
1

APTHunter: Detecting Advanced Persistent Threats in Early
Stages

MOUSTAFA MAHMOUD, Concordia University, Canada
MOHAMMAD MANNAN, Concordia University, Canada
AMR YOUSSEF, Concordia University, Canada

We propose APTHunter, a system for prompt detection of Advanced and Persistent Threats (APTs) in early
stages. We provide an approach for representing the Indicators of Compromise (IOCs) that appear in the
Cyber Threat Intelligence (CTI) reports and the relationships among them as provenance queries that capture
the attacker’s malicious behavior. We use the kernel audit log as a reliable source for system activities and
develop an optimized whole system provenance graph that provides the causal relationships and information
flows among system entities in a compact format. Then, we model the threat hunting as a behavior match
problem by applying provenance queries to the optimized provenance graph to find any hits as indicators of
an APT attack. We evaluate APTHunter on adversarial engagements from DARPA over different OS platforms,
as well as real-world APT campaigns. Based on our experimental results, APTHunter promptly and reliably
detects attack artifacts in early stages.

CCS Concepts: • Security and privacy→Malware and its mitigation; Intrusion detection systems.

Additional Key Words and Phrases: Threat intelligence, APT, attack detection

ACM Reference Format:
Moustafa Mahmoud, Mohammad Mannan, and Amr Youssef. 2022. APTHunter: Detecting Advanced Persistent
Threats in Early Stages. Digit. Threat. Res. Pract. 1, 1, Article 1 (January 2022), 31 pages. https://doi.org/10.
1145/3559768

1 INTRODUCTION
Today’s system intrusions are subtle and sophisticated. Using strategies of Advanced Persistent
Threats (APTs), adversaries often launch targeted and stealthy cyber attacks against organizations
to lurk into the enterprise network undetected for months or even years [65]. APT groups usually
target sensitive and large corporations, including: government-based enterprises, e.g., BlackEnergy
APT attacks against Ukraine power grids [38] and Ukrainian government websites defacement [39];
financial institutions, e.g., the Carbanak APT attack against banks around the world [22], the
Chinese state-sponsored APT attack against Taiwan’s financial trading sector [2], and Lazarus
group attacks against cryptocurrency and blockchain industires [67]; and health care organizations,
e.g., APT41, FIN4, and ORANGEWORMAPTs target intellectual properties and personal information
from health care services [11, 60, 72].
APT attacks behave differently than most regular malware instances. APT actors usually use

native system tools that are used by system administrators, tricking the security controls to consider

Authors’ addresses: Moustafa Mahmoud, moustafa.mahmoud@mail.concordia.ca, Concordia University, Montreal, Canada;
MohammadMannan, Concordia University,Montreal, Canada, m.mannan@concordia.ca; Amr Youssef, Concordia University,
Montreal, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
2576-5337/2022/1-ART1
https://doi.org/10.1145/3559768

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3559768
https://doi.org/10.1145/3559768
https://doi.org/10.1145/3559768


1:2 Moustafa Mahmoud, Mohammad Mannan, and Amr Youssef

their activities as normal behavior [13] (see examples in [7]). In addition, the APT lifecyle consists of
disparate stages that comprise multiple attack techniques, and the stages may spread across a long
period of time [12, 64]. The MITRE ATT&CK framework [45] provides abstract definitions of tactics
and techniques used by APT groups throughout the attack lifecycle [47]. Specific attack details
are generally included in Cyber Threat Intelligence (CTI) reports, e.g., Indicators of Compromise
(IOCs) and exploited vulnerabilities [24]. When a CTI report is released (primarily by anti-malware
vendors) for a specific APT, enterprises may update their defense tools with the recent attack IOCs,
e.g., update antivirus signatures with hashes of the attack tools, block attacker’s IP addresses in
Firewall, and update IDS/IPS with vulnerability signatures.
Threat Hunting challenges. Once enterprise defense tools and controls are updated with the
recent attack IOCs, they may be, then, able to detect suspicious events correlated with the attacker
on enterprise hosts. Security Information and Event Management (SIEM) systems (e.g., Arcsight [6],
ELK [21]) may correlate between events from different detection sources, and hence generate more
mature alerts based on a predefined set of use cases (e.g., same malware detected in 10 workstations
or more). These traditional tools are indeed crucial for protecting the network premises; however,
they do not provide two pivotal features, making the security analyst blind to APT attacks: (a)
understanding the causal relationship between different system events [44]; and (b) piecing together
attack artifacts over a long period of time [3].

Most current threat hunting approaches also operate only on partial views of cyber attacks such
as detection based on known IOCs, e.g., malware hash values, IP addresses of C&C, domain names
owned/controlled by the attackers, file names used by the APTs [23, 58]; using heuristics [63], e.g.,
checking if a file appears to be a variant of known malware; or by using local behavior analysis [46].
The first method (known IOCs) can pinpoint exact known malware samples, but it misses mutated
malware versions [70, 71]. The other two techniques may be able to detect mutated malware
but often trigger a high rate of (costly) false positives [66]. Other threat hunting mechanisms
include network system behavior analysis tools (e.g., [76]) and file system behavior analysis tools
(e.g., [74]) which are based on detecting anomalies from the learned system normal behavior.
However, they also generate an unmanageable number of false positives [9, 56], unless tuned with
higher thresholds, which on the other hand, increase the probabilities of missing attacks.
Provenance Data Analysis. Provenance data analysis is a promising approach to tackle these
APT-specific challenges; see e.g., [44, 51, 52]. System event logs are parsed into a whole system
provenance graph which provides the causal dependency between system subjects (e.g., processes)
and objects (e.g., files and sockets). Given all the artifacts of an attack, an analyst may find the root
cause by issuing a backward tracing query on the provenance graph [35, 41, 43, 44].
Common provenance data analysis approaches assume that APT campaign stages occur in a

short period of time (e.g., hours or days). Besides, they focus largely on detecting indicators of an
APT attack as a whole (i.e., when the APT completes all its stages), rather than detecting individual
malicious activities per every attack stage; hence, they cannot detect APT attack activities per stage
(see e.g., [33, 50]), and thus unable to perform early-stage detection. HOLMES [51] provides rules
for APT stages based on tactics, techniques, and procedures (TTPs) from the MITRE ATT&CK
framework. The APT detection alert is generated based on the accumulative threat scores from all
stage rules. HOLMES is found to be very accurate in APT attack detection, after all attack stages
are completed; however, per-stage detection was not considered, and therefore per-stage results
were unavailable.

We re-implemented a per-stage version of HOLMES, which we call S-HOLMES. Our experimental
results show that S-HOLMES can accurately detect APT attacks from stage six (Complete Mission)
onwards, but fails in the early stages. UNICORN [33] is an anomaly-based system (see also [77])
that generates alerts when the provenance of the whole system events deviates from the learned

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



APTHunter: Detecting Advanced Persistent Threats in Early Stages 1:3

set of graphs representing benign activities; however, such anomaly-based systems are generally
prone to high rate of false positives; as mentioned by the UNICORN authors, when normal behavior
changes, UNICORN may generate false alerts.
Problem Statement. The main problem addressed in this paper is to promptly detect an ongoing
APT campaign, which consists of several disparate stages over a long period of time, in early stages
with high precision and sensitivity in real-time.
Our Approach and Contributions. APTHunter couples the attack semantics in the CTI reports
and the audit log, to produce precise attack provenance queries. We complement the abstract
definitions of the APT attack stage techniques (from MITRE ATT&CK framework) with the attack
technical details available in the CTI reports to build the provenance queries.
During the runtime, APTHunter first normalizes the raw audit log records to a canonical form

such that the relationships among the system entities can be causally tracked. The canonical log
entries are then used to generate the whole system provenance graph. A significant point about our
provenance graph is that it requires less memory compared to the log size on disk which facilitates
real-time ingestion of events and generation of the graph over a long period of time. APTHunter
then applies the attack provenance queries to the whole system provenance graph to generate
alerts as per every APT attack stage.

We evaluate APTHunter on three different experimental setups. The first experiment is based on a
dataset of red-team simulated APT attack campaigns generated by DARPA Transparent Computing
program [73]. In the second experiment, we test APTHunter on recent real world APTs in our lab,
and finally, we evaluate APTHunter’s robustness against false positives with the two-week long
DARPA benign dataset [73]. In summary, we make the following contributions:

• We propose APTHunter to detect APT attack activities per stage, including early stages, by
filling the gap between the attack abstract definitions from the MITRE ATT&CK framework
and the system low level event log, using the technical attack details from the CTI reports.
We use the operating system kernel audit log to pinpoint the attack activities and provide
root cause analysis of the attack evolution on the system for every attack stage. This is a
clear shift from past works which mostly deal with APTs as a whole.

• As part of APTHunter, we design and implement a runtime audit log provenance tracking
approach called LogCore. The output from this step is a normalized and compacted version
of the audit log, ready to be used for further analysis by provenance graph mechanisms.
Using LogCore, we build a whole system provenance graph based on the compact form of
the kernel audit log.

• For deriving attack provenance queries for every attack stage from selected CTI reports, we
design and implement a mechanism called ProvQuery. Our provenance queries represent
attack behaviors rather than a set of specific IOCs, enabling us to detect mutated attacks in
all stages, as attack behaviors often remain constant among mutations.

• During our evaluation, we test APTHunter on eight DARPA APT attack scenarios and two
other recent real-world APT attacks to assess the performance of APTHunter in detecting
attack artifacts in early stages. APTHunter consistently shows outstanding results in detecting
APT attack artifacts as early as in Initial Compromise, with no false alerts when tested on the
benign dataset. The compact log representation by APTHunter allows a compression of 93%
for the provenance graph database generation. The average search time taken by APTHunter
is 18% or 22% (based on APTHunter setting) of the average search time taken by S-HOLMES.

The source code of APTHunter, including LogCore and ProvQuery, and our generated provenance
queries are available at https://github.com/APT-Hunter.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://github.com/APT-Hunter


1:4 Moustafa Mahmoud, Mohammad Mannan, and Amr Youssef

2 ATTACK STAGES AND THREAT MODEL
In this section, we describe an attack scenario carried out by the DARPA red-team during their
recent engagement 5 [73], and use it to describe different APT attack stages.

2.1 APT Attack Stages
In one of the DARPA simulated attack scenarios, a vulnerable remote web server (Nginx) running
on FreeBSD is exploited which allows the attacker to have remote access to the victim system. In the
following, we disassemble this attack scenario into seven different APT stages following previous
work [51] and industrial technical reports on APT attacks kill-chain [8, 26, 75]. The description
of every stage contains attack artifacts and technical details for each stage. Our main goal is to
pinpoint these artifacts to be able to detect different attack stages.
Initial Compromise. The attacker targets the Nginx web server by sending a malformed HTTP
POST on port 80 to exploit a remote code execution vulnerability. The malicious shellcode is added
successfully to the executable region of the memory. Next, the attacker gains control over the Nginx
process.
Establish Foothold. The shell code executes on the target, granting the attacker access to the victim
device through a reverse shell. Now commands can be communicated between the victim device
and the Command and Control (C2) server.
Escalate Privileges. The attacker exploits a kernel vulnerability to grant the Nginx process super
user (root) privileges.
Internal Reconnaissance. The attacker uses the implemented shell to send several commands to
collect information about the internal system. Commands include hostname, whoami, and cat
/etc/passwd.
Lateral Movement. During this attack scenario, the attacker does not connect laterally to any other
device in the victim network. However, an example of artifacts in Lateral Movement stage is when
an attacker finds credentials in clear text on the victim device, and then uses those to remotely
connect to other devices in the internal victim network.
Complete Mission. The attacker exfiltrates sensitive files (/etc/passwd and /etc/shadow) to an external
device.
Cleanup Tracks. The attacker clears traces by removing the created temporary files and clearing the
system log files.

Note that APT stages are not necessarily executed sequentially by the attackers. They are based
on the attack circumstance and the victim environment. We observed this based on the analysis
of several CTI reports for different APTs (e.g., see [19]) in the wild. For example, attackers may
escalate privilege directly after getting limited access (Initial Compromise) to the victim network.
In other circumstances, attackers may need to conduct intensive Internal Reconnaissance to search
for further vulnerabilities, and/or security loopholes in the victim system for privilege escalation,
and be able to move laterally to connect to sensitive victim devices.

2.2 Threat Model
APTHunter aims to detect APT attacks which exploit application and service vulnerabilities to get
into victims systems all the way to data exfiltration and cleanup tracks. APTHunter relies on kernel
audit logs as sources for system events. We assume that the kernel space and the audit log data
collected from it are part of the trusted computing base (TCB). Any kernel-level attacks that target
the integrity of the audit log are beyond the scope of this paper. Other solutions such as HACK [48]
(a Hardware-Assisted Kernel Compartmentalization) can be used to prevent kernel-based attacks.
Side channel attacks (e.g., power-analysis attacks, timing attacks) are out of scope.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



APTHunter: Detecting Advanced Persistent Threats in Early Stages 1:5

Fig. 1. An overview of APTHunter’s layers of abstraction from raw system events to attack discovery.

3 APTHUNTER DESIGN
The main idea of APTHunter is to couple the high level semantics in the CTI reports and the low
level details in the audit log to pinpoint attack artifacts in early attack stages; for a high-level
overview see Figure 1. In the following, we provide a description of different components of
APTHunter.

3.1 Stream Processor
Our system takes as an input the kernel audit log retrieved from different hosts that may run
different operating systems. Kernel logs can be monitored and retrieved by using, e.g., Event Tracing
for Windows (ETW),1 Audit daemon (Auditd) for Linux,2 and DTrace for FreeBSD.3 This input
captures operations related to different system entities including processes (e.g., execution, cloning,
and privilege change), and files (e.g., file creation, deletion, ownership and permission changes).
Audit records from different operating systems are published to a stream processing server

(Kafka [5]). Endpoints are configured to send the audit records to a specific Kafka topic based on
the operating system hosted on the endpoint. APTHunter proceeds by consuming records from
the streaming server to the APTHunter LogCore engine. In our deployment, all APTHunter’s
components run on the same host, but they also can run using different deployment strategies (e.g.,
virtual machines, containers, dockers). To onboard new computers to APTHunter, they need to be
configured to send the event log to the stream processing server.

