds required

by LeaPS+ to verify the no bypass of security group [17] and no cross-tenant port [18] properties. Our

experiment shows the time for both properties remains almost the same for different datasets, because

most operations during this step are database queries; SQL queries for our different datasets almost take

the same time. Figure 16(b) shows the time (in seconds) required by GeNIe to learn the model while

we vary the number of events from 2,000 to 10,000. In Figure 17(a), we measure the time required for

different steps of the offline pre-computing for the no bypass property. The total time (including the time

of incrementally updating WL and updating PE) required for the largest dataset is about eight seconds

which justifies performing the pre-computation proactively. A one-time initialization of pre-computation

is performed in 50 seconds for the largest dataset. Figure 17(b) shows the time in seconds required to

update the model and to update the list of pre-compute events. In total, LeaPS+ requires less than 3.5

seconds for this step.
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In the second set of experiments, we demonstrate how much LeaPS+ may be affected by a wrong

prediction resulted from inaccurate learning. For this experiment, we simulate different prediction error

rates (PER) of a learning engine ranging from 0 to 0.4 on the likelihood evaluator procedure in Algorithm

3. Figure 18(a) shows in seconds the additional delay in the pre-computation caused by the different PER

of a learning engine for three different number of VMs. Note that, the pre-computation in LeaPS+ is an
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offline step. The delay caused by 40% PER for up to 100k VMs remains under two seconds, which is

still acceptable for most applications.
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Fig. 18. (a) The additional delay (in seconds) in LeaPS+ pre-computation time caused by different simulated prediction error
rates (PER) of a learning tool, (b) the comparison (in seconds) between LeaPS+ and a baseline approach.

In the final set of experiments, we compare LeaPS+ with a baseline approach (similar to [4]), where

all possible paths are considered with equal weight, and number of steps in the model is the deciding

factor for the pre-computation. Figure 18(b) shows the pre-computation time for both approaches in the

average case, and LeaPS+ performs about 50% faster than the baseline approach (the main reason is that,

in contrast to the baseline, LeaPS+ avoids the pre-computation for half of the critical events on average

by leveraging the probabilistic dependency model). For this experiment, we choose the threshold, N-th

(an input to the baseline), as two, and the number of security properties as four. Increasing both the value

of N-th and the number of properties increase the pre-computation overhead for the baseline. Note that

a longer pre-computation time eventually affects the response time of a proactive auditing.

Experiments with Real Cloud. Table 12 summarizes the obtained results. We first measure the time

efficiency of LeaPS+. Note that the results obtained are shorter due to the smaller size of the community

cloud compared to our much larger simulated environment. Furthermore, we measure the prediction

error rate (PER) of the learning tool using another dataset (for 5 days) of this cloud. For the 3.4% of PER,

LeaPS+ affects maximum 9.62ms additional delay in its pre-computation for the measured properties.

Properties Learning Pre-Compute Feedback Verification PER Delay*

No bypass 7.2s 424ms 327ms 5.2ms 0.034 9.62ms

No cross-tenant 5.97s 419ms 315ms 5ms 0.034 9.513ms

Table 12

Summary of the experimental results with real data. The reported delay is in the pre-computation of LeaPS+ due to the prediction
error (PER) of the learning engine.
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8. Discussions

Adapting to Other Cloud Platforms. LeaPS+ is designed to work with most popular cloud platforms

(e.g., OpenStack [6], Amazon EC2 [7], Google GCP [8] and Microsoft Azure [29]) with a one-time

effort for implementing a platform-specific interface. More specifically, LeaPS+ interacts with the cloud

platform (e.g., while collecting logs and intercepting runtime events) through two modules: log processor

and interceptor. These two modules require to interpret implementation specific event instances and

intercept runtime events. First, to interpret platform-specific event instances to generic event types, we

currently maintain a mapping of the APIs from different platforms. Table 13 enlists some examples

of such mappings. Second, the interception mechanism may require to be implemented for each cloud

platform. In OpenStack, we leverage WSGI middleware to intercept and enforce the proactive auditing

results so that compliance can be preserved. Through our preliminary study, we identify that almost all

major platforms provide an option to intercept cloud events. In Amazon using AWS Lambda functions,

developers can write their own code to intercept and monitor events. Google GCP introduces GCP

