IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 00, NO. 00, ABC 2023 1

LURK-T: Limited Use of Remote Keys with Added
Trust in TLS 1.3

Behnam Shobiri, Sajjad Pourali, Daniel Migault, Ioana Boureanu, Stere Preda, Mohammad Mannan
and Amr Youssef, Senior Member, IEEE

Abstract—In many web applications, such as Content Delivery
Networks (CDNs), TLS credentials are shared, e.g., between the
websites TLS origin server and the CDN’s edge servers, which can
be distributed around the globe. To enhance the security and trust for
TLS 1.3 in such scenarios, we propose LURK-T, a provably secure
framework which allows for limited use of remote keys with added
trust in TLS 1.3. We efficiently decouple the server side of TLS 1.3
into a LURK-T Crypto Service (CS) and a LURK-T Engine (E).
CS executes all cryptographic operations in a Trusted Execution
Environment (TEE), upon E’s requests. C'S and E together provide
the whole TLS-server functionality. A major benefit of our construc-
tion is that it is application agnostic; the LURK-T Crypto Service
could be collocated with the LURK-T Engine, or it could run on
different machines. Thus, our design allows for in situ attestation and
protection of the cryptographic side of the TLS server, as well as for all
setups of CDNs over TLS. To support such a generic decoupling, we
provide a full Application Programming Interface (API) for LURK-T.
To this end, we implement our LURK-T Crypto Service using Intel
SGX and integrate it with OpenSSL. We also test LURK-T’s efficiency
and show that, from a TLS-client’s perspective, HI'TPS servers
using LURK-T instead a traditional TLS-server have no noticeable
overhead when serving files greater than 1MB. In addition, we provide
cryptographic proofs and formal security verification using ProVerif.

Index Terms—Internet security, Middleboxes, TLS

1. INTRODUCTION

Transport Layer Security (TLS) is the de-facto protocol for
securing communication over the Internet. It is an authenticated
key-establishment (AKE) protocol, whereby TLS client C' (e.g.,
browser) always authenticates a TLS server S, and they derive
channel keys to communicate securely thereafter. In TLS, the server
S is authenticated by proving the possession of its private key or a
so-called pre-shared key (PSK). So, these authentication credentials
should not be accessible by other parties and require special attention.

For TLS servers managed “in situ”, e.g., when the owner of the
TLS server also owns the infrastructure and entirely manage the TLS
servers, the authentication credentials must be protected for example
against operational mistakes' as well as web server compromise such
as Heartbleed.?

With 73% of the Internet traffic today being served by Content
Delivery Networks (CDNs) [16], a common scenario is sharing the
TLS credentials between the website’s TLS server (i.e., the “origin”)
and the CDN’s “edge servers”, which can be distributed around
the globe. Such sharing of long-term TLS credentials poses a grave

Behnam Shobiri, Sajjad Pourali, Mohammad Mannan and Amr Youssef
are with the Concordia Institute for Information Systems Engineer-
ing (CIISE), Concordia University, Montreal, QC, Canada e-mail:
behnam.shobiri @concordia.ca, s_poural @ciise.concordia.ca, m.mannan@concordia.ca,
and youssef@ciise.concordia.ca}.Joana Boureanu is with the Surrey Centre for Cyber
Security and the Department of Computer Science, University of Surrey, Guildfordl,
UK e-mail: i.boureanu@surrey.ac.uk. Daniel Migault and Stere Preda are with Ericsson
Canada, e-mail:{daniel.migault,stere.preda } @ericsson.com

Uhttps://lists.dns-oarc.net/pipermail/dns-operations/2020-May/020198.html

Zhttps://heartbleed.com/

risk, as the origin loses full ownership and control of their long-term
private key [29].