3.2 LogCore Engine
The audit log contains an immense number of raw low level system events that do not readily show
causal relationships between system entities, and hence cannot be used to pinpoint high level attack
artifacts. Our LogCore engine aims to provide a canonical representation of the audit log that is
compact and symmetric across different system events. Given the low level kernel audit log, system
subjects (e.g., processes) and objects (e.g., files and sockets) are uniquely identified, and system
events are extracted and manipulated to facilitate provenance root cause analysis. The resultant
canonical form models the system entities and their relationships as a labeled, typed, and directed
graph, called whole system provenance graph, representing the runtime status of the system.
In this graph, nodes represent system entities (e.g., processes, files), while edges represent the
relationships among those nodes. These relationships enclose the information flow and direction,
and the causality among those system entities.

1https://docs.microsoft.com/en-us/windows/win32/etw/event-tracing-portal
2https://man7.org/linux/man-pages/man8/auditd.8.html
3https://wiki.freebsd.org/DTrace

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://docs.microsoft.com/en-us/windows/win32/etw/event-tracing-portal
https://man7.org/linux/man-pages/man8/auditd.8.html
https://wiki.freebsd.org/DTrace


1:6 Moustafa Mahmoud, Mohammad Mannan, and Amr Youssef

Our whole system provenance graph creation differs from previous work (cf. [29, 30, 35, 40]).
While the previous work focused mainly on the causality tracking part when generating the
provenance graph, our LogCore engine processes the raw kernel event logs before generating
the graph. The processing includes generating a uniformly structured and reduced event log
representation form with system objects uniquely identified in the whole system runtime, and
causal relationship between system entities preserved. This is a crucial requirement in our design
to facilitate coupling the whole system graph (LogCore output) with high-level attack artifacts
from the CTI reports.

Technical details of the LogCore engine including generating the canonical form representation
and the causality tracking are provided in Appendix A.

3.3 Attack Artifacts Construction
We design ProvQuery to fill in the semantic gap between the abstract APT attack definitions in the
MITRE ATT&CK framework and the system event log using the technical attack details from the
CTI reports. We manually extract IOCs and the attacker’s behavior from the threat intelligence
reports by industry (e.g., Darktrace [15] and FireEye [25, 28]). CTI reports describe the attack
tactics (e.g., Lateral Movement) and techniques (e.g., Exploitation of Remote Services) as well as
the attacker’s behavior [36].
Threat intelligence information is available in public and private threat intelligence feeds (e.g.,

AlienVault [4], Abuse.ch [1], EclecticIQ [20]), as well as from threat intelligence reports by industry
(e.g., FireEye [27], Red Canary [64]). The attack artifacts are described in structured and semi-
structured formats including, OpenIOC,4 Structured Threat Information eXpression (STIX),5 Cyber
Observable eXpression (CybOX),6 YARA,7 etc. Given the rapid increase in the attack volume and
sophistication, the attack artifacts are often descried in unstructured text (as in the CTI reports by
industry).

We model the behavior appearing in the CTI reports as a set of attack provenance queries using
our proposed ProvQuery approach. Every APT attack stage is represented by a set of provenance
queries that reflect the causal relationship between the original source of the event and the attack
event. To facilitate building the attack queries, we need to understand the low level behavior of
popular applications, and determine that the low level attack activities in the event log can be
located by ProvQuery based on the high level CTI reports.

Finally, we build the provenance queries on top of Neo4j [57] graph database engine to leverage
its mature native graph database storage and processing. Our system synthesizes Neo4j queries to
match attack artifacts from the stream of system events, and perform stateful computation and
attack graph construction which represents the temporal evolution of the attack events.
Low Level Behavior of Popular Linux Applications. We conduct a manual study of five Linux
applications that are widely used in APT attacks: Firefox, Nginx, SSH, Apache and PHP. We select
these applications based on the DARPA Engegement 3 and 5 reports [17, 18], the APT41 FirEeye CTI
report [25], and APT35 CTI report [28]. We study the attack artifacts from available aforementioned
CTI reports and the audit log to validate the following: (1) if we can map the high level artifacts in
the CTI reports to the low level audit log; (2) how application tasks are handled in the low level
audit log. We find that behavior of applications can be different based on the type of the application.
For instance, server applications that need privilege separation, fork processes if the applications
will start new tasks (see Figure 2). On the other hand, applications that are based on a single process
4https://github.com/mandiant/OpenIOC_1.1
5https://stixproject.github.io/
6https://cyboxproject.github.io/
7http://virustotal.github.io/yara/

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://github.com/mandiant/OpenIOC_1.1
https://stixproject.github.io/
https://cyboxproject.github.io/
http://virustotal.github.io/yara/


APTHunter: Detecting Advanced Persistent Threats in Early Stages 1:7

Listing 1 Single process application example: event log records for a single process application
(scp) which handles tasks sequentially (i.e., does not spawn new process to handle new tasks).

(a) Scp Process Execve SYSCALL

type=SYSCALL TS=1618072037.116 ID=827810

syscall=execve exit=0 ppid=7162 pid=7176

exe="/usr/bin/scp"

type=EXECVE a0="scp" a1="/etc/hosts"

a2="x10@192.168.8.134:~/victim_data/hosts"

(b) Close SYSCALL

type=SYSCALL TS=1618072037.116 ID=827812

syscall=close ppid=7162 pid=7176

exe="/usr/bin/scp"

type=PROCTITLE TS=1618072037.116 ID=827812

proctitle="bash"

such as wget and scp, do not fork a child process, but rather, they handle tasks sequentially one by
one. See Listing 1 for an event log record example for single process applications. This observation
is pivotal in our design to bridge the semantic gap between the high level attack artifacts in the
CTI reports and the low level audit log. We used that in the design of the provenance queries.

Fig. 2. The sshd daemon process forks a child process and the child process further spawns other process for
various functionalities (secure copy).

Attack Provenance Query. From CTI reports, we manually extract attack artifacts including
accessed files and executed processes. We model the attack behavior from the CTI report as a set of
attack provenance queries using ProvQuery, which provides explicit constructs to specify system
entities, events, as well as event relationships. This facilitates the specification of rules to detect
known attack behaviors or enterprise-wide security policies. ProvQuery constructs attack queries
by defining seven main components: source subject, target object, immediate syscall, intermediate
process, intermediate syscall, and process tree path length. The queries are in the form:〈

𝑁1 : 𝑛𝑜𝑑𝑒
〉〈
𝑅𝐼 : 𝑠𝑦𝑠𝑐𝑎𝑙𝑙

〉〈
𝑙𝑒𝑛𝑔𝑡ℎ

〉〈
𝑁2 : 𝑛𝑜𝑑𝑒

〉
(Prerequisite Query)〈

𝑁3 : 𝑛𝑜𝑑𝑒
〉〈
𝑅𝑀 : 𝑠𝑦𝑠𝑐𝑎𝑙𝑙

〉〈
𝑁4 : 𝑛𝑜𝑑𝑒

〉
(Main Query)

where nodes 𝑁1 and 𝑁4 denote the source subject and target object respectively, while nodes
𝑁2 and 𝑁3 denote the intermediate processes. Subject examples include processes such as the
Firefox process, while object examples include files such as /etc/passwd. 𝑅𝐼 and 𝑅𝑀 denote
intermediate and immediate relationships (syscalls) respectively. Syscall examples include read,
write, execve, and connect. 𝑙𝑒𝑛𝑔𝑡ℎ denotes the process tree path length which limits the
collection of information flows starting from node 𝑁1 to all successor nodes 𝑁2 with the maximum
process tree path equals to the specified 𝑙𝑒𝑛𝑔𝑡ℎ. Figure 2 shows sshd daemon (𝑁1) has relationships
of fork and execve with process scp within a path of 𝑙𝑒𝑛𝑔𝑡ℎ = 3. Note that the process tree path
length (𝑙𝑒𝑛𝑔𝑡ℎ) can be adjusted by the enterprise based on the needed level of visibility, given that
increasing it would increase the processing time, and possibly the number of false positives (see
Section 5).

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:8 Moustafa Mahmoud, Mohammad Mannan, and Amr Youssef

Prerequisite Query’s goal is to find artifacts from the event log which are prerequisites for
another set of activities (represented by Main Query) that may occur in the far or near future. The
main query is constructed based on attack activity in the CTI reports and is conditioned by matches
from the prerequisite query. Coupling together the matches from both queries (each with different
triggering point in time), would indicate with high certainty the occurrence of an attack.

The prerequisite and main queries are then used to produce the provenance query that represents
the attack behavior. Technically, the main query contains conditions which match certain activities
corresponding to a specific attack stage from the CTI report. Example of this includes using well-
known OS commands (e.g., whoami, hostname, and id) as part of Internal Reconnaissance. We
consider signals generated from the main query as weak signals that may indicate occurrence of
attack activities. However, we do not rely only on this to generate an alert. In addition, we also add
the prerequisite query as a factor of certainty, if matched, would indicate with high probability
that the activities are part of attack. Note that the prerequisite query is optional in our design, and
thus omitted when no prerequisite conditions are needed for the main query. In Section 4, we show
representative examples of the provenance queries as per every attack stage.
Query Extraction Sources. To construct attack queries in the ProvQuery approach, first, we
manually locate different stages in the CTI report. Second, we identify different arguments and
convert them into generic forms to facilitate covering mutated attack artifacts. Then, we construct
attack queries based on conditions per every stage. We use the following two excerpts from DARPA
engagement 5 ground truth report available in [18], to show, step by step, how the attack provenance
queries are constructed. These two attack scenarios are also included in the list of APT attack
scenarios used in our evaluation. The first excerpt shows part of the Firefox Drakon APT attack
scenario using a compromised domain.

Exploit Firefox by browsing to the hijacked www.yale.edu. This resulted in C2 connections to
35.106.122.76:80 and 69.155.209.87:80. The attacker used elevate to gain root privileges. The
attacker got the processing listing, found the sshd process, and injected into it using a new
process injection technique. This resulted in new C2 connections to aforementioned addresses.

The second excerpt shows part of Nginx Drakon APT attack scenario exploiting public-facing
application (Nginx).

Exploit Nginx by simulation of remote code execution on the listening port of the webserver
TCP 80. The malformed HTTP POST was sent from 128.55.12.167 and resulted in C2 to
4.21.51.250:80. The attacker got the hostname and username.

Stage Identifier. To construct attack queries, we first locate attack artifacts in the CTI report. Then,
we identify the attack technique used and map it to the corresponding attack stage as defined in
MITRE ATT&CK. In the first excerpt, for instance, the first sentence describes Initial Compromise
stage as per MITRE ATT&CK T1584.001 Compromise Infrastructure – Domains, and then the
second sentence denotes the Establish Foothold stage. The next sentence shows an example of the
Escalate Privileges stage, and the sentence after describes activities in the Internal Reconnaissance
stage.
Robust Identification. Attackers often mutate attack artifacts to mislead defense systems; e.g.,
they may use different IP addresses, files with different hash values. To detect mutated artifacts,
we transform identified objects (e.g., IP address) into a generic form. The above excerpts mention
several IP addresses, which we simply map into %UnTrustedIPAddresseses%. Similarly, we replace

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



APTHunter: Detecting Advanced Persistent Threats in Early Stages 1:9

Firefox with %BrowserProcess%. Hence the resulting rule is not only valid for Firefox and those
IP Addresses but it is also valid for other browsers and other untrusted IP Addresses. The list of
%UnTrustedIPAddresseses% includes all external IP Addresses that are not whitelisted enterprise-
wide. Whitelisted IP Addresses may include IP ranges of vendors, suppliers, and third parties
that the enterprise has direct business relationship with, as well as IP addresses for well-known
corporations (e.g., Google, Microsoft). Network orchestration solutions (e.g., Tufin) may be used to
populate and update this list on time. In our experiments, we considered IP addresses in the private
subnet ranges as trusted, while assuming that all other IP addresses are untrusted. The system also
includes definitions of the browser processes with a default set of known browsers, and can also be
configured by system admins.

3.4 Searching for Indicators of Attack
Finally, we model threat hunting as determining whether the detection engine generates hits by
applying different constructed attack provenance queries to the whole system provenance graph.
A match indicates that the attack behavior manifests itself inside the whole system provenance
graph.

Constructed provenance queries represent different attack signals that generate alerts if certain
crafted criteria matched. They provide real-time monitoring of endpoint events for malicious
behaviors and methodologies of attack. Unlike specific set of IOCs (e.g., hash values, IP addresses),
provenance queries are evergreen heuristics,8 and hence are perpetually relevant. Provenance
queries identify malicious activities by searching for behaviors rather than specific indicator values.
We note at this point that the main query parts of the provenance queries, which are built

based on the CTI reports, express the high-level flows between system entities. In contrast, the
whole system provenance graph, even if it is based on the carefully crafted canonical audit log
representation, still represents the low-level activities of the system. As a result, locating an activity
in the provenance graph based only on the main query is challenging, as an edge in the main query
might correspond to a path in the whole system provenance graph. An example of that is when a
compromised process (e.g., Nginx) forks another instance of itself before reading a confidential
file. We observe this kind of behavior for server-based processes, when treating new tasks. Also
attackers often create this kind of behavior to add noise to their activities to escape detection.
Therefore, we use the prerequisite query technique that can help in matching a single edge in the
main query to paths in the whole system provenance graph. In the prerequisite query, we use the
intermediate path (𝑅𝐼 ) with a process tree path length (𝑙𝑒𝑛𝑔𝑡ℎ) to fill in that gap.