Metrics to configure charting or alerting different critical situations. Our understanding is that LeaPS+

can be integrated to GCP as one of the metrics similarly as the dos_intercept_count metric, which

intends to prevent DoS attacks. The Azure Event Grid is event managing service from Azure to monitor

and control event routing which is quite similar as our interception mechanism. Therefore, we believe

that LeaPS+ can be an extension of the Azure Event Grid to proactively audit cloud events. Table 14

summarizes the interception support in these cloud platforms. The rest modules of LeaPS+ deal with the

platform-independent data, and hence, the next steps in LeaPS+ are platform-agnostic.

LeaPS+ Event

Type

OpenStack [6] Amazon EC2-VPC [7] Google GCP [8] Microsoft Azure

[29]

create VM POST /servers aws opsworks

-region

create-instance

gcloud

compute

instances

create

az vm create

l

delete VM DELETE /servers aws opsworks

-region

delete-instance

-instance-id

gcloud

compute

instances

delete

az vm delete

update VM PUT /servers aws opsworks

-region

update-instance

-instance-id

gcloud

compute

instances

add-tags

az vm update

create security

group

POST

/v2.0/security-

groups

aws ec2

create-security-group

N/A az network

nsg create

delete security

group

DELETE

/v2.0/security-

groups/{security_

group_id}

aws ec2

delete-security-group

-group-name

{name}

N/A az network

nsg delete

Table 13

Mapping event APIs from different cloud platforms to LeaPS+ event types.

Effects of Tampered or Encrypted Log Entries. The log processor module of LeaPS+ currently as-

sumes that the integrity of the logs is preserved, and no contents of the logs are encrypted or obfuscated.

If there is any incident of missing entries (i.e., an event occurrence is not logged) or mistakenly added

entries (i.e., unsuccessful occurrence of an event), our log processor cannot detect such incidents. As
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Cloud Platform Interception Support

OpenStack WSGI Middleware [30]

Amazon EC2-VPC AWS Lambda Function [7]

Google GCP GCP Metrics [8]

Microsoft Azure Azure Event Grid [29]

Table 14

Interception supports to adopt LeaPS+ in major cloud platforms

a result, our learning phase will be affected by these unwanted incidents. The scale of the effect will

mainly depend on the number of such incidents. Also, our log processor cannot handle the encryption of
log contents, as it affects the integrity of the logs.

Effects of False Positives in the Learning Technique. LeaPS+ leverages learning techniques in a dif-

ferent manner so that the false positive/negative rates cannot affect the security of our system directly,

and rather affects the performance of our system. In LeaPS+, learning parameters of Bayesian network

is utilized to learn the probabilistic dependencies. Any error in learning results a dependency model with

incorrect probabilities. Later, while consulting this dependency model by the pre-computation module

(as described in Section 5.2), LeaPS+ may choose wrong highly-likely events and perform unnecessary

pre-computation for them. At the same time, LeaPS+ may delay the pre-computation for actual highly-

likely events. The final result of such mistakes in LeaPS+ due to the false positives/negatives in the
learning tool is the increase in the response time (as reported in Figure 18).

Possibility of a DoS Attack against LeaPS+. To exploit the fact that a wrong prediction may result in a

delay in the LeaPS+ pre-computation, an attacker may conduct a DoS attack to bias the learning model

step by generating fake events and hence to exhaust LeaPS+ pre-computation. However, Figure 18(a)

shows that an attacker requires to inject a significantly large amount (e.g., 40% error rate) of biased

event instances to cause a delay of two seconds. Moreover, biasing the model is non-trivial unless the

attacker has prior knowledge of patterns of legitimate event sequences. Our future work will further

investigate this possibility and its countermeasures.