The proposed setups for CDN over TLS alone vary vastly
from splitting the TLS implementation [4 1], to leveraging Trusted
Execution Environment (TEE) and either improving the performances
of the enclaves for network applications [49], [22], [40] or improving
a specific application running inside an enclave [3] — which ends
into splitting the application between components running inside the
TEE and outside the TEE. Thus, a generic treatment of securing and
protecting the long-term credentials of the TLS server is essential,
catering for as many distinct types of interactions as possible. To this
end, we propose LURK-T: a generic, provably secure and efficient
decoupling of the TLS1.3 server into a cryptographic core called
LURK-T Crypto Service (CS), and a component called LURK-T
Engine (FE)which securely queries this core from anywhere it may
reside, and communicates with a classical TLS Client (C).

We are not the first to consider the decoupling of a TLS server
and/or securing a modified version thereof. Current efforts can be
divided into two types: (a) TEE-driven approach focusing on isolating
and securing the server; (b) CDN-driven approach focusing on
modifying the TLS server to fit different CDN setups. Each approach
has its merits and shortcomings. Inspired by both these approaches,
we propose a new solution, by decoupling the TLS-server in a way
that results into acceptable, deployment-friendly performance. Now,
we discuss the two main aspects of our design compared to existing
work (details in Section II).

(a) TLS servers and CDNs. CDNs operate over TLS in a
mechanism often broadly referred to as “TLS delegation”. To enable
such delegation in a provably secure way (as in e.g., [| 1]), or to support
specific scenarios [4], major operational changes in TLS are required.
Such changes either break security (see e.g., [41]), or render them
completely incompatible with legacy clients (see e.g., [34]). Besides,
the efficiency of delegation is usually not considered/discussed at
length or is sacrificed in favor of enhanced security (see e.g., [7]).

(b) TLS servers and TEEs. To protect TLS credentials, NIST [5]
recommends hardware-based TEEs such as Trusted Platform Modules
(TPMs) or Hardware Security Modules (HSMs), for storing and using
private keys. Yet, due to significant cost and performance issues of
large-scale HSM deployment, such TEE integration is not common
for CDN scenarios. TEE-based academic proposals vary significantly
where the full application is placed in a TEE [49], [22], [40], [48&],
or the full TLS is placed in a TEE [3] — both of which are explicitly
mentioned as impractical by several standard bodies such as ETSI,?
3GPP-SA3,* and ENISA.3 Some other proposals protect only the

3https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/009/01.02.
01_60/gr_NFV-SEC009v010201p.pdf

“https://www.3gpp.org/ftp/Specs/archive/33_series/33.848 /33848-
0c0.zip

Shttps://www.enisa.europa.ew/publications/nfv-security-in-5g-challenges-and-
best-practices/ @ @download/fullReport

https://lists.dns-oarc.net/pipermail/dns-operations/2020-May/020198.html
https://heartbleed.com/
https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/009/01.02.01_60/gr_NFV-SEC009v010201p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/009/01.02.01_60/gr_NFV-SEC009v010201p.pdf
https://www.3gpp.org/ftp/Specs/archive/33_series/33.848/33848-0c0.zip
https://www.3gpp.org/ftp/Specs/archive/33_series/33.848/33848-0c0.zip
https://www.enisa.europa.eu/publications/nfv-security-in-5g-challenges-and-best-practices/@@download/fullReport
https://www.enisa.europa.eu/publications/nfv-security-in-5g-challenges-and-best-practices/@@download/fullReport

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 00, NO. 00, ABC 2023 2

keys [22], [13], [47]. Indeed, deciding which part of the cryptographic
side of TLS-server to include in a TEE, such as to yield added
security without high performance penalty, appears to be non-trivial.
Our contributions can be summarized as follows:

1. To enhance the security and trust for TLS 1.3 in applications
where the TLS credentials are shared (e.g., in CDN applications),
we propose Limited Use of Remote Keys with Added Trust (LURK-T).
To balance security and efficiency, LURK-T splits the TLS 1.3
server into two parts: a LURK-T Engine (E) and LURK-T Crypto
Service (CS). CS resides inside a TEE, and is only involved during
the TLS handshake. CS handles and ensures the confidentiality of
TLS-server credentials intrinsically needed for TLS key-security:
private keys, PSK for session resumption, Elliptic Curve Ephemeral
Diffie Hellman ((EC)DHE) keys to ensure Perfect Forward Secrecy
(PFS). E handles the rest of server-side TLS. Moreover, our design
is such that E’s queries to CS' cannot be made outside the scope of
a fresh TLS 1.3 Key EXchange (KEX). See Figure 1 in Section IV
for an overview of LURK-T components.

