
On Reducing Underutilization of Security
Standards by Deriving Actionable Rules: An

Application to IoT

Md Wasiuddin Pathan Shuvo1[0000−0002−4837−0655], Md Nazmul
Hoq1[0000−0002−1846−0537], Suryadipta Majumdar1[0000−0002−6501−4214], and

Paria Shirani2[0000−0001−5592−1518]

1 Concordia University, Montreal, Canada
wpshuvo57@gmail.com, mdnazmul.hoq@concordia.ca,

suryadipta.majumdar@concordia.ca
2 University of Ottawa, Ottawa, Canada

pshirani@uottawa.ca

Abstract. Even though there exist a number of security guidelines and
recommendations from various worldwide standardization authorities
(e.g., NIST, ISO, ENISA), it is evident from many of the recent attacks
that these standards are not strictly followed in the implementation
of real-world products. Furthermore, most security applications (e.g.,
monitoring and auditing) do not consider those standards as the ba-
sis of their security check. Therefore, regardless of continuous efforts
in publishing security standards, they are still under-utilized in prac-
tice. Such under-utilization might be caused by the fact that existing
security standards are intended more for high-level recommendations
than for being readily adopted to automated security applications on the
system-level data. Bridging this gap between high-level recommendations
and low-level system implementations becomes extremely difficult, as a
fully automated solution might suffer from high inaccuracy, whereas a
fully manual approach might require tedious efforts. Therefore, in this
paper, we aim for a more practical solution by proposing a partially auto-
mated approach, where it automates the tedious tasks (e.g., summarizing
long standard documents and extracting device specifications) and relies
on manual efforts from security experts to avoid mistakes in finalizing
security rules. We apply our solution to IoT by implementing it with
IoT-specific standards (NIST IR 8228) and smart home networks. We
further demonstrate the actionability of our derived rules in three major
applications: security auditing, Intrusion Detection systems (IDS), and
secure application development.

1 Introduction

Recent cyber-attacks are typically caused by various safety and security threats
that result from implementation flaws and insecure default configurations [2,
15,21,38,42,45,53]. For instance, the Mirai botnet infecting millions of devices

and conducting massive Distributed Denial of Service (DDoS) attacks on major
services, e.g., Amazon, GitHub, and Netflix, mainly resulted from not following the
best practices (e.g., latest versions of libraries and protocols, no weak passwords,
etc.) [5]. Due to similar issues in implementing the best practices, several
other recent attacks also led to severe security and safety consequences, such
as unauthorized access to smart homes [21], injecting fake voice commands to
smart home devices and hubs [49], and health hazards to infants in a smart
home [14]. As a result, the accountability and transparency of those devices and
their operations often become questionable [2]. This might be due to the fact
that most security solutions (e.g., [12–14]) are not using standards as a basis for
their security evaluation.

Several works (e.g., [4, 9–11, 14, 16, 25, 34, 54, 57]) are addressing different
security issues such as intrusion detection, device fingerprinting, application
monitoring, and access control. However, none of those works focus on developing
a generic approach to automatically define actionable security rules for verifying
different system and device security. Moreover, none of them choose existing
security standards as the basis of their security evaluation, which as a result,
endangers billions of devices and systems against many severe security threats
(e.g., Mirai [5]).

One of the main reasons behind this under-utilization might be due to the
high-level nature of most of those security standards (e.g., NIST IR 8228 [8],
ENISA [17], OWASP [40]) which renders additional overhead to adopt them
in different security applications that typically operate on system-level data.
Interpreting high-level recommendations and deriving actionable security rules
for low-level system implementations becomes infeasible using any extreme
solutions, i.e., a fully automated solution (which is less accurate) and a fully
manual approach (which is tedious and error-prone). This problem is further
illustrated using a motivating example in Section 2.4.

In this paper, we propose a partially automated approach (which appears to
be more practical) to derive actionable security rules from various security stan-
dards and show its application to the Internet of Things (IoT). More specifically,
first, we conduct a study on major security standards such as [8,13,17,18,23,40].
Second, we extract IoT device-specific information from product specifications,
API documentation, and configuration files to build a knowledge base. Third, we
leverage Natural Language Processing (NLP) techniques for summarizing and a
fine-tuned Named Entity Recognition (NER) model to extract key recommenda-
tions from those security controls. Fourth, we instantiate each recommendation
as a security rule, expressed in formal language, on various IoT systems by
collecting IoT log data, API, and configuration files. Due to the criticality of
security applications, our derived security rules are preferred to be examined by a
security expert to assure their correctness. Finally, our derived rules are applied
to various security applications, such as security auditing, Intrusion Detection
Systems (IDS), and secure application development.

The main contributions of this paper are as follows.

2

– As per our knowledge, this is the first effort to derive actionable security
rules from IoT security standards. This actionability of derived rules is
demonstrated by integrating our approach in a smart home ecosystem and
applying those rules to various security applications, i.e., security auditing,
intrusion detection systems (IDS), and secure application development.

– Our experimental results further show the effectiveness of our solution in
reducing the manual efforts (e.g., 50% effort reduction on average) and
adaptability of our derived rules for security auditing (where 5,000 smart
home devices can be audited within ten seconds).

The paper is organized as follows. Section 2 describes the preliminaries and
challenges. Section 3 details our methodology. Section 4 provides the application
to different security mechanisms, and Section 5 presents the experimental results.
Section 6 discusses different aspects of our approach. Section 7 reviews related
works and compares them with our approach. Section 8 concludes the paper by
providing future research directions.

2 Preliminaries

To keep our discussion more concrete, the rest of the paper will be on the
scope of IoT standards and smart home networks. In the following, we provide
backgrounds on common terminologies in security standards, review major IoT
standards, and illustrate our motivating example.

2.1 Background on Security Standards

Security Standards describe the best practices from several security documents,
organizations, and publications. A security standard is designed as a framework
for an organization requiring stringent security measures. Each security standard
contains several security controls, which describe the protection capabilities for
particular security objectives of an organization and reflect the protection needs
of organizational stakeholders. Security expectations are the expected outcomes
from a security control to ensure the secure operation of a system.

2.2 Review of Major IoT Security Standards

To identify unique challenges in deriving actionable security rules, we review
several major IoT security standards (as summarized in Table 1).

NIST IR 8228 [8]. It is an internal report published by the National Institute
of Standards and Technology (NIST), a federal agency of the US government.
The goal of this report is to assist users in better understanding and managing
the cybersecurity and privacy risks associated with individual IoT devices across
their life cycles. Particularly, this 44-page report outlines three high-level risk
mitigation goals for the security of IoT devices, and each risk mitigation goal
is further divided into several risk mitigation areas. Moreover, NIST IR 8228

3

Table 1. Summary of different IoT security standards

Security Standard Purpose Targeted to Scope # pages

NIST IR 8228 [8]
Security and privacy
risk management

Users
All kinds of
IoT Devices

44

NIST IR 8259 [18]
Building secure IoT
device

Manufacturers
All kinds of
IoT Devices

36

ENISA [17]
Recommendation for
baseline security

Users and manu-
facturers

All kinds of
IoT Devices

103

ETSI EN 303 645 [23]
Consumer IoT secu-
rity

Manufacturers
All kinds of
IoT Devices

34

OWASP [40]
Secure building and
usage of IoT

Manufacturer,
developers and
consumers

All kinds of
IoT Devices

12

UK Govt [13]
Improve the security
of consumer IoT

Manufacturers,
developers
and service
providers

Smart homes
and smart
wearables

24

has listed 25 expectations along with 49 challenges to achieve those expectations
and their mapping with the NIST SP 800-53r5 [37] for mitigating security and
privacy risks in IoT systems.

NIST IR 8259 [18]. It is also an internal report from NIST, which is intended
for IoT device manufacturers to assist them to improve the security of their
IoT products. This 36-page report describes six cybersecurity activities which
are broken down into 65 questions that a device manufacturer should consider
to secure their IoT devices. During the pre-market phase, the manufacturer’s
decisions and actions are primarily influenced by the first four of those six
activities, whereas the remaining two activities are primarily for the post-market
phase of an IoT device. Each activity’s questions are open-ended and allow for
speculation, which may cause the manufacturers to make a perplexing choice
that is unsuitable for use as actionable rules.

ENISA Baseline Security Recommendation for IoT [17]. The aim of this
report, published by the European Union Agency for Cybersecurity (ENISA), is
to create baseline cybersecurity guidelines for both consumers and IoT manu-
facturers, with a particular focus on critical infrastructures. This report covers
many domains of IoT (e.g., smart homes, smart cities, smart grids, etc.), and
it is intended for IoT software developers, manufacturers, information security
experts, security solution architects, etc. There are 83 security measures outlined,
divided into 11 security domains that cover every IoT ecosystem horizontally, in
this 103-page report. However, all of these security measures can not be used as
actionable security rules as they are insufficiently specific.