A common practice in attack forensics to determine the process tree path length is to do backward
tracing from the artifact matching point to reach an initial compromise point [41, 43, 44]. Incremental
matching is another approach used in the literature [10, 51]. In incremental matching, the results
of the previously matched artifact, that may be a prerequisite for another artifact, is stored and
propagated to all the low level entities that have dependencies on the entities of that matched
artifact. An example of this, if initial compromise artifact is detected on node (𝑁1), this information
will be propagated to all child nodes that are dependant on the node (𝑁1). Unfortunately, both
techniques are computationally expensive in real-time enterprise setting as the provenance graph
grows with the time to include millions of activities spanned across a long period of time.

Instead, we tag nodes with matched artifacts that are prerequisites for other artifacts. So now, to
determine if artifacts related to certain attack (e.g., Credential Dump) match, we issue a backward
tracing to processes previously tagged with the prerequisite conditions. For the Credential Dump
example, we search for processes tagged as Compromised or Super User Privilege. Hence the 𝑙𝑒𝑛𝑔𝑡ℎ

8https://blog.juriba.com/evergreen-it-concept-or-reality

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://blog.juriba.com/evergreen-it-concept-or-reality


1:10 Moustafa Mahmoud, Mohammad Mannan, and Amr Youssef

represents the path length between the processes tagged with the matched prerequisite conditions
and the processes with main query.
APTHunter comes with a preconfigured set of provenance queries to detect different attack

stages. The provenance queries are constructed based on the available CTI reports for the selected
set of APT attacks with the goal to detect matched or similar attack behavior for other APTs. The
construction of provenance queries is an offline stage in our system. Consuming and processing
the event logs, generating the whole system provenance graph, executing the provenance queries,
and generating attack detection alerts occur at runtime. Security engineers can also write their
own provenance queries to detect newly published APT attack artifacts.

When a provenance query triggers an alert, and an event matches in the whole system provenance
graph, the resulting alert shows the context of the match. The context is represented by a graph
showing the evolution of events between different system entities involved in the attack behavior.

3.5 Garbage Collector
We design a garbage collector (GC) which aims to allow APTHunter to efficiently use the whole
system memory and promptly get results from the execution of the provenance queries. The idea
here is to only keep in the provenance graph database and hence in memory all entities which
are eligible to be queried by the ProvQuery and discard all those which are not eligible. An entity
is eligible when it is within the selected process tree path length. The garbage collector has two
processes; mark and sweep. The mark process marks all eligible entities as “live”. When a process
terminates, the tag “live” will be removed, unless the process is within the selected process tree
path length. In the latter case, the tag will be kept. All direct entities which are not processes and
which have relationships with “live” entities are also marked as “live”. We make sure that no node
will be removed even if it is exceeded the path length unless it is terminated. We also make sure
that terminated processes are covered when they are within the process path length. The sweep
process then scans all entities and deletes those without the tag “live” to reclaim memory.

4 PER STAGE PROVENANCE QUERY CONSTRUCTION
In this section, we provide representative examples of attack provenance queries to detect different
APT attack stages. We use the attack excerpts from Section 3.3 in the text below.

4.1 Initial Compromise
The first excerpt mentions several entities and actions. We transform them into provenance query
conditions to pinpoint the attack stage. For instance, the first sentence clearly denotes a %Browser-
Process% connects to a hijacked website (%TrustedIPAddresses%), and this results in connection to
(%UnTrustedIPAddress%) under the attacker’s control. This is clearly a Domain Hijaking (T1584-001)
attack technique as in MITRE ATT&CK framework.

Hence, we identify the prerequisite query to be as follows:
Find all processes 𝑁2 with the following conditions:

𝑁1 ∈ {𝐵𝑟𝑜𝑤𝑠𝑒𝑟𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∧ 𝑅𝐼 = 𝑓 𝑜𝑟𝑘 ∧ 𝑁2 ∈ {𝑅𝑒𝑚𝑜𝑡𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠}
where RemoteAccessProcesses is the list of processes used for remote access (e.g., SSHD). Now, the
main query aims to find all hits with the following conditions:

𝑁3 ∈ {𝑁2} ∧ 𝑅𝑀 = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 ∧ 𝑁4.𝑖𝑝 ∉ {𝑇𝑟𝑢𝑠𝑡𝑒𝑑𝐼𝑃𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠}
In the second excerpt, it is clear that a reverse shell has been sent to the attacker’s C2 server, after

successfully exploiting a buffer overflow in a vulnerable Internet facing service (Nginx). We correlate
this technique with MITRE ATT&CK T1190 Exploit Public-Facing Applications. This correlation is

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



APTHunter: Detecting Advanced Persistent Threats in Early Stages 1:11

crucial as the same MITRE ATT&CK technique, used in different CTI reports, describes the same
attack behavior, and hence the same provenance query can be leveraged to detect it. We translate
the attack behavior as a provenance query for reverse shell detection with the following criteria:
The prerequisite query:

𝑁1 ∈ {𝑃𝑢𝑏𝑙𝑖𝑐𝐹𝑎𝑐𝑖𝑛𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∧ 𝑅𝐼 = 𝑎𝑐𝑐𝑒𝑝𝑡 ∧ 𝑁2.𝑖𝑝 ∉ {𝑇𝑟𝑢𝑠𝑡𝑒𝑑𝐼𝑃𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠}

The main query:

𝑁3 ∈ {𝑃𝑢𝑏𝑙𝑖𝑐𝐹𝑎𝑐𝑖𝑛𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∧ 𝑅𝑀 = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 ∧
𝑁4 .𝑖𝑝 ∉ {𝑇𝑟𝑢𝑠𝑡𝑒𝑑𝐼𝑃𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠} ∧ 𝑁4 ∉ {𝑁2}

where 𝑁2 and 𝑁4 represent sockets (IP Address, Port).
The reverse shell rule aims to detect untrusted connections, where no previous connections are

received from the same pair of IP address and port. This may indicate that a remote attacker is
trying to exploit a vulnerable public-facing application with open ports to receive a reverse shell
to an attacker’s C2 server. Internet-facing applications include web applications, databases (e.g.,
MySQL), standard services (e.g., SMB and SSH), web servers (e.g., Apache and Nignx), and any
other applications with Internet accessible open ports [54].
Similarly, other Initial Compromise techniques from MITRE ATT&CK are correlated with

matched artifacts from the CTI reports and hence mapped into provenance queries that will
be able to identify the activity in event logs. As mentioned in Section 3, the prerequisite query is
optional in our design. For example, the provenance query for MITRE ATT&CK T1571 Non Standard
Port technique is identified by the main query. The aim here is to find all hits for process 𝑁3 with
the following conditions:

𝑁4.𝑖𝑝 ∉ {𝑇𝑟𝑢𝑠𝑡𝑒𝑑𝐼𝑃𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠} ∧
𝑃𝑎𝑖𝑟 (𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑁3 𝑎𝑛𝑑 𝑃𝑜𝑟𝑡 𝑁4.𝑝𝑜𝑟𝑡) ∉
{𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃𝑜𝑟𝑡𝐿𝑖𝑠𝑡} ∧ 𝑅𝑀 = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡

Adversaries may make changes to the standard port used by a service to bypass filtering controls.
For example, using SSH over port 2222 or port 587 as opposed to the traditional port 22. Another
form of T1571 Non Standard Port technique is by using a port that is typically used by a well-known
service with another service, e.g., using port 88 with processes other than the lsass.exe

in Windows. This may indicate kerberoasting [61] activity in which adversaries attempt to dump
lsass memory for credential stealing. This is a well-known technique used by several sophisticated
APTs [55].

4.2 Establish Foothold
Once the adversaries successfully compromised the system, theywould seek for a shell.We formalize
the conditions for the prerequisite query to be as follows.
Find all processes 𝑁2 where:

𝑁1 ∈ {𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∧
𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧
𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

CompromisedProcesses is a set of all processes tagged as compromised from the Initial Compromise
stage. We then use the prerequisite query to list all processes forked or executed by those com-
promised processes up to the max process tree path length (𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ) tuned by the security

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:12 Moustafa Mahmoud, Mohammad Mannan, and Amr Youssef

engineer. 𝑁2 holds the list of those resultant processes, which will be used in the main query. Now
for the main query, the aim is to find all processes 𝑁3 where:

𝑁3 ∈ {𝑁2} ∧ 𝑅𝑀 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧
𝑁4 ∈ {𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝐿𝑖𝑛𝑒𝑈𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠}

4.3 Other Attack Stages
In the following, we discuss the logic behind detection of malicious behaviours of the next APT
attack stages. We also provide representative examples of provenance query conditions with the
full list consolidated in Appendix B.
Escalate Privileges. As in the first excerpt, “The attacker used elevate to gain root privileges.” This
indicates that the attacker exploited a vulnerable service on the device which resulted in giving
the attacker root access. Another way of escalating privilege is by executing commands using
privileges of super user account. Adversaries may also abuse the scheduled task functionality in an
OS to facilitate privilege elevation.
Furthermore, adversaries may attempt to dump credentials to escalate privilege, to laterally

move to another more sensitive device in the network, and/or to extract sensitive information.
Adversaries may also compromise valid domain accounts, allowing access to privileged resources in
the domain (T1078.002: Valid Domain Accounts). Here, we provide the provenance query conditions
for scheduled task and Valid Domain Accounts attack techniques. The query conditions for the other
attack techniques are provided in the GitHub repository.
The prerequisite query for the Scheduled Task attack technique:

𝑁1 ∈ {𝑐𝑟𝑜𝑛.𝑑} ∧ 𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

The main query:

𝑁3 ∈ {𝑁2} ∧ 𝑅𝑀 ∈ {𝑐ℎ𝑜𝑤𝑛} ∧ 𝑁4 .𝑢𝑖𝑑 ∈ {𝑆𝑢𝑝𝑒𝑟𝑈𝑠𝑒𝑟𝑠}

The prerequisite query for the Valid Domain Accounts attack technique:

𝑁1.𝑢𝑖𝑑 ∉ {𝐷𝑜𝑚𝑎𝑖𝑛𝑈𝑠𝑒𝑟𝑠} ∧ 𝑁2 ∈ {𝑆𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠}
∧ 𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

The main query:

𝑁3 ∈ {𝑁2} ∧ 𝑁3.𝑢𝑖𝑑 ∈ {𝐷𝑜𝑚𝑎𝑖𝑛𝑈𝑠𝑒𝑟𝑠} ∧
𝑅𝑀 = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 ∧ 𝑁4 ∈ {𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐼𝑃𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠} ∧
𝑁4 .𝑖𝑝 ∈ {𝐷𝑜𝑚𝑎𝑖𝑛𝐼𝑃𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠}

Internal Reconnaissance. The adversaries now try to discover the internal network and the
enterprise assets. They can use the operating system’s native tools (e.g., whoami, hostname), and
they may use OS utilities e.g., PowerShell, and customised tools e.g., Remote Access Trojans (RATs).
Adversaries may also conduct port scanning to discover the vulnerable internal services. We create
four provenance queries to detect those cases as in Appendix B.
Lateral Movement. Following their objective to find the key assets in the enterprise network,
adversaries may explore the network by connecting to other internal devices. They may use
techniques including Pass the Hash9 after stealing credentials. We formalize the provenance queries
to detect connections to internal devices from any host in which initial compromise or internal
reconnaissance activities were detected.
9https://attack.mitre.org/techniques/T1550/002/

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://attack.mitre.org/techniques/T1550/002/


APTHunter: Detecting Advanced Persistent Threats in Early Stages 1:13

Complete Mission. In the Complete Mission stage, attackers now have persistent access to the
victim network. They lurked internally in the network and identified sensitive assets. They now
decide to complete the mission by exfiltrating sensitive information and/or destroy the system
altogether. In the following, we formalize provenance queries to detect several attack techniques in
this APT stage.
Exfiltration Over C2 Channel. Once the adversaries have identified and collected the data from the
enterprise, they try to get it out of the enterprise network by exfiltrating it over existing command
and control channel (T1041: Exfiltration Over C2 Channel). Two prerequisite conditions should be
satisfied before the attackers would be able to exfiltrate the data. They should have compromised
the system and identified the sensitive assets (e.g., directories, files) that they would then steal
or destroy. These two conditions may not be tied together as the adversary may have accessed
the system using stolen credentials. Thus, sending data outside of the enterprise network to a
non-trusted IP address after either compromising the system or identifying sensitive assets, would
trigger an alert of sensitive data leakage by the provenance query.
Exfiltration by Bypassing Defense Controls. Enterprises may use several data loss prevention
(DLP [37]) controls to detect and prevent such data leakage based on a predefined set of cri-
teria including size of the data (e.g., > 10MB), or the frequency of the exfiltration events even if the
outbound data size is less than the threshold (e.g., more than 10 connections with size of > 1MB
from the same user).

Adversaries may want to stop software security agents (used by those controls to communicate
with the DLP systems) installed on the target devices before being able to exfiltrate data. Otherwise,
the data exfiltration will be failed, and indeed, security analysts would receive alerts about the
attempts. Running and stopping services on devices, usually need the super user privilege. Thus,
adversaries may leverage privilege escalation to have super user access in the device and then stop
the agent (or reinstall a compromised version of it), before sending data outside the network.
Destroy System. Here the adversaries aim to either damage the file system or to remove sensitive
enterprise information after they have successfully exfiltrated them.We crafted multiple provenance
queries to detect those Complete Mission activities.
Cleanup Tracks. Provenance queries to detect suspicious File Deletion, Remove Log Files, and Clear
Log Commands activities are created to pinpoint such suspicious behaviors.