2. We implement CS using Intel SGX and integrate it with
OpenSSL, both for Ubuntu and Windows. The modularity of our
design entails only localized changes to OpenSSL. To show the
compatibility and portability of our implementation, we develop a
Rust HTTPS server and link it to our modified OpenSSL.

3. We test LURK-T’s efficiency extensively, measuring different
overheads compared to a standard TLS 1.3 handshake—for all the
TLS 1.3 cipher suites and various CS configurations. We measure the
maximum number of files served per second with HTTPS and show
that in the worst case configuration, the client’s overhead associated
to LURK-T is negligible for files equal or greater than 1MB. The
server’s overhead is limited to the TLS handshake and we measured
it between 1.2% and 33% which is far less than similar solutions
(see Section II and Table V).

4. We present cryptographic proofs for LURK-T, in a cryptographic
model for multi-party TLS [8], showing that LURK-T provides
three-party TLS security (E, CS, and C). We also formally verify
LURK-T’s security using ProVerif, by first lifting the existing ProVerif
specifications [36], [6] of a pre-standard TLS 1.3 to a ProVerif model
for the standard TLS 1.3 [38], and then proving TLS 1.3 security
for LURK-T; thus, we show that LURK-T suffers no degradation
in security compared to TLS 1.3, including attaining perfect forward
secrecy. We achieve strong security guarantees (e.g., the accountability
of [7]), as well as add a new property of trust which we call “trusted
key-binding”, achieved through the attestation of our TEE-based CS.

II. RELATED WORK

LURK-T partitions TLS 1.3 into two independent micro services
(F and CS) with CS hosted by a TEE. In this section, we summarize
related work on partitioning applications, as well as as protocol
extensions that support TLS delegation, and multi-party TLS.

A. TLS and TEE

Multiple frameworks are able to host unmodified binary code
into a TEE enclave (see e.g., [31]). These frameworks rely on
libOS (e.g., Graphene [45], SGX-LKL [35]), or musl-libc (e.g.,
SCONE [2]). However, this results in a large trusted code base
(TCB) [44] with a vast number of Line of Code (LoC) prone to
bugs [17] (and Iago attacks [15]), and with large overhead due to
multiple ECALLs/OCALLSs [42].

Partitioning applications is expected to address these drawbacks.
Specific manual approaches have been proposed for TLS 1.2 as

in [3]. A more generic approach, based on marking sensitive data
in the source code for C/C++ applications has been proposed in
Glamdring [30] and the execution of the resulting trusted part
can be instrumented by sgx-perf [48]. Other proposals such as
Montsalvat [50] partition Java code based on its byte-code. However,
the coexistence of the trusted and untrusted part is handled via
remote procedure call (RPC)-like mechanisms, exposing the interface
to Iago-like attacks, while providing little assurance that data or
states are not leaked. LURK-T defines standard interfaces in [32],
thus protecting C'S against Iago-like attacks while enabling remote
execution of the CS. The combination of CS and F is also formally
proven to not alter TLS 1.3 security following [8], which showed
that the lack of such formal verification can hide the existence of
vulnerabilities (e.g., in Keyless SSL [41] and mcTLS [34]).