ETSI EN 303 645 - V2.1.1 [23]. The European Telecommunications Standards
Institute European Standard 303 645 (ETSI EN 303 645) establishes a security
baseline while covering all consumer IoT devices. Although the target audience of

4

this article is primarily manufacturers of various IoT devices, it also aims to assist
IoT users. This 34-page document has 67 provisions with examples divided into 13
high-level recommendations and refers to multiple external documents for further
technical details. With a focus on technical controls, the ETSI document has
specific guidelines, but technical details are insufficient to be used for actionable
security rules [7].

OWASP IoT Security Guidance [40]. The Open Worldwide Application
Security Project (OWASP) Internet of Things Project has released the OWASP
IoT top ten lists of IoT vulnerabilities in an effort to help manufacturers, devel-
opers, and consumers better understand IoT security risks and take appropriate
mitigation measures. The specialty of this project is its simplicity, where they
avoid separating guidelines for different stakeholders. That is why it is the shortest
security guideline, with only 12 pages, among the security standards that we
reviewed. This report lists the top 10 recommendations to secure IoT devices with-
out providing detailed or specific steps on how to follow those recommendations
in real-world product development.

Code of Practice by the UK Government [13]. This security guideline
is developed by the UK Department for Digital, Culture, Media, and Sport in
conjunction with the National Cyber Security Centre and follows engagement with
industry, consumer associations, and academia. Its goal is to provide guidelines to
all organizations involved in developing, manufacturing, and retailing consumer
IoT products on achieving a secure-by-design approach. It lists 13 high-level
security outcomes that are to be reached by following the recommendations in this
24-page report. In spite of those outcomes, this guideline gives stakeholders the
liberty to apply each guideline on their own terms instead of providing concrete
ways to do so [7].

2.3 Challenges in Deriving Actionable Rules from Standards

There are several challenges in deriving actionable rules from security standards.

– Firstly, most existing security standards are provided at a high-level without
any clear mapping between those recommendations with the actual design
and implementation of IoT products available in the market. Thus, it becomes
almost infeasible to use them to conduct security applications (that require
more low-level granular security rules).

– Secondly, those standards significantly differ from each other in terms of
scope, objective, and level of descriptions. Therefore, interpreting the security
recommendations from each standard for deriving rules becomes non-trivial.

– Thirdly, among those standards, there are conflicting recommendations. As a
result, a systematic analysis of those high-level recommendations is required
to interpret them and resolve their conflicts before deriving actionable rules.

– Fourthly, the knowledge and expertise required from a target audience of
these security standards is not explicitly specified, and the guidelines are not
crafted as actionable for the target audience [7].

5

High-Level IoT Security Standards

Auditor

Challenges while Performing Security Auditing Steps

∀cp ∈ {<<MISSING>>}, ∀s ∈ SensitiveData, ∀n ∈ {<<MISSING>>},

∀d_id ∈ <<MISSING>>
CryptographicProtection(d_id, s, cp) ∧

Transmission(s, n) → DataProtected(d_id, s)

Step 1: Formalizing Security Standards

Step 3: Identifying Related Security Controls

Security Controls

AC-18, SC-8, SC-23

Security Controls

CM-10, AC-4, AC-19, AC-20, CA-3,

IA-2, IA-3, IA-8, MA-4

Security Controls

 IA-3, IR-4, PL-2, PT-7, RA-3, SA-

9, SC-7, SI-12

Security Controls

 AC-20, CA-3, CP-2, IR-7, PL-10,

PS-7, SA-2, SR-3

"device_id" :"RTMTKxsQTCxzVcsySOHPxKoF4OyCifrs",

"software_version" :"1.01",
"name" :"Hallway (upstairs)",
"last_connection" :"2016-10-31T23:59:59.000Z",
"is_online" :true,
"file_id" :"UNCBGUnN24...",
"protocol": "TLS",
"authorization_protocol: "OAuth_2.0",
"encryption": "AES_128bit",
"is_manual_test_active" :true,

"network": 'WiFi"

Low-Level Configs of Nest Protect Smoke & CO Alarm

 NIST IR 8228 [15] Section 4.2 Expectation 21:
... prevent unauthorized access to all sensitive data

transmitted from it over networks.

[FAILED] No formalized rules available

{Required data, Data source/location}
{"device_id" :"RTMTKxsQTCxzVcsySOHPxKoF4OyCifrs", Config file}

{"authorization_protocol: "OAuth_2.0", Location: <<: MISSING>>}
{"network": 'WiFi", Technical specification}

{"protocol": "TLS", Location: <<MISSING>>}

Step 2: Locating IoT Audit Data

[FAILED] No mapping with low-level IoT data and
sources available

[FAILED] Difficulties in identifying related security
controls due to dozens of cross-references

Problem

High Level Security Standards

Ready Rules for Nest Protect Smoke
& CO Alarm's Auditing

Fully

Automatic

Fully

Manual

Our Idea

Fig. 1. Motivating example depicting major challenges in converting high-level security
standards to actionable security rules for security auditing of low-level IoT system
implementation

– Lastly, security standards contain too many different types of interrelated
guidance on a single subject [52], which are frequently cross-referenced to
dozens of other security documents. This can make the recommendations
challenging to follow and fully utilize at times.

We will address these challenges in Section 3.

2.4 Motivating Example

A motivating example is shown in Figure 1 where an IoT security standard
(NIST IR 8228) is directly used to perform security auditing (but failed, as
explained later) of a smart home device (Nest Protect Smoke and CO Alarm [36]).
Particularly, the left side of the figure shows typical inputs to an auditing
tool: a “high-level” recommendation from NIST IR 8228 (top) and “low-level”
configurations from a Nest Protect Smoke and CO Alarm (middle). The right side
depicts the challenges encountered while performing different security auditing
steps (Steps 1-3). On the bottom left, we briefly illustrate the problem and our
idea to solve it.

Specifically, this example depicts a scenario where an auditor aims at auditing
a Nest Protect Smoke and CO Alarm device against the Expectation 21 in
Section 4.2 of NIST IR 8228 [8]. The expectation states: “a device can prevent
unauthorized access to all sensitive data transmitted from it over networks”.
On the other hand, configurations from a Nest Protect Smoke and CO Alarm
include information about device id, software version, protocol, network,

6

etc. While performing auditing using these inputs, an auditor encounters several
challenges, as follows. (i) During Step 1 (for formalizing security standards),
the allowed list of cryptographic protection (cp) methods, networks (n), and
device IDs (d id) are missing from the Expectation 21 description in NIST IR
8228. During Step 2 (for locating audit data), the auditor cannot easily find
the source of authorization protocol and protocol in a Nest Protect Smoke
and CO Alarm, even if she can locate others (e.g., device id, network) from
its configuration files or technical specifications. During Step 3 (for identifying
related security controls), the auditor might struggle to link between various
controls, such as the AC-18 control refers to nine other controls: CA-9, CM-7,
IA-2, IA-3, etc. Therefore, very likely, most of those auditing steps might fail, if
not all.

The main problem is to address those challenges and allow interpreting high-
level security standards and defining ready rules for auditing Nest Protect Smoke
and CO Alarm. To that end, both fully automated and fully manual solutions
might also fail the auditing process because full automation might change the
semantics of the original recommendations, and relying only on manual effort
would be time-consuming and error-prone. Therefore, our idea is to balance those
two extreme approaches and find a practical solution to derive actionable rules
for IoT devices by proposing a semi-automated approach. In the following, we
elaborate on our proposed approach.

3 Methodology

This section first provides an overview and then details our methodology.

3.1 Overview

The overview of the proposed methodology is shown in Figure 2.
The inputs to our system are originated from security standards (e.g., their

description) and logs and configurations from a target system (e.g., IoT, clouds,
networks). Our approach is divided into two primary phases: (i) building a
knowledge base, and (ii) defining actionable security rules. More specifically, during
the first phase (elaborated in Section 3.2), we map various security standard
recommendations with their controls in NIST SP 800-53r5 [37] and annotate those
mappings (Step 1.1). Then, we collect various IoT device-specific information
to construct structural knowledge base (e.g., their sensors and actuators) and
functional knowledge base (e.g., their network interfaces) (Step 1.2). During the
second phase (elaborated in Section 3.3), we summarize the security controls,
extract values from different summarized controls, and derive security rules for
that control, which will be inspected by an expert (Step 2.1). Afterwards, we
instantiate the derived security rules with device-specific information stored in
the structural and functional knowledge bases and interpret them in a formal
language (Step 2.2). In the figure, for both phases, we indicate if a step is fully
automated (A), semi-automated (SA), or manual (M); their rationale is detailed

7

in Section 3.5. Finally, we demonstrate the applicability of our approach in
security applications such as security auditing (in Section 4). The details of each
phase are described as follows.