Granularity of Learning. The above-mentioned learning can be performed at different levels (e.g.,
cloud level, tenant level and user level). The cloud level learning captures business nature only for

companies using a private cloud. The tenant level learning depicts a better profile of each business or

tenant. This level of learning is mainly suitable for companies following process management strictly

where users mainly follow the steps of processes. In contrast, the user level learning is suitable for

smaller organizations (where no process management is followed) with fewer users (e.g., admins) who

perform cloud events. Conversely, if a company follows process management, user level learning will

be less useful, as different users would exhibit very similar patterns.

Reliance on Tenant Inputs. LeaPS+ heavily depends on several inputs from tenant admins or security

experts. The two main inputs are the critical event lists and specification (e.g., content) of the watchlists.

In case of failure in the correct identification of a critical event, our solution may fail to detect a violation,
because our final verification steps (e.g., searching in the watchlist and enforcing policies) are triggered

by a critical event.

To help tenant admins or security experts in identifying critical events, we provide a guideline on

identifying lists of critical events in the following. i) based on the property definition, the involved cloud

components should be identified; ii) all event types in a cloud platform involving those components are

enlisted; and iii) the critical events (which is already provided by the tenant) from the list are further

shortlisted based on the attack scenario.
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Selecting Watchlist Content for a New Property. In Table 9, we present an excerpt of mapping between

security properties and their corresponding watchlist content. In the following, we provide a simple

guideline for the tenant admins or security experts. i) from the property definition, the asset to keep

safe is identified; ii) the objectives of a security property are to be highlighted; and iii) from the attack

scenario, the parameters for the watchlist for each critical event are selected.

Tackling Single-Step Violation. The proactive auditing mechanisms fundamentally leverage the de-

pendency in a sequence of events. In other words, proactive security auditing is mainly to detect those

violations which involve multiple steps. However, there might be violations of the considered security

properties with a single step. Such violations cannot be detected by the traditional steps of proactive

auditing with the same response time as reported in Figure 16(a), and may be detected by performing all

steps at a single point in several seconds (e.g., around six seconds for a decent-sized cloud with 60,000

VMs as shown in Figure 17(a)); which is still faster than any other existing works (which respond in

minutes). However, this response time might not be very practical. To reduce the response time or at

least not to cause any significant delay, we perform a preliminary study as follows. Our initial results

conducted in the testbed cloud show that OpenStack takes more than six seconds to perform almost

all user requests; which implies the possibility of not resulting in any additional delay by LeaPS+ even

for a single-step violation. Additionally, During our case studies, we observed that OpenStack performs

several internal tasks to complete a user request. We may leverage this sequence of system events corre-

sponding to a single user request to proactively perform LeaPS+ steps. We elaborate those two ways of

tackling single-step violations in our future work.

Correctness of Proactive Auditing Algorithms. This work mainly focuses on the automation of log

processing and learning the dependencies; which eventually helps the proactive security auditing. For

proactive verification, we rely on the verification methods proposed in PVSC [4], Madi et al. [31] and

Majumdar et al. [32]; basis of which is well-known formal verification method, constraint satisfaction

problem (CSP). The correctness of our auditing algorithm mainly depends on the correctness of this for-

mal verification method as given in [33, 34]. In addition, we plan to adapt unit-testing based approaches

to ensure the correct adoption of formal verification methods in our system in the future.

Supporting Security Properties. Our proposed proactive auditing system, LeaPS+, supports a wide-

range of security properties covering different layers, such as identity access management and virtual

infrastructure levels, of the cloud. These properties are mainly extracted from different cloud-specific

standards (e.g., [17, 18, 20]), literature and real-world vulnerabilities. A sample list of such security

properties is shown in Table 9, and the detailed description of these properties are provided in our

previous works (e.g., [31] and [32]). The expressiveness of the supported properties is similar as that of

the first order logic, since our auditing system is leveraging constraint satisfaction problem or similar

first order logic based formal verification methods (as mentioned earlier).