Various efforts (e.g., [3], [47], [48], [22], [13], [40], [44]) were
made to leverage TEE, and port TLS applications into SGX enclaves.
All these proposals were focused on TLS 1.2, and generally they place
the full TLS stack into the TEE (e.g., TaL.oS [3] and sgx-perf [48]).
STYX [47] provides a trusted way for the content owner to provision
the hardware cryptographic accelerator provided by the CPU of an
untrusted cloud provider and thus benefit from Intel Quick Assist
Technology (QAT [43]). Also, in STYX, an SGX enclave attested
by the content owner is used to provision the TLS private key to
the QAT engine, which is natively interfaced with OpenSSL [24].
This design suffers from the fact that interactions between the QAT
engine and untrusted application are not limited to TLS 1.3 specific
operations. As detailed in [8] w.r.t. Keyless SSL [4 1], the use of such
generic cryptographic operations may be exploited.

Conclave [22] takes a higher level approach by defining an
architecture for securing a full service NGINX server, which runs
on an untrusted infrastructure. Conclave presents two configurations
for TLS 1.2 alone: 1) only the private key is protected by the TEE,
or 2) the entire TLS (including the session keys) is protected by the
TEE. In addition, just executing the TLS in a TEE as per Conclave
is not viable both from performance and operational perspectives.
Security-wise, Conclave uses Graphene which is a large library (more
than 77000 LoC) and has a high probability for vulnerabilities as
shown in [17]. In contrast, LURK-T has 3800 LoC and extends the
private key protection to any authentication credentials used by TLS
(including session resumption) without the need to deploy Graphene.
Also, unlike Conclave, LURK-T provides anti-replay protection.

B. TLS Protocol Extensions

Similar to Keyless SSL, most previous works on TLS delega-
tion (e.g., see [29], [41], [8], [47]) are not designed for TLS 1.3 and
suffer from the TLS 1.2 limitations [29], [|]. Bhargavan et al. [8]
provide delegation for Authenticated and Confidential Channel Estab-
lishment (ACCE) with TLS 1.3, yet there are two essential differences
compared to our approach: ACCE is controlled by both ends (i.e., the
client and the server), and it requires modifications to the TLS-record
layer to achieve fine-grained access-rights for CDNs. To the best of
our knowledge, LURK-T is the first design that provides a server-
controlled delegation specific to TLS 1.3, without any modification
to TLS 1.3, as well as leveraging TEEs for added trust. Delegated
credentials (DCs) [4] is a TLS 1.3 extension which eases the issuance
of the authentication credential by a CDN provider. However, the con-
tent owner delegates the authentication to the CDN, and the deployed
credentials by the CDN remain exposed. In a DC deployment, LURK-
T can enable the CDN to protect the CDN authentication credentials
(or the CDN can use any other TEE-based alternatives to protect the

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 00, NO. 00, ABC 2023 3

credentials). On the other hand, from the content owner perspective,
LURK-T makes DC unnecessary as the content owner’s authentication
credentials can be used without being shared to the CDN. This could
be useful to ensure that existing/legacy TLS clients can authenticate
the server; note that DC deployments require support/control from
both the client and server sides (supported by the Firefox browser
since 2019, and used by Cloudflare and Facebook services).

Boureanu et al. [11] used a similar design to LURK-T but for
TLS 1.2. Most differences between Boureanu et al. [11] and us
stem from TLS 1.3 being different from TLS 1.2. LURK-T also
offers several variants to interact with the C'S in the TEE to balance
reasonable security vs. efficiency, which also addresses Boureanu
et al.’s latency issues. In addition, LURK-T leverages TEEs and
provable security for further trust.

Various services (referred to as middleboxes) provided by CDNs
can only function when they have access to plaintext data, such
as IDS, TIPS, WAF, and L7 load balancing [20]. In some previous
proposals [22], [3], [13], these services cannot operate well within the
CDN since they do not have access to plaintext data. This problem
was solved in TLS 1.2 by mcTLS [34], but with significant overhead
and heavy modifications to TLS 1.2 handshake and record-layer. It
was also solved generically for any ACCE protocol, but again with
significant overhead [8]. However, LURK-T solves this for TLS 1.3
without any modification to TLS 1.3 with an acceptable level of
overhead (see Table V).