5 EXPERIMENTAL EVALUATION
We configured APTHunter with the provenance queries consolidated in Appendix B.

We set process tree path length (𝑙𝑒𝑛𝑔𝑡ℎ = 3) for our evaluation. We examined different 𝑙𝑒𝑛𝑔𝑡ℎ
values spanning from 1 to 9, and found that 𝑙𝑒𝑛𝑔𝑡ℎ = 3 provides the optimum results for precision
and recall values with plausible attack search time.
We evaluate APTHunter’s efficiency and accuracy in three different experiments. In the first

experiment, we use a set of DARPA Transparent Computing (TC) program red-team adversarial
engagement scenarios which are set up simulating an enterprise network. The setup contains
target hosts (BSD, and Linux) with the kernel audit log enabled. During the engagement period,
benign background activities were continuously run in parallel to the attacks from the red team.
In the second experiment, we further test APTHunter on real-world APTs whose CTI reports are
publicly available. To reproduce the attacks described in the public threat reports, we obtained and
executed their binary samples in a controlled environment and collected the kernel audit logs from
which we build the whole system provenance graph database. In the third experiment, we evaluate
APTHunter’s robustness against false alerts in benign dataset.

Also, to show the effectiveness of APTHunter, we compare APTHunter results with the previous
work (HOLMES [51]) as it is a APT detection rule-based system, although its goal was different

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:14 Moustafa Mahmoud, Mohammad Mannan, and Amr Youssef

from ours (detecting APT as whole vs. detecting APT per stage). Since we were not able to acquire
the implementation of HOLMES, we reimplemented a per stage version of it, and call it S-HOLMES.
We validated the correctness of this reimplementation by comparing the results of S-HOLMES with
the published results, besides verifying with the authors of HOLMES.

5.1 Evaluation on the DARPA TC Dataset
This experiment was conducted on a dataset released by the DARPA TC program [16], generated
during the red-team adversarial engagements 3 and 5 conducted in April 2018 [17] andMay 2019 [18],
respectively. In the engagements, different services were set up, including web servers, SSH servers,
email servers, and SMB servers. An extensive number of benign activities were running, including
system administration tasks, web browsing, downloading, compiling, and installing multiple tools.
To execute the attack scenarios, the red-team relies on threat descriptions, which we use to construct
provenance queries for each stage for all attack scenarios. These threat descriptions are included in
the ground truth reports provided by DARPA. We use the ground truth reports as the CTI reports
for DARPA red-team activities.
We evaluated APTHunter on eight attack scenarios on FreeBSD, Ubuntu 12.04 (64 bit), and

Ubuntu 14.04 (64 bit). The attack scenarios cover several attack techniques per every stage. Tech-
niques including Drive-by Compromise (e.g., using a vulnerable version of Firefox), and Exploit
Public-Facing Application (e.g., vulnerable Nginx) are examples of attack vectors used for Initial
Compromise. In Escalate Privileges, adversaries are trying to gain higher-level access. Techniques
including setuid and setgid, and sudo and sudo caching are examples of techniques used to
elevate privilege in DARPA. See Table 1 for a summary of these techniques for the DARPA dataset
streams.

Stream
No.

Duration Platform Scenario
No.

Initial Access
Technique

Attack
Surface

1 0d1h17m Ubuntu
14.04 (64bit) 1 Drive-by

download Firefox 42.0

2 2d5h8m Ubuntu
12.04 (64bit) 2 Drive-by

download
Firefox 42.0 /
Trojan / RAT

3 1d7h25m Ubuntu
12.04 (64bit) 3 Drive-by

download
Firefox 42.0 /
Trojan / RAT

4 2d5h17m FreeBSD
11.0 (64bit) 4 Web shell Web shell /

Nginx backdoor / RAT

5 8d7h15m
FreeBSD
11.0 (64bit) 5 Web shell Nginx backdoor /

sudo

6 Public-facing Nginx
backdoor

6 0d0h36 Ubuntu
14.04 (64bit) 7 Drive-by

download

Firefox 42.0 /
sudo /sshd /
Process inject

7 1d22h58m Ubuntu
12.04 (64bit) 8 Drive-by

download

Firefox 42.0 /
sudo /sshd /
Process inject

Table 1. Datasets. Streams 1 to 5 are fromDARPA Engagement 3, Streams 6 and 7 are fromDARPA Engagement
5. Streams 5 contains two independent attack vectors occurring on the same host.

Setup. To facilitate comparing detection results with S-HOLMES, we calculated the threat and the
benign scores per every attack stage rather than for the whole campaign. To determine the score
optimal threshold value that can be used to generate attack alerts, we measure precision, recall,
and F-score by varying threshold values until we achieve maximum precision and recall values. As

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



APTHunter: Detecting Advanced Persistent Threats in Early Stages 1:15

a noise reduction factor, we also implemented S-HOLMES using 𝑝𝑎𝑡ℎ_𝑓 𝑎𝑐𝑡𝑜𝑟 = 3 as recommended
by the authors. We do not take noise reduction rules into consideration, as they are solely based on
learning the system benign behavior. Since the benign behavior varies with time and based on the
circumstance (e.g., on system patching, rebooting etc.), we believe it will have little impact on the
results. We then compare the generated alerts with the precise ground truth provided by DARPA
to calculate the precision (as indicator of false positives), the recall (as indicator of false negatives),
and the F-score (the harmonic mean of precision and recall).
Detection Results. Table 4 shows the results for S-HOLMES and APTHunter for the eight DARPA
attack scenarios in terms of precision, recall, and F-score values.

Table 2 and Table 3 show the measurements of S-HOLMES in terms of threat and benign scores
calculated as per every attack stage for DARPA attack scenarios and the two public APT attacks
respectively. As S-HOLMES follows the original HOLMES design, threat and benign scores do not
change when there is no adversarial activities per the corresponding attack stage.

Scenario
No. Measurements S-HOLMES

S1 S2 S3 S4 S5 S6 S7

1 Threat Score 13 108 108 1987 1987 55342 1163881
Benign Score 13 108 108 1328 1328 1328 1328

2 Threat Score 13 108 108 1988 1988 55379 55379
Benign Score 13 108 108 1331 1331 1331 1331

3 Threat Score 13 108 108 1987 1987 55342 1163881
Benign Score 13 29 298 298 298 298 298

4 Threat Score 2 5 74 903 903 25153 25153
Benign Score 7 62 638 638 638 638 638

5 Threat Score 13 29 432 7946 7946 221381 4648997
Benign Score 7 60 897 16504 16504 16504 16504

6 Threat Score 7 17 247 4530 4530 126199 2653973
Benign Score 7 60 897 16504 16504 16504 16504

7 Threat Score 13 29 297 5466 96092 96092 96092
Benign Score 13 108 1110 13650 13650 13650 13650

8 Threat Score 13 108 1110 20414 20414 568743 568743
Benign Score 13 13 108 1615 19844 19844 19844

Table 2. S-HOLMES evaluation on DARPA attack scenarios. Threat and benign scores are calculated per every
attack stage (S1, S2, ..., S7).

APTs CTI Report
Year Measurements S-HOLMES

Report S1 S2 S3 S4 S5 S6 S7

APT41 FireEye [25] 2019 Threat Score 2 18 18 226 226 9002 308730
Benign Score 2 18 18 338 338 338 338

APT35 Darktrace [15], 2021 Threat Score 7 62 62 1133 1133 45089 948268
FireEye [28] 2019 Benign Score 10 85 85 1039 1039 1039 1039

Table 3. S-HOLMES evaluation on public attacks.

As evident from S-HOLMES results, the score deviation between threat and benign scores starts
to clearly emerge from stage six, for most of attack scenarios and hence, S-HOLMES can perfectly
capture all attack artifacts from the Complete Mission stage. On the contrary, S-HOLMES is unable
to detect any of the attack artifacts for the first three attack stages (Initial Compromise, Establish
Foothold, and Escalate Privileges), for most of the attack scenarios as the threat scores do not reach
the threshold value. Starting from stage 4 (Internal Reconnaissance), S-HOLMES starts to generate
alerts with a high rate of false positives as the threat and benign scores are very close.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:16 Moustafa Mahmoud, Mohammad Mannan, and Amr Youssef

On the other hand, APTHunter precisely captured the attack artifacts as early as in the Initial
Compromise stage. In terms of false positives, APTHunter encountered low performance for attack
scenario six (for the Initial Compromise stage, precision = 0.46), where the DARPA performers
added noise to the dataset by forcing the Nginx process to communicate to external IP addresses in
a way that mimics reverse shell activities.10

In terms of false negatives, APTHunter missed one of the Initial Compromise stage activities for
attack scenario 5 as the adversary used stolen credentials to access the victim device, resulting in
recall of (0.715).
Once the adversary implanted a web shell on the victim’s device, APTHunter could perfectly

detect the activities in the next stage (Establish Foothold).

Scenario
No. Measurements S-HOLMES APTHunter

S1 S2 S3 S4 S5 S6 S7 S1 S2 S3 S4 S5 S6 S7

1
Precision 0 0 - 0.143 - 1 1 1 1 - 1 - 1 1
Recall 0 0 - 0.821 - 1 1 0.861 1 - 1 - 1 1
F-score 0 0 - 0.244 - 1 1 0.925 1 - 1 - 1 1

2
Precision 0 0 - 0.253 - 1 - 1 1 - 1 - 1 -
Recall 0 0 - 0.921 - 1 - 0.832 1 - 1 - 1 -
F-score 0 0 - 0.397 - 1 - 0.908 1 - 1 - 1 -

3
Precision 0 0 - 1 - 1 1 1 1 - 1 - 1 1
Recall 0 0 - 0.846 - 1 1 0.824 1 - 1 - 1 1
F-score 0 0 - 0.917 - 1 1 0.904 1 - 1 - 1 1

4
Precision 0 0 0 0.215 - 1 - 1 1 1 1 - 1 -
Recall 0 0 0 0.761 - 1 - 0.8 1 1 1 - 1 -
F-score 0 0 0 0.43 - 1 - 0.889 1 1 1 - 1 -

5
Precision 0 0 0 0.162 - 1 1 1 1 1 1 - 1 1
Recall 0 0 0 0.734 - 1 1 0.715 1 1 1 - 1 1
F-score 0 0 0 0.266 - 1 1 0.834 1 1 1 - 1 1

6
Precision 0 0 0 0.137 - 1 1 0.46 1 1 1 - 1 1
Recall 0 0 0 0.781 - 1 1 0.867 1 0.882 1 - 1 1
F-score 0 0 0 0.233 - 1 1 0.601 1 0.937 1 - 1 1

7
Precision 0 0 0 0.491 0.738 1 - 0.957 1 0.99 1 1 1 -
Recall 0 0 0 0.762 1 1 - 1 1 1 1 1 1 -
F-score 0 0 0 0.597 0.849 1 - 0.978 1 0.995 1 1 1 -

8
Precision 0 0 1 0.135 0.546 1 - 0.988 1 1 1 1 1 -
Recall 0 0 0.977 0.592 0.988 1 - 1 1 1 1 1 1 -
F-score 0 0 0.988 0.219 0.703 1 - 0.944 1 1 1 1 1 -

Measurement ≥ 0.9 0.9 > Measurement ≥ 0.6 0.6 > Measurement ≥ 0.4 0.4 > Measurement

Table 4. Evaluation on DARPA attack scenarios. The detection results are per every attack stage S1: Initial
Compromise, S2: Establish Foothold, S3: Escalate Privileges, S4: Internal Reconnaissance, S5: LateralMovement,
S6: Complete Mission, S7: Cleanup Tracks), and are based on the measured Precision, Recall and F-score.
Note: we use ‘-’ when there are no adversarial activities for the corresponding attack stage. We use ‘0’ to
indicate that no alerts are generated by the detection system.

5.2 Evaluation on Other Real-World APT Attacks
We additionally evaluate APTHunter on two other real-world APTs (not included in the DARPA
tests), and compare its effectiveness with S-HOLMES; see Table 5. Note that we use the same set
of provenance queries as used with DARPA adversarial scenarios to understand how generic our
queries are for other APTs. Our provenance queries represent attack behaviors rather than certain
10Review of the attack provenance graph generated by APTHunter also did not show any further attack activities for the
next stages.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



APTHunter: Detecting Advanced Persistent Threats in Early Stages 1:17

IOCs. For a given attack technique, the attack behavior often remains constant even with using
different attack tools (e.g., RATs). We aim to test the performance of our system against new APT
attacks which use similar attack techniques (but with different tools).
Attack Scenarios Description.We simulate two recent APT attack scenarios, covering all their
attack stages. Different artifacts from the available CTI reports [15, 25, 28] are collected and mutated,
given that it is a common practice among attackers to mutate attack artifacts to evade detection
systems. To that end, we use publicly available mutated versions of the malware used in those
APTs. We also used another set of IP addresses for C&C. While mutating attack artifacts, we make
sure that the attack behavior in every stage remains as is.
Double Dragon APT41. APT41 is attributed to a Chinese cyber threat group who carry out
espionage and financially motivated activities, targeting mainly the healthcare, high-tech, telecom-
munication, and gaming sectors [25]. In our simulation, attackers start by exploiting a TeamViewer
buffer overflow vulnerability as an entry point to the victim network and use that to plant a web
shell. The web shell is used to transfer Gh0st RAT to Establish Foothold. Gh0st is used to send a
reverse shell to the C2 under the attacker’s control. Next, Mimikatz is used to dump credentails as
part of the Escalate Privileges stage. After that, Gh0st is configured to run on the startup and to
send a shell every 60 seconds to maintain persistence. Then, Internal Reconnaissance activities are
performed to identify the victim network. Port scanning and service enumeration among other
internal network enumeration activities are performed throughout this stage. Technical account
credentials are found unprotected in the victim device used to connect to a file server. The adversary
exfiltrates classified documents, credentials repositories found in the system, and concludes the
attack by clearing the audit log as part of the Cleanup Tracks stage.
Charming Kitten APT35. APT35 is attributed to an Iranian cyber-espionage group which target
U.S. and Middle eastern military, government organizations, and media and energy sectors [26]. In
our scenario, the victim is lured to visit a malicious website with a vulnerable Firefox browser which
is exploited as part of the Initial Compromise stage. Once the adversaries have access to the victim
device, they deploy a PHP web shell and used it to deploy PUPYRAT, a cross-platform and multi
function RAT, as part of the Establish Foothold stage. SMB scanning activities are performed as
part of the Internal Reconnaissance stage to enumerate the victim host operating system, open and
hidden shares, and user generic and service accounts. Generic and service accounts [14] are usually
privileged accounts and likely not highly secured [42] (possibly even using common passwords).
The adversaries are able to compromise credentials of a generic account using password spraying
technique [53]. Next, they use the generic account to add root privileges to an account under
their control as part of the Escalate Privileges stage. The adversaries, then, exfiltrate data from
the archived storage and delete system log files as part of the Complete Mission and the Cleanup
Tracks stages respectively.