NIST SP 800-53r5

Instantiating Security
Rules (M)

Step 1.1 Building Standard Related Knowledge

Step 1.2 Building Device Specific Knowledge Step 2.2 Rules Instantiation

Technical

Specification
API

Documentation

Configuration

Application to IoT Security Auditing

Annotating Data (M)

Step 2.1 Deriving Security Rules

Summarizing Security
Controls (SA)

Extracting Values
(SA)

Expert Inspection

Deriving Security
Rules (SA)

Elaborated Security
Standard

Extracting Security
Controls (A)

Labelled Corpus

Interpreting in Formal
Language (M)

Target System

Security Standards

 Building Structural
Knowledge (SA)

Device N

M
U

D
G

EE

Device 1
Device 2
Device 3

Building Functional
Knowledge (A)

Identifying Policy
Specific Data Sources

Generating Audit
Report

Converting into Formal
Language

Collecting &
Processing Data

Conducting Formal
Verification

2. Defining Actionable Security Rule1. Knowledge Base Creation

Fig. 2. An overview of our methodology (where (A): fully automated step, (SA): semi-
automated step, and (M): manual step)

3.2 Knowledge Base Creation

The knowledge base is created for both security standards and devices as follows.

Building Standard Related Knowledge. The goal of creating a knowledge
base of security standards is to centralize all IoT security standards and their
corresponding security controls (which provide preventive measures to mitigate a
particular security issue in a system) from NIST SP 800-53r5 [37] (which defines
security controls for IT in general) to be used for actionable rule derivation.
There are application-specific recommendations, such as those found in NIST
IR 8228, which provide security advice for IoT devices, and general security
implementation guidelines in NIST 800-53r5, which are application agnostic.
In our knowledge base, we simply merge them to provide more insight on how
to implement an application-specific security recommendation using generic
security implementation guidelines. Note that security control contains multiple
sub-controls, each with a name and discussion, which either add functionality
or specificity to a base control or increase the strength of a base control by
further clarifying the technicalities. Figure 3 demonstrates the development
and arrangement of our elaborated security standard from the referred security
controls. To this end, we first extract security expectations and their mappings to
security controls specified in each expectation, and then we extract corresponding
security controls from NIST SP 800-53r5 to complete the mappings and build
the elaborated security standards organized by variables, expectations, controls,
sub-controls, and discussions. Afterwards, to further understand a control, we

8

extract values and attributes from each security control. To that end, we first
manually annotate the security control values based on the answers to the
following three questions: (i) Do the values accomplish a particular task? (ii) Are
the procedures to complete this task known? (iii) Is it possible to implement a
control technically? After value annotation, we consider security sub-controls as
our attributes and accordingly annotate them. Second, we train a Named Entity
Recognition (NER) [12] model with annotated security controls and extract both
values and attributes by utilizing the learned model.

NIST IR 8228

AC-18, SC-8, SC-23Expectation 21: The device can prevent
unauthorized access to all sensitive data

transmitted from it over networks.

Expectations Controls

NIST SP 800-53r5

Encryption protects information
from unauthorized disclosure and
modification during transmission...

SC-8
Transmission

Confidentiality and
Integrity

Controls Discussion

Data Protection

Variables

System

Implemented By

Elaborated Security Standards

AC-18, SC-8, SC-23Expectation 21: The device can prevent
unauthorized access to all sensitive data

transmitted from it over networks.

Expectations Controls

Data Protection

Variables

AC-18 (1), AC-18
(2), SC-8(1), SC-

8(2), SC-23(3)

Sub-Controls

SC-8(1), SC-
8(3), SC-8(4)

Sub-Controls

Encryption protects information from unauthorized disclosure and
modification during transmission. Cryptographic mechanisms that

protect the confidentiality and integrity of information during
transmission include TLS and IPSec. Cryptographic.....

Discussion

System

Implemented By

Fig. 3. Development and Arrangement of Elaborated Security Standards

Example 1. The Expectation 21 from NIST IR 8228 refers to the security
controls SC-8, SC-23, and AC-18 in NIST SP 800-53r5. We first extract these
three security controls and their sub-controls with their discussions from NIST SP
800-53r5. Then, we create our elaborated security standards, which are arranged
by variables, controls, sub-controls, and their discussions. In Figure 4, the first
box contains the variable highlighted in red along with the Expectation 21. In
the second box, we annotate security sub-control (e.g., cryptographic protection)
as an attribute. Additionally, the third box contains the summarized security
control, where the values in red are the results of our annotation after meeting
all the above-mentioned criteria.

Building Device Specific Knowledge. To instantiate derived security rules
that are specific to IoT devices, it is essential to have the knowledge of both
their structural (e.g., their sensors and actuators) and functional (e.g., their
network behaviour) characteristics. The structural knowledge of an IoT device
includes different capabilities of its sensors and actuators, which are derived
from the manufacture design specifications of different IoT devices. For this
purpose, we leverage the approach proposed by Dolan et al. [15] as follows. First,
we gather all the technical information that is provided on a device’s website.
Second, we extract that information from the device’s API documentation that
describes API calls to change system states. Third, we gather essential information
from IoT device configuration files, which are publicly accessible and include all
essential device characteristics [15]. The functional knowledge of an IoT device
includes its network behaviors that can be captured through manufacturer usage
descriptor (MUD) (i.e., a framework by IETF for formally describing the network

9

Security Control SC-8(1) Cryptographic Protection: Encryption protects

information from unauthorized disclosure and modification during
transmission. Cryptographic mechanisms that protect the confidentiality and

integrity of information during transmission include TLS and
IPSec. Cryptographic mechanisms used to protect information integrity include

cryptographic hash functions that have applications in digital signatures,
checksums, and message authentication codes.

2. Extracting Security Control from NIST SP 800-53r5

Cryptographic mechanisms that protect the confidentiality and integrity of

information during transmission include TLS and IPSec.

3. Summarizing Security Control using BERT-Extractive-Summarizer

TLS, IPSec

4. Extracting Security Values by Fine Tuning NER

Data Protection = Cryptographic Protection: {TLS, IPSec}

5. Deriving Security Rule

Data Protection- Expectation 21: The device can prevent unauthorized access to

all sensitive data transmitted from it over networks.

1. Extracting Security Expectations from NIST IR 8228

Fig. 4. An illustration of automatically derived security rules. The Expectation 21

from NIST IR 8228 is shown in the first box, then the security sub-control is displayed
in the second box, and the summarised form of it is presented in red. The red-underlined
terms in the third box’s summary of the security sub-control represent values that were
retrieved using the NER model displayed in the fourth box. The final box displays our
automatically derived security rule.

behaviour [27]) profiles using MUDGEE [20]. MUD provides the list of all the
protocols and ports that are used by IoT devices to communicate over the
network.

Example 2. Given the Nest Protect Smoke and CO Alarm Sensor
obtained from Nest Protect technical specs [36] and API documenta-
tion [35], obtained structural knowledge is: “Software version: 4.0; De-
vice Unique Identifier: peyiJNo0IldT2YlIVtYaGQ; is online: true; Read
Permission: Enabled/Disabled; last connection: 2016-10-31T23:59:59.000Z;
is online: true; battery health: ok; co alarm state: ok; smoke alarm state: ok;
is manual test active: true ”. The corresponding functional knowledge obtained
by using MUDGEE is: “IP Protocols: TCP, UDP, HOPOPT, IPv6-ICMP; and
Ports: 443, 11095, 53, 67 ”.

3.3 Defining Actionable Security Rules

We describe how we define actionable rules in the following.

Summarizing Security Controls. As there are many security controls and
sub-controls with detailed descriptions of their security recommendations, we
summarize them from the standard knowledge base (built in Section 3.2) utilizing
BERT-Extractive-Summarizer [33], which is a BERT-based summarizing package.
BERT is the state-of-the-art word embedding technique that is bi-directionally

10

trained and can have a deeper sense of language context. BERT’s extractive
summarizing approach evaluates each sentence’s comprehension and significance
to the text and then delivers the most crucial segments. Thus, in this work, we opt
for the extractive summarization technique instead of abstractive summarization,
which changes the semantics of the recommendations due to newly generated
words and phrases. BERT is used by a python-based RESTful service for text
embedding, and for summary selection, KMeans clustering is used to identify
sentences closest to the centroid [33]. Text summarization is still an ongoing
topic in NLP research to achieve a competitive accuracy to that of a human [55].
Due to this factor, our generated summaries need to be reviewed by experts to
ensure their correctness.