The Concept of Proactive Security Auditing for Clouds. The concept of proactive security auditing

for clouds is different than the traditional security auditing concept. Apart from ours, proactive security

auditing for clouds is also proposed in [3]. Additionally, the Cloud Security Alliance (CSA) recom-

mends continuous auditing as the highest level of auditing [35], from which our work is inspired. The

current proactive and runtime auditing mechanisms are more of a combination of traditional auditing

and incident management. For example, in LeaPS+, we learn from incidents and intercepted events to

process or detect in a similar manner as a traditional incident management system. At the same time,

LeaPS+ verifies and enforces compliance against different security properties, which are mostly taken
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from different security standards, and provide detailed evidence for any violation through LeaPS+ dash-

board. Therefore, the concept of proactive security auditing is a combination of incident management

and security auditing.

9. Related Work

Table 15 summarizes the comparison between existing works and LeaPS+. The first and second

columns enlist existing works and their verification methods. The next two columns compare the cov-

erage such as supported environment (cloud or non-cloud) and main objectives (auditing or anomaly

detection). The next six columns compare these works according to different features. The proactive

feature is checked when a solution supports proactive verification. When a solution offers an automated

dependency learning, we check the automatic feature. We mark this feature as ‘N/A’ for the works

which do not involve any dependencies. The dynamic feature refers to the dynamic and runtime pattern

capturing. The probabilistic feature is marked when a work involves non-deterministic or probabilistic

dependencies. For non-dependency-model-based works, we put ‘N/A’. The expressive feature is checked

for the works which utilize well-known expressive policy languages (e.g., first order logic) to express se-

curity properties. By the self-reliant feature, we mean the works which only depend on the user-provided

security properties for the accuracy of the verification. In the last four columns of the table, we compare

the works based on their supporting cloud platforms. The adaptable field is checked for those works

which support multiple cloud platforms or describe how their works can be ported to other platforms.

In summary, LeaPS+ mainly differs from the state-of-the-art works as follows. Firstly, LeaPS+ is the

first proactive auditing approach which captures the dependency automatically from the patterns of event

sequences. Secondly, LeaPS+ is the only learning-based work which aims at improving proactive audit-

ing and not (directly) at anomaly detection. Thirdly, the dynamic dependency model allows LeaPS+ to

evolve over time to adapt to new trends. Finally, the LeaPS+ methodology is cloud-platform agnostic.

However, there are still few limitations in LeaPS+. LeaPS+ is less expressive than other general purpose

formal verification approaches; which can be overcome by adapting those formal approaches in LeaPS+

as discussed in Section 8. Also, LeaPS+ relies on a complete list of critical events provided by tenant

admins or security experts to provide 100% accuracy.

Retroactive and Intercept-and-Check Auditing. Retroactive auditing approach (e.g., [31, 32, 36, 37,

42, 43] in the cloud is a traditional way to verify the compliance of different components of a cloud.

Unlike our proposal, those approaches can detect violations only after they occur, which may expose the

system to high risks. Existing intercept-and-check approaches (e.g., [3, 41]) perform major verification

tasks while holding the event instances blocked, and usually cause significant delay to a user request.

Unlike those works, LeaPS+ provides a proactive auditing approach.

Proactive Auditing. Proactive security analysis in the cloud is comparatively a new domain with fewer

works (e.g., [3, 4, 44]). Weatherman [3] verifies security policies on a future change plan in a virtualized

infrastructure using the graph-based model proposed in [45, 46]. PVSC [4] proactively verifies security

compliance by utilizing the static patterns in dependency models. Both in Weatherman and PVSC, mod-

els are captured manually by expert knowledge. In contrast, this work adopts a learning-based approach

to automatically derive the dependency model. Congress [41] is an OpenStack project offering similar

features as Weatherman. Foley et al. [47] propose an algebra for anomaly-free firewall policies for Open-

Stack. Many state-based formal models (e.g., [40, 48–50]) are proposed for program monitoring. Our

work further expands the proactive monitoring approach to cloud differing in scope and methodology.
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Proposals Methods
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Doelitzscher et al. [36] Custom Algorithm Cloud Auditing - N/A • N/A - • • - - •