APTs CTI Report
Year Measurements S-HOLMES APTHunter

Report S1 S2 S3 S4 S5 S6 S7 S1 S2 S3 S4 S5 S6 S7

APT41 FireEye [25] 2019
Precision 0 0 0 0 0 1 1 1 1 1 0.778 1 1 1
Recall 0 0 0 0 0 0.5 0.6 1 1 1 1 1 1 1
F-score 0 0 0 0 0 0.667 0.75 1 1 1 0.875 1 1 1

APT35 Darktrace [15],
FireEye [28]

2021
2019

Precision 0 0 0 0.286 0 1 1 1 1 1 0.8 1 1 1
Recall 0 0 0 0.333 0 1 1 1 1 1 1 1 1 1
F-score 0 0 0 0.308 0 1 1 1 1 1 0.889 1 1 1

Measurement ≥ 0.9 0.9 > Measurement ≥ 0.6 0.6 > Measurement ≥ 0.4 0.4 > Measurement

Table 5. Evaluation on other real-world APT attacks.

Detection Results. We compare APTHunter with the results of S-HOLMES; see Table 5 (for
S-HOLMES’ threat and benign scores for APT attack stages, see Table 3).

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:18 Moustafa Mahmoud, Mohammad Mannan, and Amr Youssef

Similar to DARPA tests, S-HOLMES usually performs well for detecting APT campaigns at later
stages when the threat and benign scores start to differentiate. For APT41, S-HOLMES starts to
detect attack artifacts from stage 6 (Complete Mission) with no false alarms (perfect precision).
However, S-HOLMES was not able to detect removing of classified documents nor clearing the log
files (artifacts in APT stages 6 and 7 respectively), resulting in several false negatives (recall = 0.5
and 0.6 for stages 6 and 7 respectively).

For Charming Kitten APT35, S-HOLMES was able to detect all attack artifacts in stages 6 and 7
perfectly without any false negatives nor false positives.
On the contrary, when the goal is to detect APT campaign in early stages, S-HOLMES was not

able to detect the attack artifacts in both APT Attack campaigns.
This is because HOLMES is solely based on the abstract definition of TTPs defined by the MITTE

ATT&CK framework. Attack behaviors included in the CTI reports are missed. In such situations,
APTHunter has a better chance to detect the attacks in early stages even with mutated attack
artifacts, as the attack behavior often remains constant among mutations. As shown in results,
APTHunter consistently outperforms in all attack stages.

5.3 Evaluation on Benign Datasets
To further evaluate APTHunter’s performance in terms of false positives, we use two weeks of
benign enterprise activities, generated as part of the adversarial engagements 3 and 5 by the DARPA
TC program. Benign activities include regular user activities (e.g., web browsing, software updates),
as well as system administration activities (e.g., system configuration, remote connections). We
evaluated our system to see if it generates false alerts as per every attack stage and APTHunter
generated no false alerts for all attack stages.

5.4 Efficiency
We evaluate the performance of APTHunter in terms of the audit log consumption time, the
provenance graph occupied memory and the attack search time to generate alerts.
Audit Logs Consumption and Provenance Graph Generation. Consumption time represents
the time needed to consume all the audit log events per every stream from disk for building the
provenance graph in memory. This time varies based on the structure of the audit log for different
operating systems and the intensity of activities on each stream which is, to some extent, reflected
by the log size on disk. For APTHunter, the consumption time includes also the time taken to
normalize and generate the canonical and compact form of the audit log, which is used to generate
the provenance graph. As a result, consumption time of S-HOLMES is slightly less than consumption
time of APTHunter; see Figure 3.
Occupied Memory. Colored lines in Figure 6 represent the memory consumption by APTHunter
throughout the ingestion of the different streams. The maximum memory consumed by APTHunter
is 107.30 MB. This allows APTHunter to cover more than 1200 hosts in one dedicated server with
128 GB of memory. In Figure 4, we show the predicated number of hosts that APTHunter can
support in one dedicated server for different memory settings. The memory consumption by the
operating system, Kafka stream processor, Neo4j engine, and the other system needed processes are
already considered in the prediction. To examine the compression ratio by APTHunter, we disabled
the garbage collector process to allow consuming all stream records in memory. By comparing the
log size on disk versus the provenance graph consumed memory, we notice that APTHunter has
an average compression ratio of around 93% for the provenance graph representation based on
our compact and reduced event log form, while the average compression ratio for S-HOLMES is
around 75% as shown in Figure 5.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



APTHunter: Detecting Advanced Persistent Threats in Early Stages 1:19

0

100

200

300

400

500

0

10

20

30

40

50

60

70

Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7

Size on Disk (GB) & Consumption Time (Min)

Size on Disk S-HOLMES (Consumption Time)

APTHunter (Consumption Time)

GB Min

Fig. 3. Log size on disk (in GB) and consumption time (from the moment the log is generated all the way to
generating the provenance graph) (in minutes). The columns show the uncompressed log size on disk, while
the brown and green lines show the consumption time for S-HOLMES and APTHunter respectively.

286

591

1202

1507

1813
2424

0

500

1000

1500

2000

2500

3000

32 64 128 160 192 256

No. of Hosts vs. Memory (GB)Hosts

Fig. 4. The number of hosts that can be supported by APTHunter in one APTHunter’s dedicated server versus
different server memory sizes (in GB). We also consider the time taken by the operating system and the other
needed processes (e.g., Neo4j engine).

Search Time. Lines in Figure 5 show the search time for both systems. The search time is measured
from themoment the rules (in S-HOLMES), or the Provenance Queries (in APTHunter) are submitted
until ending their execution on different streams. Obviously, the search time is directly proportional
to the stream size. However, we also notice that nodes with matched attack conditions have a more
significant affect on the search time, as all sub nodes need to be investigated and hence, search
time increases accordingly. To measure the search time overhead by the garbage collector, we
measure the search time when the garbage collector is enabled and one more time when we disable
it. As shown in the figure, APTHunter surpasses S-HOLMES in the search time for all streams with
average search time of 22% of the time needed by S-HOLMES (when GC is enabled) and 18% (when
GC is disabled).

6 LIMITATIONS
Even though APTHunter is designed to detect the attacker’s behavior rather than detecting specific
set of IOCs that can be mutated by the attackers, APTHunter still shares limitations with other
rule-based detection systems. In particular, APTHunter is based on attack descriptions included in
the published CTI reports. If the attacker’s behavior changes, APTHunter must be configured with
the new attack behaviour to be able to detect it. Also as in rule-based detection systems, detection
signals are tuned by threshold values (e.g., IP scan count ≥ 10); attack activities that fly under that
threshold will not be detected.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:20 Moustafa Mahmoud, Mohammad Mannan, and Amr Youssef

55

382

223 182

1007

24

1712

20

164
69 43

187

12

306

17

127

60

33

152

10

256

1

10

100

1000

0

5

10

15

20

25

30

35

Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7

Occupied Memory (GB) & Search Time (Min)

APTHunter (Occupied Memory) S-HOLMES (Occupied Memory) APTHunter (Search Time w/o GC)

APTHunter (Search Time w/ GC) S-HOLMES (Search Time)

MinGB

Fig. 5. Provenance graph occupied memory and attack search time for S-HOLMES and APTHunter. The
green and purple columns represent the total memory consumption (in GB) by S-HOLMES and APTHunter
respectively, while the light-colored lines represent the attack search time (in minutes). The dash line shows
search time by APTHunter when the garbage collector (GC) is disabled.

20

40

60

80

100

120

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Memory Consumption (MB) vs. Consumed Records 

Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7

MB

Fig. 6. Provenance graph occupied memory (in MB) for APTHunter.

In addition, adversaries who get access to the network using stolen credentials or similar means
cannot be detected by APTHunter until a malicious behavior occurs. Behavior-based systems work
better on this by detecting unusual connections to the network (e.g., a privileged user account was
used to access an application server for the first time), albeit with the cost of high volume of false
alerts.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



APTHunter: Detecting Advanced Persistent Threats in Early Stages 1:21

Moreover, APTHunter does not trigger alerts based on correlatation between detections from
different hosts. We leave this for the Security Orchestration, Automation and Response (SOAR)
systems.11 In SOAR, use cases can be created to trigger alerts in such activities.

7 RELATEDWORK
This work lies at the intersection of host-based intrusion detection, provenance-based causal
analysis, and malicious behavior discovery. Therefore, we place APTHunter in the context of
literature in these areas.
Provenance-Based Detection Systems. HOLMES [51] is the first system to apply event matching
techniques to data provenance to detect APT campaigns. They also proposed methods for threat
score assignment and noise reduction. However, it assumes 100% event logs retention to calculate
threat and benign scores and generate alerts accordingly [34].
This is practically infeasible in Endpoint Detection and Response (EDR) systems for space

constraint, a limitation addressed by APTHunter through the introduction of prerequisite queries.
Second, to suppress false alerts, HOLMES assumes having a quantitative normal behavior database
of system entities. In enterprise setting, that is an elusive endeavor due to concept drift as benign
behavior changes. In contrast, APTHunter mitigates false alerts through the correlation of attack
behavior with matches from the prerequisite queries.
POIROT [50] extracts attack artifacts from APT Cyber Threat Intelligence (CTI) reports for

a selected set of APT campaigns and modeled them into attack graphs. The authors used their
proposed graph alignment algorithm to determine if the attack graph for the APT manifests itself
inside the whole system provenance graph as an indication of compromise. However, POIROT
assumed that APT attack stages will occur consecutively and attack activities are sequentially
linked to each other, failing to detect persistent attacks that can conceal their causally related
artifacts by spanning them in a long period of time. Unlike POIROT, APTHunter extracts attack
artifacts from CTI reports to formalize provenance queries for granular attack detection.
UNICORN [33] is an anomaly-based system, aims to generate a set of provenance graphs that

represent known good behaviors. The authors proposed a clustering-based technique to compare
between the known-good provenance graphs and the whole system provenance to detect any
anomaly. UNICORN inherits drawbacks of anomaly-based IDS systems including high rate of false
alerts, besides the difficulty to have a complete and updated model of benign behaviors.
Alert CorrelationDetection Systems. Event correlation is another line of researchwhich involves
statistical-based, heuristic-based, and probabilistic-based event correlation techniques [32, 59, 68]
to generate alerts. In industry, Security Information and Event Management (SIEM) systems (e.g.,
Arcsight [6], ELK [21]) leverage similar event correlation techniques for event correlation and alert
generation. These techniques use feature-based correlation techniques unrelated to causal analysis
between the events. In contrast, APTHunter can establish causal dependencies between events.
Graph Query Processing Systems. Previous work [31, 69, 78] incorporated graph query pro-
cessing methods and graph indexing and optimization techniques to support timely investigations.
AIQL [30] and SAQL [29] took steps further and designed a domain-specific anomaly query pro-
cessing systems to query specified anomalies on the system event logs, which can help in attack
forensics and investigations. CamQuery [62] is a graph query framework that supports realtime
analysis on provenance graph while imposing minimal overheads on systems execution. These
works are orthogonal to APTHunter and can be leveraged to implement our ProvQuery approach.

11Such as CORTEX (https://www.paloaltonetworks.com/cortex/cortex-xsoar) and Helix (https://www.fireeye.com/products/
helix/soar.html).

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://www.paloaltonetworks.com/cortex/cortex-xsoar
https://www.fireeye.com/products/helix/soar.html
https://www.fireeye.com/products/helix/soar.html


1:22 Moustafa Mahmoud, Mohammad Mannan, and Amr Youssef

8 CONCLUSION
We present APTHunter, an APT detector in early stages. APTHunter formulates the cyber threat
hunting as a provenance query matching problem to reliably pinpoint APT artifacts in the system
event logs based on the attack behavior in the published CTI reports. We evaluate APTHunter on
two real-world APT campaigns and on eight attack scenarios conducted by DARPA professional red-
team, over different platforms on enterprise settings, with millions of event log records. APTHunter
outperforms with the outstanding provenance graph compression ratio of 93% and prompt detection
(with high confidence) of attack artifacts accompanied by an explanation of the attack evolution on
the system. Automating the analysis and extraction of intelligence information from CTI reports for
the purpose of automatic generation of the provenance queries is an interesting research direction
for our future work.