Extracting Values. Before deriving security rules, we extract attributes and
values from the security controls. We use Named Entity Recognition (NER), an
NLP approach, to extract values from the security sub-control’s discussion. As we
only need to extract two types of entities from the security controls, we annotate
our values and attributes as described in Section 3.2 in order to use them as
training data to fine-tune a Hugging Face model (e.g., BERT-base-NER [12]).
After fine-tuning the model, we utilize it to extract values from the summarized
security controls and sub-control’s discussion, and for attributes, we extract the
security sub-controls. In Example 3, we explain the value and attribute extraction
process.

Deriving Security Rules. After extracting security values and attributes
from security controls, we generate our security rules. Our security rules are
initially generated automatically by utilizing the variables along with attributes
and values, and then we express them in formal language. More specifically,
we pull the variable names which are stored in the elaborated security stan-
dards, then we acquire the attributes and values from the previous step and
put all these data into the format of our rule. The format of our derived secu-
rity rule is as follows: variable1 = {attribute1 : {values1, values2,, valuesn},
attribute2 : {values1, values2,, valuesn}, ...}. Below using an example, we
show how we define our security rules with the obtained values and attributes.

Example 3. The summarization process for the Expectation 21 and security
control SC-8(1) is shown in Figure 4. The first two boxes contain Expectation

21 and its related security sub-control, respectively, and the red highlighted
texts indicate the summarized security sub-control. We extract the low-level
security values , which are TLS and IPSec and attribute (e.g., Cryptographic
protection) highlighted in red. The last box shows our low-level security rule:
“Data Protection = {Cryptographic protection: {TLS, IPSec}}”.

3.4 Instantiating to Actionable Rules

This section instantiates our derived security rules for IoT device-specific in-
formation and formalizes them into first-order logic for security applications.
Specifically, instantiation is the process of making derived security rules specific

11

to IoT devices so that a rule can be efficiently verified from the available IoT
device data (e.g., logs, console output, etc.). However, it is insufficient to rely only
on the automatically derived security rules because the security controls’ values
and attributes do not encompass all possible values in the context of IoT devices.
To maintain accuracy, our system requires expert intervention after automatically
extracting values from security controls. A specialist will eliminate undesirable
or irrelevant values and determine whether any missing values should be added
to our knowledge base, as illustrated at the beginning of Example 4. We then
instantiate security rules to customize them for a particular IoT device, since
security rules produced from IoT security standards are generally applicable to
all sorts of IoT devices. We leverage our knowledge base from Section 3.2 to
instantiate our derived security rules. After instantiating the security rules, we
translate them into first-order logic because formal verification methods are more
useful and effective than manual inspection for automated reasoning [30, 31].
Table 2 shows an excerpt of our derived actionable rules.

Example 4. Device’s sensitive data during transmission over Network: {WiFi,
BLE, LTE, NFC, PLC, RFID, Z-Wave, Zigbee} should be cryptographically
protected using Cryptographic mechanism: {TLS, IPSec, AMQP, CoAP, DDS,

MQTT}. Suppose an example of an instantiated security rule for Nest Protect Smoke
and CO Alarm Sensor is: “Nest Protect Smoke and CO Alarm Sensor device’s
(device id: peyiJNo0IldT2YlIVtYaGQ) smoke alarm state during transmission
over Network: WiFi should be cryptographically protected using Cryptographic
mechanism: TLS; should use protocol: TCP and port numbers: {443, 11095,

53, 67}”. Leveraging our proposed method, we formalize this rule as follows.

Rule 1:
∀cp ∈ {TLS, IPSec,AMQP,CoAP,DDS,MQTT},

∀s ∈ SensitiveData, ∀n ∈ {WiFi,BLE,LTE,NFC,

PLC,RFID,Z −Wave, Zigbee},∀d id ∈ DeviceID

CryptographicProtection(d id, s, cp)∧
transmission(s, n) =⇒ DataProtected(d id, s)

3.5 Rationale behind Our Semi-Automated Approach

Table 3 shows the objective of different steps of our approach, as well as our
explanation as to why each of the steps is either manual, semi-automated, or fully
automated. Specifically, the first column lists all the steps of our approach, second
column indicates how those steps are performed (i.e., automatic, semi-automatic,
or manual), third column describes each step’s objective, and fourth column
states the rationale behind using the stated approach of those steps.

4 Applications

This section shows how our actionable rules can be applied to different security
mechanisms (e.g., security auditing, IDS, and secure application development).

12

Table 2. An excerpt of derived and instantiated security rules using our approach

Sub-Controls Summaries Derived Rules Instantiated Rules

SC-8(1)

Cryptographic mecha-
nisms that protect the
confidentiality of infor-
mation during trans-
mission include TLS and
IPSec.

Data Protection1 =
Cryptographic protec-
tion: {TLS, IPSec}

Device’s sensitive data dur-
ing transmission over Network:
{WiFi, BLE, LTE, NFC, PLC, RFID,
Z-Wave, Zigbee} should be cryp-
tographically protected using
Cryptographic mechanism: {TLS,
IPSec, AMQP, CoAP, DDS, MQTT}

SC-8(3)

Message externals in-
clude message headers
and routing informa-
tion should be crypto-
graphically protected.

Data Protection2 =
Cryptographic pro-
tection for message
externals: {headers
information, routing
information}

Device’s network packet’s Message
headers and routing informa-
tion: {Version, Traffic Class,
Flow Label, Payload Length,
Next Header, Hop Limit, Source
Address, Destination address}
should be protected using Crypto-
graphic mechanism: {TLS, IPSec}.

SC-8(4)

Communication pat-
terns (e.g., frequency,
periods, predictability
amount) should be con-
cealed or randomized
by encrypting the links
and transmitting in
continuous, fixed, or
random patterns.

Data Protection3 =
Randomized com-
munication pattern:
{frequency, periods,
predictability,
amount}

Device’s Communication pat-
terns: {frequency, periods,
predictability, amount} should
be randomized or concealed by
Cryptographic mechanism: {TLS,
IPSec}.

SC-23(1)

Invalidate session iden-
tifiers upon user logout
or other session termi-
nation.

Data Protection4 =
Invalidating session
identifiers at logout:
Enabled

Device’s Session identifiers:
{"CD723LGeXlf-01:34"} should
be invalidated upon user state:
{logout or session termination}.

AC-18(3)
Wireless networking
should be disabled
when not used.

Data Protection5 =
Disable wireless net-
working: Enabled

Device’s Network: {WiFi, BLE,
LTE, NFC, PLC, RFID, ZWave,
Zigbee} should be disabled when
not used.

4.1 Application to IoT Security Auditing

Identifying, Collecting, and Processing Rule-Specific Audit Data. To
validate security compliance for each security rule, it is essential to determine
the relevant IoT data sources, collect them, and prepare them for the specific
audit tools (e.g., formal methods). Logs, configuration files, and databases are
the primary sources of audit data in IoT devices, and IoT hub or IoT cloud
server stores these data. Different data types and sources, such as device-related
data, connectivity-related data, user-related data, and application-related data,
are identified based on the security rules [28]. After identifying relevant data
sources, we gather data and process them in a structured manner so that they
can be converted into formal language. It is crucial to transform the data into
a consistent format because different data sources store the data in different
formats. Finally, audit data and security rules are converted to formal language
for verification. In this work, we particularly use constraint satisfaction problem
(CSP), which is also used in other auditing solutions (e.g., [30–32]). To that
end, each data group is represented as tuples, and the code is append with the
relationships for security rules (discussed in Section 3.4). Listing 1 shows the
tuples in our Sugar [50] code.

13

Table 3. Different steps of our approach, their objectives, and rationales

Steps Approach Objective Rationale

Step 1.1.1
Extracting Secu-
rity Controls

Automatic

To centralize all IoT
security standards and
their corresponding secu-
rity controls in a single
document so that it can
be efficiently used by our
toolchain later.

Since it extracts security controls based
on the mappings and it is error-free, ex-
tracting security controls from NIST SP
800-53r5 does not necessitate any expert
review.

Step 1.1.2
Annotating
Data

Manual

To fine-tune the NER
model so that it can ex-
tract security values from
security controls.

As there are no trained NER models avail-
able to extract security values, we had to
annotate the security values manually to
fine-tune the NER model.

Step 1.2.1
Building Struc-
tural Knowledge

Semi-
automatic

To instantiate derived se-
curity rules that are spe-
cific to IoT devices by us-
ing the structural knowl-
edge of IoT devices.

We leverage the approach in [15] to au-
tomatically extract device specifications,
configs, and API documentation, while all
additional device-specific data is manually
verified to assure its completeness.

Step 1.2.2
Building Func-
tional Knowl-
edge

Automatic

To instantiate derived
security rules using the
functional knowledge
such as the network
behavior of IoT devices.