Ullah et al. [37] Custom Algorithm Cloud Auditing - N/A - N/A - • • - - -

Majumdar et al. [32] CSP Solver Cloud Auditing - N/A - N/A • • • - - -

Madi et al. [31] CSP Solver Cloud Auditing - N/A - N/A • • • - - -

Jiang et al. [38] Regression Technique Non-cloud Anomaly Det. • • - • - • N/A N/A N/A N/A

Solanas et al. [39] Classifiers Cloud Anomaly Det. - • - • - • • - - -

Ligatti et al. [40] Model Checking Non-Cloud Auditing • N/A • - • • N/A N/A N/A N/A

PVSC [4] Custom Algorithm Cloud Auditing • - - - - - • - - -

Weatherman [3] Graph-theoretic Cloud Auditing • - • - - - - - • -

Congress [41] Datalog Cloud Auditing • - - - • - • - - -

LeaPS+ Custom + Bayesian Cloud Auditing • • • • - - • - - •

Table 15

Comparing existing solutions with LeaPS+. The symbols (•), (-) and N/A mean supported, not supported and not applicable,
respectively.

Learning-based Detections. There are many learning-based security solutions (e.g., [38, 39, 51–55]),

which offer anomaly detection. Unlike above-mentioned works, this paper proposes a totally different

learning-based technique to facilitate the proactive auditing.

Log Processing in Clouds. There exist several works (e.g., [56–60]) on log processing in clouds. Lin

et al. [56] leverage the big data analytics, Hadoop, and in-memory computing capacity of Spark, to

propose a cloud platform which can efficiently process and analyze logs in batches. Similarly, Yu et

al. [57] leverage cloud computing and distributed big data analytics to process large amounts of logs.

Unlike those works, we focus more on processing logs retrieved from OpenStack clouds. However,

leveraging such big data analytics and memory-efficient methods may enhance the performance of our

log processing. Sahara [58] offers a real-time log analysis using Spark. Right after each log entry is

created, it is fed into Sahara, parsed into separate fields, stored and visualized at an HTTP endpoint.

Although Sahara’s methodology on real-time analysis can inspire our future attempt on this matter,

Sahara currently does not offer next stages (e.g., identifying event types and their sequences) of our log

processing. Additionally, Amazon CloudWatch [59] and Google Cloud Dataflow [60] perform advanced

real-time analysis provided for troubleshooting of systems by other existing technologies. Unlike those

works, we focus more on identifying event types and their sequences in logs to facilitate various learning

techniques for analysis.

10. Conclusion

In this paper, we proposed an automatic learning-based proactive security auditing system, LeaPS+,

which completes a mandatory pre-requisite step (e.g., log processing) and addresses the limitations of

existing proactive solutions (by automating the dependency learning). To this end, we first conducted a

case study on real-world cloud logs and highlighted the challenges in processing such logs. Then, we

designed and implemented a log processing approach for OpenStack to feed its outputs to the learning

tools to capture dependencies. Afterwards, we leveraged learning techniques (e.g., Bayesian network) to

learn probabilistic dependencies for the dependency model. Finally, using such dependency models, we
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perform proactive security auditing. Our proposed solution is integrated to OpenStack, a popular cloud
management platform. The results of our extensive experiments with both real and synthetic data show

that LeaPS+ can be very scalable for a decent-size cloud (e.g., 6ms to audit a cloud of 100,000 VMs)

and a significant improvement (e.g., about 50% faster) over existing proactive approaches. In addition,

we demonstrated that other learning techniques such as sequence pattern mining algorithms can be
executed on the outputs of our log processor efficiently (e.g., 18ms to find frequencies of all possible

patterns using PrefixSpan). As future work, we will investigate the feasibility of applying runtime data

streaming to process logs incrementally and in a more scalable manner. We also intend to conduct case
studies on logging of other cloud platforms to offer a platform-agnostic log processing solution, which

might be very useful for LeaPS+-like security solutions.
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