REFERENCES
[1] ABUSE. [n.d.]. Fighting Malware and Botnets. https://abuse.ch/.
[2] Security Affairs. 2022. China-linked APT10 Target Taiwan’s financial trading industry. https://securityaffairs.co/

wordpress/128273/apt/apt10-targets-taiwan-financial-trading.html.
[3] Olusola Akinrolabu, Ioannis Agrafiotis, and Arnau Erola. 2018. The challenge of detecting sophisticated attacks:

Insights from SOC Analysts. In ARES. 1–9.
[4] AlienVault. [n.d.]. AlienVault Open Threat Exchange. https://otx.alienvault.com/browse/global.
[5] Apache. 2017. Kafka Streams. https://kafka.apache.org/documentation/streams/.
[6] ArcSight. 2021. ArcSight Enterprise Security Manager. https://www.microfocus.com/en-us/cyberres/secops/arcsight-

esm.
[7] Frederick Barr-Smith, Xabier Ugarte-Pedrero, Mariano Graziano, Riccardo Spolaor, and Ivan Martinovic. 2021. Sur-

vivalism: Systematic Analysis of Windows Malware Living-Off-The-Land. In S&P.
[8] BeyondTrust. 2020. Cyber-Attack Chain. www.beyondtrust.com/resources/glossary/cyber-attack-chain.
[9] Bricata. 2021. Layers of Cybersecurity: Signature Detection vs. Network Behavioral Analysis. https://bricata.com/

blog/signature-detection-vs-network-behavior/.
[10] J Briffaut, P Clemente, JF Lalande, and J Rouzaud-Cornabas. 2011. From Manual Cyber Attacks Forensic to Automatic

Characterization of Attackers’ Profiles. Université d’Orléans (2011).
[11] CISA. 2020. APT Groups Target Healthcare and Essential Services. https://us-cert.cisa.gov/ncas/alerts/AA20126A.
[12] CrowdStrike. [n.d.]. Advanced Persistent Threat Definition. https://www.crowdstrike.com/cybersecurity-101/

advanced-persistent-threat-apt/.
[13] CrowdStrike. 2018. Is There Such a Thing as a Malicious PowerShell Command? www.crowdstrike.com/blog/is-there-

such-a-thing-as-a-malicious-powershell-command/.
[14] CYBERARC. 2017. 7 Types of Privileged Accounts. www.cyberark.com/resources/blog/7-types-of-privileged-accounts-

service-accounts-and-more.
[15] Darktrace. 2021. APT35 ‘Charming Kitten’ discovered in a pre-infected environment. https://www.darktrace.com/en/

blog/apt-35-charming-kitten-discovered-in-a-pre-infected-environment/.
[16] DARPA. [n.d.]. Transparent Computing. https://www.darpa.mil/program/transparent-computing.
[17] DARPA. 2018. Transparent Computing, TA5.1 Ground Truth Report Engagement 3. https://drive.google.com/file/d/

1mrs4LWkGk-3zA7t7v8zrhm0yEDHe57QU/view?usp=sharing.
[18] DARPA. 2019. Transparent Computing, TA5.1 Final Report Engagement 5. https://drive.google.com/file/d/1cc3C5JW-

Kn-VdXqeBGwvHBKSdR_YmSGj/view?usp=sharing.
[19] Defence Research and Development Canada. 2020. TA-35—Cyber Threat Data Model and Use Cases. www.hhs.gov/

sites/default/files/apt-and-cybercriminal-targeting-of-hcs.pdf.
[20] EclecticIQ. [n.d.]. Intelligence at the core. https://www.eclecticiq.com/.
[21] Elastic. 2021. SIEM for the modern SOC. https://www.elastic.co/siem.
[22] Finextra. 2021. The state of cybersecurity in financial services. https://www.finextra.com/blogposting/20387/the-state-

of-cybersecurity-in-financial-services.
[23] FireEye. [n.d.]. Redline. https://www.fireeye.com/services/freeware/redline.html/.
[24] FireEye. [n.d.]. Threat Intelligence Reports. https://www.fireeye.com/current-threats/threat-intelligence-reports.html.
[25] FireEye. 2019. Special Report: Double Dragon APT41, a dual espionage and cyber crime operation. https://content.

fireeye.com/apt-41/rpt-apt41.
[26] FireEye. 2021. Cyber-Attack Chain. https://www.fireeye.com/current-threats/apt-groups.html.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://abuse.ch/
https://securityaffairs.co/wordpress/128273/apt/apt10-targets-taiwan-financial-trading.html
https://securityaffairs.co/wordpress/128273/apt/apt10-targets-taiwan-financial-trading.html
https://otx.alienvault.com/browse/global
https://kafka.apache.org/documentation/streams/
https://www.microfocus.com/en-us/cyberres/secops/arcsight-esm
https://www.microfocus.com/en-us/cyberres/secops/arcsight-esm
www.beyondtrust.com/resources/glossary/cyber-attack-chain
https://bricata.com/blog/signature-detection-vs-network-behavior/
https://bricata.com/blog/signature-detection-vs-network-behavior/
https://us-cert.cisa.gov/ncas/alerts/AA20126A
https://www.crowdstrike.com/cybersecurity-101/advanced-persistent-threat-apt/
https://www.crowdstrike.com/cybersecurity-101/advanced-persistent-threat-apt/
www.crowdstrike.com/blog/is-there-such-a-thing-as-a-malicious-powershell-command/
www.crowdstrike.com/blog/is-there-such-a-thing-as-a-malicious-powershell-command/
www.cyberark.com/resources/blog/7-types-of-privileged-accounts-service-accounts-and-more
www.cyberark.com/resources/blog/7-types-of-privileged-accounts-service-accounts-and-more
https://www.darktrace.com/en/blog/apt-35-charming-kitten-discovered-in-a-pre-infected-environment/
https://www.darktrace.com/en/blog/apt-35-charming-kitten-discovered-in-a-pre-infected-environment/
https://www.darpa.mil/program/transparent-computing
https://drive.google.com/file/d/1mrs4LWkGk-3zA7t7v8zrhm0yEDHe57QU/view?usp=sharing
https://drive.google.com/file/d/1mrs4LWkGk-3zA7t7v8zrhm0yEDHe57QU/view?usp=sharing
https://drive.google.com/file/d/1cc3C5JW-Kn-VdXqeBGwvHBKSdR_YmSGj/view?usp=sharing
https://drive.google.com/file/d/1cc3C5JW-Kn-VdXqeBGwvHBKSdR_YmSGj/view?usp=sharing
www.hhs.gov/sites/default/files/apt-and-cybercriminal-targeting-of-hcs.pdf
www.hhs.gov/sites/default/files/apt-and-cybercriminal-targeting-of-hcs.pdf
https://www.eclecticiq.com/
https://www.elastic.co/siem
https://www.finextra.com/blogposting/20387/the-state-of-cybersecurity-in-financial-services
https://www.finextra.com/blogposting/20387/the-state-of-cybersecurity-in-financial-services
https://www.fireeye.com/services/freeware/redline.html/
https://www.fireeye.com/current-threats/threat-intelligence-reports.html
https://content.fireeye.com/apt-41/rpt-apt41
https://content.fireeye.com/apt-41/rpt-apt41
https://www.fireeye.com/current-threats/apt-groups.html


APTHunter: Detecting Advanced Persistent Threats in Early Stages 1:23

[27] FireEye. 2021. Threat Intelligence Reports by Industry. https://www.fireeye.com/current-threats/reports-by-industry.
html.

[28] FireEye-Mandiant. 2018. M-Trends 2018 report. https://www.fireeye.com/content/dam/collateral/en/mtrends-2018.pdf.
[29] Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li, Kangkook Jee, Zhenyu Wu, Chung Hwan Kim, Sanjeev R Kulkarni,

and Prateek Mittal. 2018. SAQL: A stream-based query system for real-time abnormal system behavior detection. In
USENIX. 639–656.

[30] Peng Gao, Xusheng Xiao, Zhichun Li, Fengyuan Xu, Sanjeev R Kulkarni, and Prateek Mittal. 2018. AIQL: Enabling
efficient attack investigation from system monitoring data. In USENIX. 113–126.

[31] Rosalba Giugno and Dennis Shasha. 2002. Graphgrep: A fast and universal method for querying graphs. In Pattern
Recognition, Vol. 2. IEEE, 112–115.

[32] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and Wenke Lee. 2007. Bothunter: Detecting malware
infection through ids-driven dialog correlation.. In USENIX Symposium, Vol. 7. 1–16.

[33] Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and Margo Seltzer. 2020. Unicorn: Runtime provenance-
based detector for advanced persistent threats. In NDSS.

[34] Wajih Ul Hassan, Adam Bates, and Daniel Marino. 2020. Tactical provenance analysis for endpoint detection and
response systems. In S&P. IEEE, 1172–1189.

[35] Md Nahid Hossain, Sadegh M Milajerdi, Junao Wang, Birhanu Eshete, Rigel Gjomemo, R Sekar, Scott Stoller, and VN
Venkatakrishnan. 2017. SLEUTH: Real-time attack scenario reconstruction from COTS audit data. In USENIX. 487–504.

[36] Ghaith Husari, Ehab Al-Shaer, Mohiuddin Ahmed, Bill Chu, and Xi Niu. 2017. Ttpdrill: Automatic and accurate
extraction of threat actions from unstructured text of cti sources. In ACSAC. 103–115.

[37] Imperva. [n.d.]. Data Loss Prevention (DLP). https://www.imperva.com/learn/data-security/data-loss-prevention-dlp.
[38] Kaspersky. [n.d.]. BlackEnergy APT Attacks in Ukraine. https://www.kaspersky.com/resource-center/threats/

blackenergy.
[39] Kaspersky. 2022. APT trends report Q1 2022. https://go.kaspersky.com/rs/802-IJN-240/images/Kaspersky_APT_trends_

Q1_2022.pdf.
[40] Samuel T King and Peter M Chen. 2005. Backtracking intrusions. ACM Transactions on Computer Systems 23, 1 (2005),

51–76.
[41] Samuel T King, Zhuoqing Morley Mao, Dominic G Lucchetti, and Peter M Chen. 2005. Enriching Intrusion Alerts

Through Multi-Host Causality.. In NDSS.
[42] KPMG. [n.d.]. The hidden security risks from service accounts. https://advisory.kpmg.us/articles/2021/hidden-security-

risks-service-accounts.html.
[43] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack Provenance via Binary-based Execution

Partition.. In NDSS.
[44] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. 2016. Protracer: Towards Practical Provenance Tracing by Alternating

Between Logging and Tainting.. In NDSS.
[45] MITRE Matrix. [n.d.]. http://https://attack.mitre.org/..
[46] McAfee. [n.d.]. McAfee Advanced Threat Defense. https://www.mcafee.com/enterprise/en-ca/products/advanced-

threat-defense.html.
[47] McAfee. [n.d.]. What Is the MITRE ATT&CK. https://www.mcafee.com/enterprise/en-ca/security-awareness/

cybersecurity/what-is-mitre-attack-framework.html.
[48] Derrick McKee, Yianni Giannaris, Carolina Ortega Perez, Howard Shrobe, Mathias Payer, Hamed Okhravi, and Nathan

Burow. 2022. Preventing Kernel Hacks with HAKC. In Proceedings 2022 Network and Distributed System Security
Symposium. NDSS, Vol. 22. 1–17.

[49] Noor Michael, Jaron Mink, Jason Liu, Sneha Gaur, Wajih Ul Hassan, and Adam Bates. 2020. On the forensic validity of
approximated audit logs. In Annual Computer Security Applications Conference. 189–202.

[50] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrishnan. 2019. Poirot: Aligning attack behavior
with kernel audit records for cyber threat hunting. In CCS.

[51] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete, Ramachandran Sekar, and VN Venkatakrishnan. 2019. HOLMES:
Real-time APT detection through correlation of suspicious information flows. In S&P. IEEE, 1137–1152.

[52] Simon Miles, Paul Groth, Miguel Branco, and Luc Moreau. 2007. The requirements of using provenance in e-science
experiments. Journal of Grid Computing 5, 1 (2007), 1–25.

[53] MITRE. [n.d.]. MITRE Matrix, Brute Force: Password Spraying. https://attack.mitre.org/techniques/T1110/003/.
[54] MITRE. [n.d.]. MITRE Matrix, Exploit Public-Facing Application. https://attack.mitre.org/techniques/T1190/.
[55] MITRE. [n.d.]. MITREMatrix, OS Credential Dumping: LSASSMemory. https://attack.mitre.org/techniques/T1003/001.
[56] N-ABLE. 2021. Intrusion Detection System (IDS): Signature vs. Anomaly-Based. https://www.n-able.com/blog/

intrusion-detection-system/.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://www.fireeye.com/current-threats/reports-by-industry.html
https://www.fireeye.com/current-threats/reports-by-industry.html
https://www.fireeye.com/content/dam/ collateral/en/mtrends-2018.pdf
https://www.imperva.com/learn/data-security/data-loss-prevention-dlp
https://www.kaspersky.com/resource-center/threats/blackenergy
https://www.kaspersky.com/resource-center/threats/blackenergy
https://go.kaspersky.com/rs/802-IJN-240/images/Kaspersky_APT_trends_Q1_2022.pdf
https://go.kaspersky.com/rs/802-IJN-240/images/Kaspersky_APT_trends_Q1_2022.pdf
https://advisory.kpmg.us/articles/2021/hidden-security-risks-service-accounts.html
https://advisory.kpmg.us/articles/2021/hidden-security-risks-service-accounts.html
http://https://attack.mitre.org/.
https://www.mcafee.com/enterprise/en-ca/products/advanced-threat-defense.html
https://www.mcafee.com/enterprise/en-ca/products/advanced-threat-defense.html
https://www.mcafee.com/enterprise/en-ca/security-awareness/cybersecurity/what-is-mitre-attack-framework.html
https://www.mcafee.com/enterprise/en-ca/security-awareness/cybersecurity/what-is-mitre-attack-framework.html
https://attack.mitre.org/techniques/T1110/003/
https://attack.mitre.org/techniques/T1190/
https://attack.mitre.org/techniques/T1003/001
https://www.n-able.com/blog/intrusion-detection-system/
https://www.n-able.com/blog/intrusion-detection-system/


1:24 Moustafa Mahmoud, Mohammad Mannan, and Amr Youssef

[57] Neo4j. [n.d.]. The Native Graph Database for Today’s Connected Applications. https://neo4j.com/product/neo4j-
graph-database/.