We utilize MUDGEE [20], which automat-
ically delivers the IoT network port and
protocol number without manual inspec-
tion.

Step 2.1.1
Summarizing
Security Con-
trols

Semi-
automatic

To extract the most
crucial information
from lengthy security
controls, which are
otherwise tedious and
time-consuming tasks.

After automatically generating the
summary using the BERT-Extractive-
Summarizer, we need expert assessment
to ensure the semantics and validity of
the summaries.

Step 2.1.2
Extracting Val-
ues

Semi-
automatic

To automatically extract
security values from secu-
rity controls which can be
used in the security rules.

We have a fine-tuned NER model to ex-
tract security values from security con-
trols, but expert inspection is vital to en-
sure that the model does not exclude any
required values or extract extraneous in-
formation.

Step 2.1.3
Deriving Secu-
rity Rules

Semi-
automatic

To help security experts
to utilize the actionable
security rules in different
security applications.

We derive actionable security rules after
extracting values and using our knowledge
base; however, expert evaluation is crucial
to preserve the accuracy of the generated
rules because security controls do not in-
clude all of the potential security values
or attributes in the context of IoT.

Step 2.2.1
Instantiating
Security Rules

Manual

To make the derived secu-
rity rules specific to IoT
devices so that a rule can
be efficiently verified from
the available IoT device
data.

Security rules are manually instanti-
ated with IoT device-specific information
stored in our knowledge since there is no
mapping between security rules and IoT
device-specific data, ensuring that only a
particular device-specific information is
included in the instantiated rule.

Step 2.2.2
Interpreting in
Formal Lan-
guage

Manual
To enable formal verifica-
tion tools to carry out se-
curity verification.

Instantiated security rules are converted
manually to formal language as there are
no readily available tools to convert the
natural language to mathematical expres-
sions.

Conducting Formal Verification. For verification, we utilize formal verification
techniques, e.g., Boolean satisfiability problem (SAT) solver. Specifically, we
leverage an SAT-based tool, namely, Sugar [50], to perform the verification
process and interpret the verification results. Afterward, Sugar verifies all the
constraints, and then we can interpret if any security rule is breached. Lastly,

14

an audit report is generated after getting results from a formal verification tool.
The Sugar tool evaluates “true” or “false” based on the result of a security rule
breach. A security expert can investigate further to determine the root cause of
a breach only after discovering it in an auditing process, eliminating the need for
them to manually go through all the irrelevant information of IoT devices for
security breaches.

Example 5. The CSP code to audit the data protection using the rule presented
in Listing 1.1. Each domain and variable is first declared (Lines 2-5). Then, the
set of involved relations, namely, CryptProtection and Transmission are defined
and populated with their supporting tuples (Lines 7-8), where the support
is generated from simulated data by utilizing the Amazon IoT simulator [3].
Then, the data protection at transmission is declared as a predicate, denoted
by DataProtectionTransmission, over these relations (Lines 10-11). Finally, the
predicate should be instantiated (Line 19) to be able to be verified. The UNSAT

result on Sugar means that all constraints are not satisfied, and hence, there is no
violation of the rule. Note that the predicate will be unfolded internally by Sugar
for all possible values of the variables, which allows verifying each instance of
the problem among possible values of device ID, cryptographic mechanism,

and network types. We evaluate this auditing step in Section 5.

Listing 1.1. Sugar source code for verifying Rule 1

1 // Declaration

2 (domain DeviceID 0 5000) (domain CryptoMech 1 6)

3 (domain NetType 11 20)(domain SensitiveData 21 40)

4 (int D DeviceID) (int CR CryptoMech)

5 (int N NetType) (int S SensitiveData)

6 // Relations Declarations and Audit Data as their Support

7 (relation CryptProtection 3 (supports ((2471 13 4) (2798

29 2) (861 9 4)))

8 (relation Transmission 2 (supports ((12 9) (29 10) (9 1))

)

9 // Security property: DataProtectionTransmission

10 (predicate (DataProtectionTransmission D S CR N) (and (

CryptProtection D S CR) (Transmission S N) (not (

DataProtection D S))))

11 (DataProtectionTransmission D S CR N)

4.2 Other Applications

Snort IDS. Snort [47], a potent open-source intrusion detection system (IDS)
and intrusion prevention system (IPS), finds potentially malicious activities
by employing a rule-based language that integrates anomaly, protocol, and
signature inspection techniques. Our low-level security rules obtained from
security standards can be easily translated into snort rules. To convert our

15

low-level security rules into Snort rules, first, we need to know the format of
Snort rules and the required data for the rules. Snort IDS/IPS rules consist of
two parts, rule header and rule option. The rule header contains the follow-
ing fields: action, protocol, source address, source port, direction,

destination address, and destination port. The rule option of Snort is
divided into a keyword and an argument, defined inside parentheses and sepa-
rated by a semicolon. In this work, we obtain protocol and port numbers from
our low-level security rules. In the same manner, our security rules can be utilized
by other IDS systems, such as Suricata3, Zeek4, OSSEC5, etc.

Example 6. Below is a low-level rule instantiated for Nest Protect Smoke
and CO Alarm device, which ensures encrypted data transmission, and then
we convert it into a Snort rule. Our derived security rule is: “Nest Protect
Smoke and CO Alarm Sensor device’s (device id: peyiJNo0IldT2YlIVtYaGQ)
smoke alarm state during transmission over Network: WiFi should be cryp-
tographically protected using Cryptographic mechanism: TLS; should use pro-
tocol: TCP and port numbers: {443, 11095, 53, 67}”. The corresponding
Snort rule is: “alert tcp any any <> $HOME NET ![443, 11095, 53, 67]

(msg: \Unencrypted Traffic"; sid:1000005) ”. If this snort rule matches
the network traffic data - which actually means the fields of TCP packet (source
address, source port, destination address, and destination port) match with
the rule (any, any, IP address of $HOME NET, port numbers other than 443,

11095, 53, or 67), respectively, then an alert is generated that outputs the
message “Unencrypted Traffic” with the signature ID 1000005.

Secure Application Development. As most IoT application developers are
not security experts, they might need concrete guidelines and recommendations
to develop secure applications and interfaces following existing security standards
and best practices. Our security rules provide IoT manufacturers and developers
with actionable guidelines which can be followed to implement them in actual
IoT systems, as demonstrated through the following example.

Example 7. We utilize the used port numbers (443, 11095, 53, and 67)
from IoT device-specific data (in Example 2) to communicate with servers, while
the high-level security standard is ambiguous about which port to use. A code
snippet is presented in Listing 1.2 and shows the port numbers (Line 4) used by
SmartThings SmartApp [46] to listen to the server (Line 6).

3 https://suricata.io/
4 https://zeek.org/
5 https://www.ossec.net/

16

Listing 1.2. Port numbers derived from our security rules used by Smart-
Things SmartApp

1 const SmartApp = require(’@smartthings/smartapp ’);

2 const express = require(’express ’);

3 const server = express ();

4 const PORT = [443, 11095 , 53, 67];

5 /* Start listening at your defined PORT */

6 server.listen(PORT , () => console.log(‘Server is up

and running on port ${PORT}‘));

Similar to these applications, our actionable security rules might further be
applied to other security mechanisms, such as access control, monitoring, risk
assessment, etc., to cover various security aspects of IoT.

5 Implementation and Experiments

This section describes the details of our implementation and experiments.

5.1 Implementation

We describe the implementation of the automated steps of our approach as
follows. To build knowledge of security standards, we develop a Python script
that extracts the security expectations from NIST IR 8228 and the referenced
NIST SP 800-53r5 security controls from control catalog (provided by NIST),
and store them in a CSV file with attributes such as variables, expectations,
controls, sub-controls, and their discussions. To build device-specific knowledge,
network data such as port numbers and protocols are extracted by leveraging
MUDGEE [20], which creates MUD [27] profiles of IoT devices by monitoring
network traces and technical specifications of different IoT devices are extracted
by leveraging the approach from [15]. For the summarization of security controls,
we use BERT-Extractive-Summarizer [33]. Then, annotation of security controls is
performed using NER Annotator [6]. To extract values from security controls, we
fine-tune a Hugging Face transformer-based named entity recognition model called
Bert-base-uncased [12]. Lastly, for verification, we use the Boolean satisfaction
(SAT) solver tool, namely, Sugar V2.2.1 [50].