[58] Nextron Systems. 2021. LOKI, Open-Source IOC Scanner. https://www.nextron-systems.com/loki/.
[59] Peng Ning and Dingbang Xu. 2003. Learning attack strategies from intrusion alerts. In CCS.
[60] U.S. Department of Health and Human Services (HHS). 2022. Health Sector Cybersecurity: 2021 Retrospective and

2022 Look Ahead. https://www.hhs.gov/sites/default/files/2021-retrospective-and-2022-look-ahead-tlpwhite.pdf.
[61] OWASP. 2018. Kerberoasting. https://owasp.org/www-pdf-archive/OWASP_Frankfurt_-44_Kerberoasting.pdf.
[62] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam Bates, Olivier Hermant, David Eyers, Jean Bacon, and Margo

Seltzer. 2018. Runtime analysis of whole-system provenance. In CCS.
[63] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing Ma, Fei Wang, Zhiwei Zhang, Luo Si, Xiangyu Zhang, and

Dongyan Xu. 2016. Hercule: Attack story reconstruction via community discovery on correlated log graph. In ACSAC.
583–595.

[64] Red Canary. [n.d.]. Red Canary 2021 Threat Detection Report. https://redcanary.com/threat-detection-report/.
[65] Secureworks. [n.d.]. Advanced Persistent Threats: Learn the ABCs of APTs. https://www.secureworks.com/blog/

advanced-persistent-threats-apt-a.
[66] Panda Security. 2019. How Endpoint Detection and Response gave rise to Threat Hunting. https://www.pandasecurity.

com/en/mediacenter/security/edr-threat-hunting.
[67] Financial Services Information Sharing and Analysis Center (FS-ISAC). 2022. Navigating Cyber. https://www.fsisac.

com/hubfs/NavigatingCyber-2022/NavigatingCyber2022-TLPWHITE-FIN.pdf.
[68] Yun Shen and Gianluca Stringhini. 2019. Attack2vec: Leveraging temporal word embeddings to understand the

evolution of cyberattacks. In USENIX. 905–921.
[69] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. 2012. Efficient subgraph matching on billion

node graphs. In VLDB.
[70] Symantec. 2019. Buckeye: Espionage Outfit Used Equation Group Tools Prior to Shadow Brokers Leak. https://symantec-

enterprise-blogs.security.com/blogs/threat-intelligence/buckeye-windows-zero-day-exploit.
[71] The New York Times. 2019. How Chinese Spies Got the N.S.A.’s Hacking Tools, and Used Them for Attacks. https:

//www.nytimes.com/2019/05/06/us/politics/china-hacking-cyber.html.
[72] The U.S. Department of Health and Human Services. 2020. APT and Cybercriminal Targeting of HCS. https:

//www.hhs.gov/sites/default/files/apt-and-cybercriminal-targeting-of-hcs.pdf.
[73] Jacob Torrey. 2020. Transparent Computing Engagement 5 Data Release. https://github.com/darpa-i2o/Transparent-

Computing.
[74] Varonis. [n.d.]. Threat detection & response. https://www.varonis.com/solutions/threat-detection-response/.
[75] Varonis. 2020. What is an Advanced Persistent Threat? www.varonis.com/blog/advanced-persistent-threat/.
[76] Vectra. [n.d.]. Network detection and response built on artificial intelligence. https://www.vectra.ai/products/cognito-

platform.
[77] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou, Junghwan Rhee, Zhengzhang Chen, Wei

Cheng, Carl A Gunter, et al. 2020. You Are What You Do: Hunting Stealthy Malware via Data Provenance Analysis.. In
NDSS.

[78] Xiaoli Wang, Xiaofeng Ding, Anthony KH Tung, Shanshan Ying, and Hai Jin. 2012. An efficient graph indexing method.
In Data Engineering. IEEE, 210–221.

[79] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee, Xusheng Xiao, Fengyuan Xu, Haining Wang, and
Guofei Jiang. 2016. High fidelity data reduction for big data security dependency analyses. In CCS.

A NORMALIZING LOGS TO CANONICAL FORM
The audit log contains an immense number of raw low level system events that do not readily
reveal the causal relationship between system entities. Hence, it cannot be coupled with the high
level artifacts in CTI reports for the reasons discussed below. We also discuss our workarounds for
generating the normalized event log form.

A.1 Asymmetric System Call Arguments
Every system call (syscall) has its kind of arguments, which are not symmetrically structured across
the audit log. Listing 2 shows examples of system call records from the event log for Ubuntu 14.04
(64 bit). For instance, Listing 2(a) shows an event log record for execve syscall (𝑠𝑦𝑠𝑐𝑎𝑙𝑙 = 59) with
the syscall arguments are distributed in a0 (/bin/bash), a1 (/usr/share/gh0st) and a2 fields. On the
other hand, it is clear that fork syscall (𝑠𝑦𝑠𝑐𝑎𝑙𝑙 = 56) allocates its main argument, the process

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://neo4j.com/product/neo4j-graph-database/
https://neo4j.com/product/neo4j-graph-database/
https://www.nextron-systems.com/loki/
https://www.hhs.gov/sites/default/files/2021-retrospective-and-2022-look-ahead-tlpwhite.pdf
https://owasp.org/www-pdf-archive/OWASP_Frankfurt_-44_Kerberoasting.pdf
https://redcanary.com/threat-detection-report/
https://www.secureworks.com/blog/advanced-persistent-threats-apt-a
https://www.secureworks.com/blog/advanced-persistent-threats-apt-a
https://www.pandasecurity.com/en/mediacenter/security/edr-threat-hunting
https://www.pandasecurity.com/en/mediacenter/security/edr-threat-hunting
https://www.fsisac.com/hubfs/NavigatingCyber-2022/NavigatingCyber2022-TLPWHITE-FIN.pdf
https://www.fsisac.com/hubfs/NavigatingCyber-2022/NavigatingCyber2022-TLPWHITE-FIN.pdf
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/buckeye-windows-zero-day-exploit
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/buckeye-windows-zero-day-exploit
https://www.nytimes.com/2019/05/06/us/politics/china-hacking-cyber.html
https://www.nytimes.com/2019/05/06/us/politics/china-hacking-cyber.html
https://www.hhs.gov/sites/default/files/apt-and-cybercriminal-targeting-of-hcs.pdf
https://www.hhs.gov/sites/default/files/apt-and-cybercriminal-targeting-of-hcs.pdf
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/darpa-i2o/Transparent-Computing
https://www.varonis.com/solutions/threat-detection-response/
www.varonis.com/blog/advanced-persistent-threat/
https://www.vectra.ai/products/cognito-platform
https://www.vectra.ai/products/cognito-platform


APTHunter: Detecting Advanced Persistent Threats in Early Stages 1:25

ID (PID) of the new forked sub-process, in the exit field (see Listing 2(b)). The chown syscall
family attributes the owner (user) id and group id in fields a2 and a3, respectively. We can see in
Listing 2(g) that the owner id and group id are both 0, which refers that the owner is now root.
We need to fix this to represent system entities and the relationship between them in symmetric
structure to map them to the high level descriptions in the CTI reports.

A.2 System Entities Unique Identifiers
We also observe that no explicit unique identifier is provided for the system entities in the event
log record. Even if the PID can uniquely identify a running process at the runtime, the same PID
can be later reused by another process after the earlier process terminates. Hence, the PID or the
PPID cannot be used to uniquly identify a process and its parent across the system runtime.

In addition, for particular syscalls, such as execve, the executed process inherits the PID of the
origin (source) process. So technically, the origin process is not clearly identified in the execve
syscall event. We run a backward tracing [49] on all previously run processes to pinpoint the recent
process with the same PID before the new process is started.

A.3 System Call Dependencies
For specific syscalls, event records are dependent on previous calls (e.g., read and write depend on
open). As in Listings 2(d) and 2(e), the process scp reads and writes an object which is not included
in the corresponding log record. A backward scan for the event logs shows that the open syscall
record (see Listing 2(f)) contains the object to be read or written to, with its identifier (inode).
We complement read and write syscall records with that missing information in our normalized
records.

A.4 Data Format/Encoding
The audit log presents syscall arguments in different formats as evident in Listing 2, including:
decimal values for pid, ppid in all syscalls, hex values for a1, a2, a3 in chmod (see Listing 2(h)),
and string values for exe. Besides, the same attribute can be in different format based on the syscall;
for example a2, a3 are represented in decimal values for the chown syscall family, but in hex
for chmod. Once the data format representation is determined, it is important to understand the
encoding used with every attribute before being able to reveal its value. As an example, a2, a3 for
the chmod syscall family are represented in hex and need to be converted into octal format to reveal
the permissions granted for the object. Other attributes in the event logs contain encoded packed
values. For example, in connect (see Listing 2(c)) and accept syscalls, the saddr attribute which
includes the socket information (IP Address and Port) is encoded in hex packed format which needs
to be processed to unpack it and retrieve the corresponding IP Address and Port.

To overcome the above challenges, we provide a canonical representation of the audit log with
the following features:

• Compact format: we combine records that have the same syscall ID (indicating that they
belong to the same operation), in one record in the compact form. For example, execve
spwans at least the following record types in the audit log: SYSCALL, EXECVE, CMD, PATH, and
PROCTITLE. We correlate all these events and include all the important information in one
compact record.

• Unique identifier representation: we create a universal unique identifier (UUID) for every
entity (e.g., processes, files, and sockets) in the system to uniquely identify the entity across
the runtime. This requires analysis of different syscalls and their arguments and attributes.

• Symmetrical structure: we symmetrically structure every record in the new canonical form
across different syscalls. The new record, in our proposal, contains 9 fields which capture

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:26 Moustafa Mahmoud, Mohammad Mannan, and Amr Youssef

the needed information for preserving causality among system entities during the system
runtime: Timestamp, ID, SubjectUUID, SubjectProcess, Action, ObjectUUID, ObjectName,
ActionDetails, and Hostname.

Our devised canonical log representation provides all the important information needed in attack
forensics and real-time attack artifacts detection.
For further reducing the log size while preserving the causality relationship between system

entities, we applied a causality preserved reduction technique as in [79]. The core idea is to merge
excessive events between the same pair of entities. Every type of event between a pair of entities
is maintained in a stack. Every time the same type of event is occurred between the same pair of
entities, the event is checked if it can be aggregated with the events in the stack. The aggregation is
done if the two events (the new occurred event and the event in the stack) have the same backward
and forward trackability. Any two events between two nodes are said to have same backward
trakability if no other incoming events to the first node has occured between the end time of the
two events in question.

On the other hand, any two events between two nodes are said to have same forward trakability
if no other outgoing events from the second node has occured between the start time of the two
events in question. If both conditions match, the two events are said to have the same causal
dependency and are then merged together. This helps in reducing the intense bursts of semantically
similar events which are produced by system daemons and other several applications [79]. This
is the last step of log processing done by the LogCore engine before building the whole system
provenance graph. A significant point about our provenance graph is that because it is a highly
compact version of the audit log, it requires less memory which facilitates real-time ingestion of
events and generation of the graph over a long period of time. On this provenance graph, we apply
the generated attack behavior queries to pinpoint attack behaviors as in the CTI reports.

B ATTACK-CONDITIONS
The provenance queries are constructed from two queries (prerequisite query and the main query).
Here, we are consolidating the conditions for these two building blocks queries for different attack
behaviors.

Initial Compromise.
Domain Hijaking (T1584-001).
The prerequisite query:

𝑁1 ∈ {𝐵𝑟𝑜𝑤𝑠𝑒𝑟𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∧ 𝑅𝐼 = 𝑓 𝑜𝑟𝑘 ∧ 𝑁2 ∈ {𝑅𝑒𝑚𝑜𝑡𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠}

The main query:

𝑁3 ∈ {𝑁2} ∧ 𝑅𝑀 = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 ∧ 𝑁4.𝑖𝑝 ∉ {𝑇𝑟𝑢𝑠𝑡𝑒𝑑𝐼𝑃𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠}

where RemoteAccessProcesses is the list of processes used for remote access (e.g., SSHD).
Exploit Public-Facing Applications (T1190).
The prerequisite query:

𝑁1 ∈ {𝑃𝑢𝑏𝑙𝑖𝑐𝐹𝑎𝑐𝑖𝑛𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∧ 𝑅𝐼 = 𝑎𝑐𝑐𝑒𝑝𝑡 ∧ 𝑁2.𝑖𝑝 ∉ {𝑇𝑟𝑢𝑠𝑡𝑒𝑑𝐼𝑃𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠}

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



APTHunter: Detecting Advanced Persistent Threats in Early Stages 1:27

The main query:
𝑁3 ∈ {𝑃𝑢𝑏𝑙𝑖𝑐𝐹𝑎𝑐𝑖𝑛𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∧ 𝑅𝑀 = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 ∧

𝑁4 .𝑖𝑝 ∉ {𝑇𝑟𝑢𝑠𝑡𝑒𝑑𝐼𝑃𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠} ∧ 𝑁4 ∉ {𝑁2}
where 𝑁2 and 𝑁4 represent sockets (IP Address and Port).

Non Standard Port (T1571).
The prerequisite query: None
The main query:

𝑁4.𝑖𝑝 ∉ {𝑇𝑟𝑢𝑠𝑡𝑒𝑑𝐼𝑃𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠} ∧
𝑃𝑎𝑖𝑟 (𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑁3 𝑎𝑛𝑑 𝑃𝑜𝑟𝑡 𝑁4.𝑝𝑜𝑟𝑡) ∉ {𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃𝑜𝑟𝑡𝐿𝑖𝑠𝑡} ∧ 𝑅𝑀 = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡

Establish Foothold.
The prerequisite query:

𝑁1 ∈ {𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∧ 𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

CompromisedProcesses is a set of all processes tagged as compromised from the Initial Compromise
stage.
The main query:

𝑁3 ∈ {𝑁2} ∧ 𝑅𝑀 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑁4 ∈ {𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝐿𝑖𝑛𝑒𝑈𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠}

Escalate Privileges.
Super User Privilege.
The prerequisite query:

𝑁1 ∈ {𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∧ 𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

The main query:

𝑁3 ∈ {𝑁2} ∧ 𝑅𝑀 ∈ {𝐶ℎ𝑎𝑛𝑔𝑒𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙} ∧ 𝑁4 .𝑢𝑖𝑑 ∈ {𝑆𝑢𝑝𝑒𝑟𝑈𝑠𝑒𝑟𝑠}

ChangePrincipal is the set of syscalls that change the owner user. Examples of those syscalls are
chown, fchown, and lchown syscalls. 𝑁4.𝑢𝑖𝑑 is the real user ID of the affected process (𝑁4).