5.2 Experiments

Experimental Setting. We run our experiment on a workstation with an
Intel(R) Core(TM) i7-10700 2.90GHz CPU and 16 GB of physical memory. To
generate our dataset, we utilize NIST IR 8228 [8] and NIST SP 800-53r5 [37] and
Amazon IoT device simulator platform [3] with 5,000 IoT devices and their logs,
configuration files, and network data. Figure 5a illustrates the count of technical
and non-technical security controls for each expectation of NIST IR 8228. We

17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Expectations

0

20

40

60

80
No

. o
f S

ub
-c

on
tro

ls
Technical controls
Non-Technical controls

(a) Count of security controls for each expecta-
tion from NIST IR 8228 [8]

SC-8(1)
SC-8(3)

SC-8(4)
SC-23(1)

SC-23(3)
SC-23(5)

AC-18(1)
AC-18(3)

Subcontrols

0

1

2

3

4

Su
m

m
ar

iza
tio

n
tim

e
(s

)

Summarization time
Value extraction time

0.000

0.002

0.004

0.006

0.008

Va
lu

e
ex

tra
ct

io
n

tim
e

(s
)

(b) Time required for summarizing and value
extraction by our approach

Fig. 5. Count of security controls and efficiency of summarization and extraction

Table 4. Performance evaluation of value extraction

Precision Recall F1-Score

Values 0.82 0.98 0.89

Attributes 0.97 0.94 0.95

Average 0.87 0.97 0.91

convert them into the input format, Constraint Satisfaction Problem (CSP), of
Sugar [50]. We average the results after 200 iterations of each experiment.

Evaluation of Summarization and Value Extraction. In the first set of
experiments, we measure the time required for summarizing each security control’s
discussion and value extraction step as well as the accuracy of our value extraction
using precision, recall, and F1-score. Figure 5b shows that the time required for
summarizing varies from less than one second to just over four seconds, because
some security sub-controls are rather lengthy over others, and summarising them
requires more time. However, since the summarization procedure is performed
only once, overheads are tolerable for auditing such big settings. This figure
also demonstrates that extracting values from the discussion of summarized
security sub-controls takes only a fraction of a second, which is very time efficient
compared to the summarization process. As shown in Table 4, the precision
scores for values and attributes are 82% and 97%, respectively. For recall, scores
of values and attributes are 98% and 94%, respectively. Values and attributes
have an F1-score of 89% and 95%, respectively.

Evaluation of Derived Security Rules. Our second set of experiments is
to evaluate the effectiveness of our derived security rules by examining their
execution time, memory usage, and CPU usage, along with the measurement of
the reduction in manual effort.

Our approach aims at reducing the manual effort required by an expert for
deriving actionable security rules. Figure 6 demonstrates the amount of reduction
in manual effort for summarizing and deriving actionable security rules, where
we compare a fully manual approach with ours for this measurement using four
similarity metrics (e.g., Cosine similarity [1], Jaro-Winkler similarity [24], Sorensen

18

similarity [48], and Jaccard similarity metrics [26]). Based on the similarity
between summarized sub-controls and derived security rules, we measure the
reduction in manual effort by security experts. In other words, a security expert
needs to exert less work when the summaries and derived security rules are
more similar or closely resemble manually summarized and derived security rules.
Figure 6a shows how our summarization tool reduced the amount of work required
to summarise eight security sub-controls, with Cosine and Jaro-Winkler similarity
scores averaging the highest percentages of 57% and 65%, respectively, among
these four. The Sorensen similarity score is then anywhere between 50% and 37%,
with Jaccard’s score being the lowest. Next, Figure 6b shows the effort reduced
in deriving a security rule, with Cosine and Jaro-Winkler similarity scores again
averaging the highest percentages of 50% and 52%, respectively, among these
four. The Sorensen similarity score is then anywhere between 45% and 30%,
with Jaccard’s score being the lowest again. Overall it reduces around 50% of
manual effort, and for security experts, this represents a significant decrease
in manual work and time-consuming activities. The main purpose of this set
of experiments is to show the resemblance of our derived rules with manually
summarized sub-controls. For this purpose, we use popular similarity metrics and
compare their results. We assume that those scores (i.e., calculating resemblance
between two outputs) might give a hint on the reduced manual effort that these
derived rules can bring. However, we acknowledge that a user survey will be
needed to more accurately evaluate the usability of our approach (as further
discussed in Section 6).

subcontrol_1

subcontrol_2

subcontrol_3

subcontrol_4

subcontrol_5

subcontrol_6

subcontrol_7

subcontrol_8

Subcontrols of NIST [21] Expectation 21

0

20

40

60

80

Re
du

ce
d

m
an

ua
l e

ffo
rt
(%

)

Cosine Similarity
Sorensen Similarity

Jaro Winkler Similarity
Jaccard Similarity

(a) Similarity score of summarized sub-control

Rule
_1

Rule
_2

Rule
_3

Rule
_4

Rule
_5

Rules for NIST [21] Expectation 21

0

10

20

30

40

50

60

Re
du

ce
d
m
an
ua
l e
ffo

rt
(%

)

Cosine Similarity
Sorensen Similarity

Jaro Winkler Similarity
Jaccard Similarity

(b) Similarity score of derived rules
Fig. 6. Manual effort reduction for summarizing and deriving rules

We then evaluate the efficiency of our derived security rules in terms of time,
CPU, and memory utilization. In Figure 7a, we observe that overall it takes less
than ten seconds for 5,000 IoT devices to validate each of the five rules derived
from Expectation 21. As the number of devices grows, the required time to

19

validate each rule also increases, but after 1,500 devices, a significant reduction in
increase is observed, which again increases after 4,000 devices. Given the number
of devices, ten seconds is a very realistic amount of time to perform auditing.
Figure 7b shows the CPU usage by varying the number of devices. With a range
of between 20% and 25%, CPU utilization increases almost linearly for all five
security rules. Since there are 5,000 IoT devices, and each one generates a unique
set of data, the CPU usage for auditing is reasonable. Note that we only utilize a
single PC for our experiments; the cost would be significantly lower if we could
run Sugar for verification on multiple VMs. Our final experiment (Figures 7c)
measures the memory usage of our auditing solution. All of the five rules show
a similar trend as CPU consumption. At its peak, it requires around 43 MB of
memory, and overall, it requires less than 41 MB. It is noteworthy that rule 1
uses more resources because there are more tuples and, therefore, more data to
validate.

0 1000 2000 3000 4000 5000
Devices

6

7

8

9

10

Ti
m

e
(s

)

Ex21_Rule_1
Ex21_Rule_2
Ex21_Rule_3
Ex21_Rule_4
Ex21_Rule_5

(a) Time requirement

0 1000 2000 3000 4000 5000
Devices

5

10

15

20

25

CP
U

(%
)

Ex21_Rule_1
Ex21_Rule_2
Ex21_Rule_3
Ex21_Rule_4
Ex21_Rule_5

(b) CPU utilization

0 1000 2000 3000 4000 5000
Devices

38000

40000

42000

M
em

or
y

(K
B)

Ex21_Rule_1
Ex21_Rule_2
Ex21_Rule_3
Ex21_Rule_4
Ex21_Rule_5

(c) Memory utilization

Fig. 7. Efficiency results of our auditing step for 5,000 smart home devices.

6 Discussion

Guidelines for the Required Manual Effort. Our approach requires the
involvement of security specialists in order to function to its maximum potential.
An individual with in-depth knowledge and experience in protecting information
systems is referred to as a security specialist or expert. Firstly, a security specialist
will review the automatically generated summaries of security controls to ensure
they are complete and not missing any crucial information. Secondly, security
experts will verify the accuracy of the retrieved values from the summarized
security controls. Following these actions, low-level security rules will be created
using the retrieved values and any additional potential values relevant to the
IoT. Lastly, a security expert must carefully consider each possible value of a
security rule that will be applied during security auditing. The formalization
of the low-level security rule into first-order logic will result in CSP code for
the Sugar tool. Our derived actionable security rules can be converted into any
formal language based on the requirement of the security tools and can be used
for various security purposes.

Covering Other Security Standards. In this paper, we consider the IoT
security standard from NIST IR 8228 and utilize its mapping to NIST SP 800-

20

53r5 to derive actionable security rules. However, there are many other security
standards from different federal and non-federal organizations available for IoT
systems which can be easily incorporated with our methodology by getting
their mapping to NIST SP 800-53r5. To that end, European Union Agency
for Cybersecurity (ENISA) Baseline Security Recommendations for IoT in the
context of Critical Information Infrastructures [17] provides a mapping with
NIST SP 800-53r5 in their security standard. Additionally, OWASP is working
on a project to provide a mapping of the OWASP IoT Top 10 2018 to various
industry policies and publications [39]. Once available, those mappings can be
utilized to cover other security standards using our approach.

Validating the Usability of Our Solution. To further validate the usability
of our approach, we plan to carry out a user survey in the future. This study
might provide feedback on the effectiveness (e.g., possible increasing efforts
due to any incorrectness or mistake in our derived rules) and usability of our
tool; The results and feedback of this study can be considered in the following
version of our proposed approach. Specifically, to analyze the usability of our
derived security rules, we will develop multiple scenarios where participants
can experience our tool in contrast to a fully manual approach as well as a
semi-guided approach to derive rules followed by a questionnaire with a variety
of closed-ended (e.g., multiple choice and Likert scale) and open-ended (e.g.,
strength, weakness, and suggestions) questions. Our target group for this survey
will be security researchers and industry practitioners (leveraging our existing
collaborations) as potential users of such tools.

Feedback to Standardization Authorities. As our solution aims at mapping
high-level security standard specifications to low-level system implementations,
it might be able to identify existing issues (e.g., missing concrete or related
information to realize a security recommendation) in a standard specification.
Additionally, interpreting the final and intermediate outcomes of our solution
might provide insights into further clarifying the recommendations in current
security standards. We intend to provide such feedback to the standardization
authorities that might be useful to design future standards in a clearer and more
useful manner.

7 Related Works

This section reviews existing IoT security works and compares them with ours.
We first review rule-based IoT security solutions. Fung et al. [19] introduce a
user-defined rule-sharing model for the IoT environment and track the reputation
of rules based on the feedback of different rules adopted by users without the
need for central facilities. PFIREWALL [11] generates data minimization rules
to control data flow by filtering communication between devices and platforms of
IoT systems to reduce data leakage. IoTSAFE [14] performs static analysis and
dynamic testing to identify run-time physical interactions in the IoT environment
to enforce security rules. Soteria [9] verifies the safety and security rules of IoT
platforms by performing static code analysis in IoT applications. On the other

21

hand, IoTGuard [10] is a dynamic safety and security rule enforcement system
by code instrumentation. Nespoli et al. [34] detect vulnerabilities in IoT and
dynamically adapt to surrounding devices and services based on rules. Dome
et al. [16] utilize the Random-Forest model to convert behavioral patterns into
rules, build a threat prediction model, and monitor rule violations. Majumdar
et al. [31] [32] conduct security auditing leveraging formal techniques in cloud
platforms. Madi et al. [30] also carried out security auditing on a cloud platform
by proposing an auditing framework for OpenStack. Most of the above-mentioned
works develop their own rules, whereas our goal is to utilize existing security
standards.

Another line of research focuses on access control, monitoring, and intrusion
detection of IoT systems. ContexIoT [25] is a context-based permission system
to provide contextual integrity for different IoT platforms. SmartAuth [51] uses
static analysis to collect security-related data from IoT apps to design authoriza-
tion procedures to address over-privileged issues in IoT systems. HoMonit [57]
utilizes side-channel techniques to monitor the encrypted traffic of IoT systems.
IoTArgos [54] is a multi-layer security monitoring system that uses machine learn-
ing techniques to find intrusions and anomalies in IoT platforms. Anthi et al. [4]
develop a multi-layer intrusion detection system. In contrast, our work provides
actionable security rules which can be utilized in various security applications.

We also review the association rule mining works. P. Lou et al. [29] obtain
association rules on multi-source logs based on the Adaptive Miner algorithm to
provide critical information for cyber intrusion detection and assist non-experts in
conducting security problem investigations in cloud computing platforms. Ozawa
et al. [41] use association rule mining to discover regularities in darknet data.
Husak et al. [22] use sequential rule mining to analyze intrusion detection alerts
and to predict security events for creating a predictive blacklist. Safara et al. [43]
use an association rule mining algorithm to extract appropriate features from
raw data and then use the features for detecting anomalies in communication
networks. Xu et al. [56] propose an Attribute-based access control (ABAC) policy
mining algorithm. Sanders et al. [44] use the rule mining approach to analyze
systems’ audit logs for automatically generating ABAC policies. Unlike them,
this work derives actionable security rules from IoT standards.

Comparative Study. Table 5 summarizes a comparative study of existing works.
The first two columns enlist existing works and their methods, respectively. The
next two columns compare the coverage, such as the supported environment
(IoT, cloud) and main objectives (auditing, intrusion detection). The remaining
columns compare these works based on different features, i.e., knowledge-base,
first-order logic, automatic rule derivation, expressiveness, automatic system,
run-time enforcement, and utilization of security standards. In summary, our
work mainly differs from other works as follows. Firstly, we only propose an
approach to derive actionable security rules from existing IoT security standards.
Secondly, we build a knowledge base for both IoT standards and IoT devices
that can be utilized in other related research. Finally, our derived security rules
can be used directly for various security applications.

22

Table 5. Comparing existing solutions with ours. (), (), (-), and (NA) mean supported,
partially supported, not supported, and not applicable, respectively.

Proposals Methods
Coverage Features

E
n
v
ir
o
n
m
e
n
t

Objective K
n
o
w
le
d
g
e
b
a
se

F
ir
st

O
rd

e
r
L
o
g
ic

A
u
to

m
a
ti
o
n

in
R
u
le

D
e
ri
v
a
ti
o
n

E
x
p
re

ss
iv
e
n
e
ss

A
u
to

m
a
ti
c
S
y
st
e
m

R
u
n
ti
m
e
E
n
fo
rc

e
m
e
n
t

U
si
n
g
S
e
c
u
ri
ty

S
ta

n
d
a
rd

s

ContextIoT [25] Custom Algorithm IoT Access Control NA – – NA –

Soteria [9] Static Analysis IoT Intrusion Detection – – – NA – –

IoTGuard [10] Dynamic Analysis IoT Intrusion Detection – – – NA –

Majumdar et al. [31] Formal Method Cloud Auditing – – –

Madi et al. [30] Formal Method Cloud Auditing – – NA –

Majumdar et al. [32] Formal Method Cloud Auditing – – NA

Homonit [57] Custom Algorithm IoT Monitoring System NA – – – – – –

IoTSafe [14] Static and Dynamic IoT Intrusion Detection NA – – – – –

PFIREWALL [11] Custom Algorithm IoT Access Control NA – –

This Work Formal Method IoT Auditing, Secure development, etc.

8 Conclusion

This paper proposed an approach to derive actionable security rules from high-
level security standards. Additionally, we collected device-specific data to instan-
tiate derived security rules and conducted verification leveraging formal tools
for IoT devices. Our experiment results showed the effectiveness of our derived
rules in security auditing. Moreover, our derived actionable security rules can be
utilized in other security applications. In the following steps, we envision being
able to automate device-specific data collection, which is collected manually now.
Our future work will incorporate more security standards into our methodology
and automate the majority of the stages involved in the derivation of actionable
security rules, requiring the least amount of work from security specialists. Addi-
tionally, in our future work, we intend to conduct a user study to evaluate the
usability of our solution from the feedback of real-world security practitioners.

Acknowledgments

The authors thank the anonymous reviewers and our shepherd, Christopher Wood,
for their valuable comments. This material is based upon work supported by the
Natural Sciences and Engineering Research Council of Canada and Department
of National Defence Canada under the Discovery Grants RGPIN-2021-04106 and
DGDND-2021-04106.

23

References

1. Alake, R.: Understanding cosine similarity and its ap-
plication (Nov 2021), https://towardsdatascience.com/

understanding-cosine-similarity-and-its-application-fd42f585296a
2. Alrawi, O., Lever, C., Antonakakis, M., Monrose, F.: SoK: Security evaluation of

home-based IoT deployments. In: IEEE SP. IEEE (2019)
3. Amazon IoT device simulator, https://aws.amazon.com/solutions/

implementations/iot-device-simulator/
4. Anthi, E., Williams, L., S lowińska, M., Theodorakopoulos, G., Burnap, P.: A

supervised intrusion detection system for smart home iot devices. IEEE Internet of
Things Journal 6(5), 9042–9053 (2019)

5. Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J.,
Durumeric, Z., Halderman, J.A., Invernizzi, L., Kallitsis, M., et al.: Understanding
the Mirai botnet. In: USENIX Security (2017)

6. Arunmozhi: Annotation tool for ner. NER annotator (2022), https://tecoholic.
github.io/ner-annotator/

7. Bellman, C., van Oorschot, P.C.: Systematic analysis and comparison of security
advice as datasets. Computers & Security 124, 102989 (2023)

8. Boeckl, K., Boeckl, K., Fagan, M., Fisher, W., Lefkovitz, N., Megas, K.N., Nadeau,
E., O’Rourke, D.G., Piccarreta, B., Scarfone, K.: Considerations for managing Inter-
net of Things (IoT) cybersecurity and privacy risks. US Department of Commerce,
National Institute of Standards and Technology (2019)

9. Celik, Z.B., McDaniel, P., Tan, G.: Soteria: Automated IoT safety and security
analysis. In: USENIX ATC. pp. 147–158 (2018)