Super User Utilities.
The prerequisite query:

𝑁1 ∈ {𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∧ 𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

The main query:

𝑁3 ∈ {𝑁2} ∧ 𝑅𝑀 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑁4 ∈ {𝑆𝑢𝑝𝑒𝑟𝑈𝑠𝑒𝑟𝑈 𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠}

Scheduled Tasks.
The prerequisite query:

𝑁1 ∈ {𝑐𝑟𝑜𝑛.𝑑} ∧ 𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

The main query:

𝑁3 ∈ {𝑁2} ∧ 𝑅𝑀 ∈ {𝑐ℎ𝑜𝑤𝑛} ∧ 𝑁4 .𝑢𝑖𝑑 ∈ {𝑆𝑢𝑝𝑒𝑟𝑈𝑠𝑒𝑟𝑠}

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:28 Moustafa Mahmoud, Mohammad Mannan, and Amr Youssef

Credential Dump.
The prerequisite query:

𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧
(𝑁1 ∈ {𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∨ 𝑁1 ∈ {𝑆𝑢𝑝𝑒𝑟𝑈𝑠𝑒𝑟𝑃𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒})∧

𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

SuperUserPrivilege is a set of all processes tagged as compromised from Super User Privilege technique
in Escalate Privileges stage.
The main query:

𝑁3 ∈ {𝑁2} ∧ 𝑁4 .𝑝𝑎𝑡ℎ 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 “𝑝𝑟𝑜𝑐𝑑𝑢𝑚𝑝 ′′ ∧
(𝑁3.𝑒𝑢𝑖𝑑 ∈ {𝑆𝑢𝑝𝑒𝑟𝑈𝑠𝑒𝑟𝑠} ∨ 𝑁3.𝑢𝑖𝑑 ∈ {𝑆𝑢𝑝𝑒𝑟𝑈𝑠𝑒𝑟𝑠}) ∧ 𝑅𝑀 = 𝑒𝑥𝑒𝑐𝑢𝑡𝑒

𝑁3.𝑢𝑖𝑑 and 𝑁3.𝑒𝑢𝑖𝑑 are the real and effective user IDs for the process 𝑁3 respectively.

Valid Domain Accounts.
The prerequisite query:

𝑁1 .𝑢𝑖𝑑 ∉ {𝐷𝑜𝑚𝑎𝑖𝑛𝑈𝑠𝑒𝑟𝑠} ∧ 𝑁2 ∈ {𝑆𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∧
𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

The main query:

𝑁3 ∈ {𝑁2} ∧ 𝑅𝑀 = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 ∧ 𝑁3.𝑢𝑖𝑑 ∈ {𝐷𝑜𝑚𝑎𝑖𝑛𝑈𝑠𝑒𝑟𝑠} ∧
𝑁4 ∈ {𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐼𝑃𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠} ∧ 𝑁4.𝑖𝑝 ∈ {𝐷𝑜𝑚𝑎𝑖𝑛𝐼𝑃𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠}

DomainUsers is the list of users who are authorized to access the domain controller. ScriptingProcesses
examples include Python and Powershell. DomainIPAddresses are IP addresses of the domain
controllers. uid is the user id for the corresponding process.

Internal Reconnaissance.
Sensitive Access.
The prerequisite query:

𝑁1 ∈ {𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∧ 𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

The prerequisite query:

𝑁3 ∈ {𝑁2} ∧ 𝑅𝑀 ∈ {𝑜𝑝𝑒𝑛, 𝑟𝑒𝑎𝑑} ∧ 𝑁4 ∈ ({𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑎𝑡ℎ𝑠} ∨ {𝑆𝑦𝑠𝑡𝑒𝑚𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑃𝑎𝑡ℎ𝑠})

Recon Command.
The prerequisite query:

𝑁1 ∈ {𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∧ 𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

The main query:

𝑁3 ∈ {𝑁2} ∧ 𝑅𝑀 = 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 ∧ 𝑁4 ∈ {𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝑠}

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



APTHunter: Detecting Advanced Persistent Threats in Early Stages 1:29

Port Scan.
The prerequisite query:

𝑁1 ∈ {𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∧ 𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

The main query:
𝑁3 ∈ {𝑁2} ∧ 𝑅𝑀 = 𝑠𝑒𝑛𝑑 ∧ 𝑁4 ∈ {𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐼𝑃𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠} ∧

𝑁4.𝑝𝑜𝑟𝑡 ∈ {𝑊𝑒𝑙𝑙𝐾𝑛𝑜𝑤𝑛𝑃𝑜𝑟𝑡𝑠} ∧ 𝑐𝑜𝑢𝑛𝑡 (𝑁4.𝑝𝑜𝑟𝑡) ≥ 𝑃𝑜𝑟𝑡𝐶𝑜𝑢𝑛𝑡𝑇ℎ𝑟𝑒𝑠

Based on the enterprise settings, the analyst selects the number of ports (𝑃𝑜𝑟𝑡𝐶𝑜𝑢𝑛𝑡𝑇ℎ𝑟𝑒𝑠) at which
the provenance query should generate an alert.

Lateral Movement.
The prerequisite query:

(𝑁1 ∈ {𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∨ 𝑁1 ∈ {𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑅𝑒𝑐𝑜𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠}) ∧
𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

The main query:

𝑁3 ∈ {𝑁2} ∧ 𝑅𝑀 = 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 ∧ 𝑁4 ∈ {𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐼𝑃𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠}

InternalReconProcesses is a set of all processes engaged in Internal Reconnaissance activities.
Complete Mission.
Exfiltration Over C2 Channel.
The prerequisite query:

(𝑁1 ∈ {𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∨ 𝑁1 ∈ {𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑅𝑒𝑐𝑜𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠}) ∧
𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

The main query:

𝑁3 ∈ {𝑁2} ∧ 𝑁4 ∉ {𝑇𝑟𝑢𝑠𝑡𝑒𝑑𝐼𝑃𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠} ∧ 𝑅𝑀 = 𝑠𝑒𝑛𝑑

send is the family of syscalls that includes syscalls used to send data over the network including
sendmsg, sendto, sendfile, etc.
Exfiltration by Bypassing Defense Controls.
The prerequisite query:

(𝑁1 ∈ {𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑅𝑒𝑐𝑜𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∧ 𝑁1 ∈ {𝐸𝑠𝑐𝑎𝑙𝑎𝑡𝑒𝑃𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠}) ∧
𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

The main query:
𝑁3 ∈ {𝑁2} ∧ 𝑁3.𝑢𝑖𝑑 ∈ {𝑆𝑢𝑝𝑒𝑟𝑈𝑠𝑒𝑟𝑠} ∧

𝑁4 ∉ {𝑇𝑟𝑢𝑠𝑡𝑒𝑑𝐼𝑃𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠} ∧ 𝑅𝑀 = 𝑠𝑒𝑛𝑑

EscalatePrivilegeProcesses is a set of all processes with super user privileges detected in Escalate
Privileges stage.
Destroy System.
The prerequisite query:

(𝑁1 ∈ {𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∨ 𝑁1 ∈ {𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑅𝑒𝑐𝑜𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠}) ∧
𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:30 Moustafa Mahmoud, Mohammad Mannan, and Amr Youssef

The main query:
𝑁3 ∈ {𝑁2} ∧ (𝑁4 ∈ {𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑎𝑡ℎ𝑠} ∨ ∈ {𝑆𝑦𝑠𝑡𝑒𝑚𝐹𝑖𝑙𝑒𝑠}) ∧ 𝑅𝑀 ∈ {𝑤𝑟𝑖𝑡𝑒,𝑢𝑛𝑙𝑖𝑛𝑘}

SystemFiles can be generic per the operating system and can be based on the CTI report. Sensi-
tivePaths is customised per every enterprise. Here, enterprises define paths to sensitive files and
directories. This includes user drives, internal, confidential, and secret shares. Any suspicious
operation on those files will be flagged and an alert will be generated.

Cleanup Tracks.
File Deletion.
The prerequisite query:

(𝑁1 ∈ {𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∨ 𝑁1 ∈ {𝐸𝑠𝑐𝑎𝑙𝑎𝑡𝑒𝑃𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠}) ∧
𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

The main query:
𝑁3 ∈ {𝑁2} ∧ 𝑁4 ∉ {𝐿𝑜𝑔𝐹𝑖𝑙𝑒𝑠𝑃𝑎𝑡ℎ𝑠} ∧ 𝑅𝑀 = 𝑢𝑛𝑙𝑖𝑛𝑘

Remove Log files.
The prerequisite query:

(𝑁1 ∈ {𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∨ 𝑁1 ∈ {𝐸𝑠𝑐𝑎𝑙𝑎𝑡𝑒𝑃𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠}) ∧
𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

The main query:
𝑁3 ∈ {𝑁2} ∧ 𝑁4 ∈ {𝐿𝑜𝑔𝐹𝑖𝑙𝑒𝑠𝑃𝑎𝑡ℎ𝑠} ∧ 𝑅𝑀 = 𝑢𝑛𝑙𝑖𝑛𝑘

Clear Log commands.
The prerequisite query:

(𝑁1 ∈ {𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠} ∨ 𝑁1 ∈ {𝐸𝑠𝑐𝑎𝑙𝑎𝑡𝑒𝑃𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠}) ∧
𝑅𝐼 ∈ {𝑓 𝑜𝑟𝑘, 𝑒𝑥𝑒𝑐𝑢𝑡𝑒} ∧ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ

The main query:
𝑁3 ∈ {𝑁2} ∧ 𝑅𝑀 = 𝑤𝑟𝑖𝑡𝑒 ∧ 𝑁4 ∈ {𝐿𝑜𝑔𝐹𝑖𝑙𝑒𝑠𝑃𝑎𝑡ℎ𝑠}

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.



APTHunter: Detecting Advanced Persistent Threats in Early Stages 1:31

Listing 2 The audit log - system call record examples.
(a) Execve Syscall

type=SYSCALL msg=audit(1618071287.244:687514):syscall
=59 success=yes exit=0 a0=1579088 a1=1532a88
a2=163c008 a3=598 ppid=2077 pid=2083 exe="/bin/bash"
type=EXECVE msg=audit(1618071287.244:687514):
a0="/bin/bash" a1="/usr/share/gh0st" a2="start"
type=PATH msg=audit(1618071287.244:687514): item=0
name="/usr/share/gh0st" inode=792704

(b) Fork Syscall
type=SYSCALL msg=audit(1618072037.116:827848):syscall
=56 success=yes exit=7177 a0=1200011 a1=0 a2=0
a3=7fbec78bd9d0 ppid=7162 pid=7176 exe="/usr/bin/scp"

(c) Connect Syscall
type=SYSCALL msg=audit(1618071198.080:665224):
syscall=42 success=yes exit=0 a0=aa
a1=7fe95d5b17b0 a2=10 a3=0 items=0 ppid=1407
pid=3461 exe="/usr/lib/firefox/firefox"
type=SOCKADDR msg=audit(1618071198.080:665224):
saddr=020000000DE1BD3D0000000000000000

(d) Read Syscall
type=SYSCALL msg=audit(1618072049.092:828551):
syscall=0 success=yes exit=221 ppid=7162 pid=7176
exe="/usr/bin/scp"

(e) Write Syscall
type=SYSCALL msg=audit(1618072049.092:828550):
syscall=1 success=yes exit=80 a0=1 a1=7fff327bd760
a2=50 a3=1 items=0 ppid=7162 pid=7176
exe="/usr/bin/scp"

(f) Open Syscall
type=SYSCALL msg=audit(1618072049.092:828543):
syscall=2 success=yes exit=3 a1=800 a2=0 a3=8
items=1 ppid=7162 pid=7176 exe="/usr/bin/scp"
type=CWD msg=audit(1618072049.092:828543):
cwd="/home/ubuntu"
type=PATH msg=audit(1618072049.092:828543):
item=0 name="/etc/hosts" inode=2359455

(g) Fchownat Syscall
type=SYSCALL msg=audit(1617660032.907:154792795):
syscall=260 success=yes exit=0 a0=ffffff9c
a1=1da5cb0 ppid=114171 pid=114172 exe="/bin/chown"
type=PATH msg=audit(1617660032.907:154792795):
name="priv_key.txt" inode=2495043

(h) Fchmodat Syscall
type=SYSCALL msg=audit(1617660053.219:154794519):
syscall=268 success=yes exit=0 a0=ffffffffffffff9c
a1=11570f0 a2=1ff a3=3c0 ppid=114176 pid=114177
exe="/bin/chmod"
type=CWD msg=audit(1617660053.219:154794519):
cwd="/home/ubuntu"
type=PATH msg=audit(1617660053.219:154794519):
name="gh0st.sh" inode=2495042

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2022.


	Abstract
	1 Introduction
	2 Attack Stages and Threat Model
	2.1 APT Attack Stages
	2.2 Threat Model

	3 APTHunter Design
	3.1 Stream Processor
	3.2 LogCore Engine
	3.3 Attack Artifacts Construction
	3.4 Searching for Indicators of Attack
	3.5 Garbage Collector

	4 Per Stage Provenance Query Construction
	4.1 Initial Compromise
	4.2 Establish Foothold
	4.3 Other Attack Stages

	5 EXPERIMENTAL EVALUATION
	5.1 Evaluation on the DARPA TC Dataset
	5.2 Evaluation on Other Real-World APT Attacks
	5.3 Evaluation on Benign Datasets
	5.4 Efficiency

	6 Limitations
	7 Related Work
	8 Conclusion
	References
	A Normalizing Logs to Canonical Form
	A.1 Asymmetric System Call Arguments
	A.2 System Entities Unique Identifiers
	A.3 System Call Dependencies
	A.4 Data Format/Encoding

	B Attack-Conditions