10. Celik, Z.B., Tan, G., McDaniel, P.D.: IoTGuard: Dynamic enforcement of security
and safety policy in commodity IoT. In: NDSS (2019)

11. Chi, H., Zeng, Q., Du, X., Luo, L.: PFIREWALL: Semantics-aware customizable
data flow control for smart home privacy protection. arXiv preprint arXiv:2101.10522
(2021)

12. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR abs/1810.04805 (2018),
http://arxiv.org/abs/1810.04805

13. Department for Digital, Culture, M..S.: The UK government. code of practice for
consumer IoT security (2019), https://www.gov.uk/government/publications/
code-of-practice-for-consumer-iot-security

14. Ding, W., Hu, H., Cheng, L.: IOTSAFE: Enforcing safety and security policy with
real IoT physical interaction discovery. In: NDSS (2021)

15. Dolan, A., Ray, I., Majumdar, S.: Proactively extracting iot device capabilities: An
application to smart homes. In: IFIP Annual Conference on Data and Applications
Security and Privacy. pp. 42–63. Springer (2020)

16. Domb, M., Bonchek-Dokow, E., Leshem, G.: Lightweight adaptive random-forest for
IoT rule generation and execution. Journal of Information Security and Applications
34, 218–224 (2017)

17. ENISA, E.: Baseline security recommendations for IoT in the context of critical
information infrastructures. European Union Agency for Cybersecurity Heraklion,
Greece (2017)

18. Fagan, M., Megas, K., Scarfone, K., Smith, M.: Recommendations for IoT device
manufacturers: Foundational activities and core device cybersecurity capability
baseline (2nd draft). Tech. rep., National Institute of Standards and Technology
(2020)

24

19. Fung, C.J., McCormick, B.: An effective policy sharing mechanism for smart home
networks. In: IEEE CNSM. IEEE (2020)

20. Hamza, A., Gharakheili, H.H., Sivaraman, V.: Combining MUD policies with SDN
for IoT intrusion detection. In: IoT S&P (2018)

21. Ho, G., Leung, D., Mishra, P., Hosseini, A., Song, D., Wagner, D.: Smart locks:
Lessons for securing commodity internet of things devices. In: ACM ASIACCS. pp.
461–472 (2016)

22. Husák, M., Bajtoš, T., Kašpar, J., Bou-Harb, E., Čeleda, P.: Predictive cyber
situational awareness and personalized blacklisting: a sequential rule mining ap-
proach. ACM Transactions on Management Information Systems (TMIS) 11(4),
1–16 (2020)

23. Institute, E.T.S.: En 303 645 - v2.1.1 - cyber; cyber security for consumer internet
of things: Baseline requirements (2020), https://www.etsi.org/deliver/etsi_
en/303600_303699/303645/02.01.01_60/en_303645v020101p.pdf

24. Jaro–winkler distance (2022), https://en.wikipedia.org/wiki/JaroWinkler_

distance

25. Jia, Y.J., Chen, Q.A., Wang, S., Rahmati, A., Fernandes, E., Mao, Z.M., Prakash,
A., Unviersity, S.: ContexIoT: Towards providing contextual integrity to appified
IoT platforms. In: NDSS (2017)

26. Karabiber, F.: Jaccard similarity, https://www.learndatasci.com/glossary/

jaccard-similarity/

27. Lear, E., Droms, R., Romascanu, D.: Manufacturer usage description specification.
Tech. rep., Internet Engineering Task Force (2019)

28. Li, S., Choo, K.K.R., Sun, Q., Buchanan, W.J., Cao, J.: IoT forensics: Amazon
echo as a use case. IEEE Internet of Things Journal 6(4), 6487–6497 (2019)

29. Lou, P., Lu, G., Jiang, X., Xiao, Z., Hu, J., Yan, J.: Cyber intrusion detection
through association rule mining on multi-source logs. Applied Intelligence 51(6),
4043–4057 (2021)

30. Madi, T., Majumdar, S., Wang, Y., Jarraya, Y., Pourzandi, M., Wang, L.: Auditing
security compliance of the virtualized infrastructure in the cloud: Application to
OpenStack. In: ACM CODASPY (2016)

31. Majumdar, S., Madi, T., Wang, Y., Jarraya, Y., Pourzandi, M., Wang, L., Debbabi,
M.: Security compliance auditing of identity and access management in the cloud:
Application to OpenStack. In: IEEE CloudCom. IEEE (2015)

32. Majumdar, S., Madi, T., Wang, Y., Jarraya, Y., Pourzandi, M., Wang, L., Debbabi,
M.: User-level runtime security auditing for the cloud. IEEE Transactions on
Information Forensics and Security 13(5), 1185–1199 (2017)

33. Miller, D.: Leveraging BERT for extractive text summarization on lectures. arXiv
preprint arXiv:1906.04165 (2019)

34. Nespoli, P., Dı́az-López, D., Mármol, F.G.: Cyberprotection in IoT environments:
A dynamic rule-based solution to defend smart devices. Journal of Information
Security and Applications 60, 102878 (2021)

35. Nest API reference, https://developers.nest.com/documentation/

api-reference

36. Nest protect and CO alarm, https://store.google.com/product/nest_protect_
2nd_gen_specs?hl=en-US

37. NIST: Security and privacy controls for information systems and organi-
zations., https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.

800-53r5.pdf

25

38. Notra, S., Siddiqi, M., Gharakheili, H.H., Sivaraman, V., Boreli, R.: An experimental
study of security and privacy risks with emerging household appliances. In: IEEE
CNS. IEEE (2014)

39. OWASP: OWASP IoT top 10 2018 mapping project., https://github.com/

scriptingxss/OWASP-IoT-Top-10-2018-Mapping

40. OWASP: OWASP top 10 Internet of Things 2018 (2018), https://owasp.org/
www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf

41. Ozawa, S., Ban, T., Hashimoto, N., Nakazato, J., Shimamura, J.: A study of
IoT malware activities using association rule learning for darknet sensor data.
International Journal of Information Security 19(1), 83–92 (2020)

42. Ronen, E., Shamir, A.: Extended functionality attacks on iot devices: The case of
smart lights. In: IEEE EuroS&P. IEEE (2016)

43. Safara, F., Souri, A., Serrizadeh, M.: Improved intrusion detection method for
communication networks using association rule mining and artificial neural networks.
IET Communications 14(7), 1192–1197 (2020)

44. Sanders, M.W., Yue, C.: Mining least privilege attribute based access control
policies. In: ACSAC (2019)

45. Sivaraman, V., Chan, D., Earl, D., Boreli, R.: Smart-phones attacking smart-homes.
In: ACM WiSec (2016)

46. SmartThingsCommunity: SmartThings SmartApp Node.js SDK,
https://github.com/SmartThingsCommunity/smartapp-sdk-nodejs/blob/

2fb4f4612e946a11b223531ca60557869d4abe49/README.md

47. Snort, https://www.snort.org/
48. Sorensen–dice coefficient (Jul 2022), https://en.wikipedia.org/wiki/

Sorensen-Dice_coefficient

49. Sugawara, T., Cyr, B., Rampazzi, S., Genkin, D., Fu, K.: Light commands: Laser-
Based audio injection attacks on Voice-Controllable systems. In: USENIX Security
(2020)

50. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into
SAT. Constraints 14(2), 254–272 (2009)

51. Tian, Y., Zhang, N., Lin, Y.H., Wang, X., Ur, B., Guo, X., Tague, P.: Smartauth:
User-centered authorization for the internet of things. In: USENIX Security (2017)

52. Verry, J.: Should I use NIST 8228 or NIST 8259 for IoT design
or IoT testing? (Jun 2020), https://www.pivotpointsecurity.com/

should-i-use-nist-8228-or-nist-8259-for-iot-design-or-iot-testing/

53. Vervier, P.A., Shen, Y.: Before toasters rise up: A view into the emerging iot threat
landscape. In: International Symposium on Research in Attacks, Intrusions, and
Defenses. pp. 556–576. Springer (2018)

54. Wan, Y., Xu, K., Xue, G., Wang, F.: IoTArgos: A multi-layer security monitoring
system for internet-of-things in smart homes. In: IEEE INFOCOM. IEEE (2020)

55. Widyassari, A.P., Rustad, S., Shidik, G.F., Noersasongko, E., Syukur, A., Affandy,
A., et al.: Review of automatic text summarization techniques & methods. Journal
of King Saud University-Computer and Information Sciences (2020)

56. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies. IEEE Transac-
tions on Dependable and Secure Computing 12(5), 533–545 (2014)

57. Zhang, W., Meng, Y., Liu, Y., Zhang, X., Zhang, Y., Zhu, H.: HoMonit: Monitoring
smart home apps from encrypted traffic. In: ACM CCS (2018)

26