III. DESIGN GOALS AND THREAT MODEL

The main difference between LURK-T and the standard TLS is
that LURK-T operates over 3 parties: C', E and CS. The E and CS
implement the server S. CS handles the authentication credentials
and derives the necessary TLS secrets for £/ which interacts with
the C. Standard TLS instead operates over 2 parties: C' and S.

A. Goals

The purpose of LURK-T is to ensure security properties of a
TLS communication between C' and E: providing authentication
ensured by trustworthy credentials (private keys as well as PSK),
and enabling PFS. In particular, LURK-T ensures that a TLS
communication between C and E remains trustworthy even if F
becomes compromised in the future as well as even if other C' or
E on another edge server is compromised. These properties are also
provided when E and CS' are operated “in situ” or by a CDN. To
meet these properties the following goals are derived:

e The CS must provide read protection of the authentication
credentials from a compromised £ to prevent them from being
used in future TLS sessions. With LURK-T, a compromised F in
the “in situ” scenario or a network admin in the CDN scenario is not
able to access the credentials via root access — including dumping
the memory. This differs from the standard TLS 1.3 threat model
where S must not be compromised, and anyone with privilege
access to S can access the credentials. A direct consequence is that
with LURK-T, once an attacker has compromised £, and later when
E recovers from this compromise, that attacker is not be able to

interfere with any future TLS session — including resumed sessions.

o The compromise of E, or CS being administered by a CDN, does
not provide any advantage to an attacker (although CS is interfaced
via LURK [32]) compared to the use of a regular C'. This is
achieved by strongly binding the interactions between E and
CS to the TLS 1.3 exchange between C' and F via the freshness
mechanism (see IV-A) as well as enforcing CS' to operate over

full TLS exchanges as opposed to hash of such exchanges. This
also provides a very efficient anti-replay protection for example
when PES is not properly enforced to meet a performance criterion
and limit the generation of (EC)DHE keys (see [39] Section 7.4).
« (S must be able to impose PFS by enforcing CS to generate new
and unique (EC)DHE keys for each TLS sessions. This differs from
the standard TLS 1.3 model, where in the case of a CDN, PFES is
expected to be enforced by the CDN (we avoid this trust in CDNS).

B. Adversary Capabilities

We assume CS is trustworthy. In LURK-T, CS runs inside a
TEE whose threat model assumes that TEE and its interfaces cannot
be corrupted [19]. CS is expected to be developed with formal
verification. The current 3800 LOC makes such assumptions realistic.

The private key must be securely provisioned to CS. This may
involve the key being generated and distributed from a TEE [21] or
the enclave being provisioned securely [28]. The latter is expected
to be achieved with TLS 1.3 being implemented in the CS. The
attacker can control all C's and E's, and interact either using TLS 1.3
or LURK. Note that, in a TLS session where the C' or F is under the
control of the attacker, all session secrets are exposed to the attacker
and the TLS session is trivially decrypted (but the private keys remain
protected under CS).

Regarding the network capabilities of the attacker, we also assume
as per the Dolev-Yao’s threat model, that all public channels are
accessible to the attacker to read, replay, block and inject messages.

IV. LURK-T DESIGN AND DEPLOYMENT SCENARIOS

In this section, we present our LURK-T design, instantiated with
TLS 1.3, including the protocol and example use cases for £ and
C§ based on their deployment.

A. LURK-T — Design

Components and the protocol. LURK-T involves the following
entities: a TLS client C', a LURK-T TLS Engine F, and a LURK-T
TLS Crypto Service CS; see Figure 1. The last two are either
collocated, or there is a pre-established, mutually authenticated and
encrypted channel between them. Such channel is expected to be
implemented via a TLS library embedded into CS' that terminates
into the TEE to prevent the communication between £ and CS being
compromised by the node hosting CS. The key provisioning service
is responsible for ensuring that the correct key is securely conveyed
to the CS using a secure channel that terminates into the enclave.
This can be achieved using solutions such as Blindfold [21].

The purpose of TLS is to authenticate and agree on sessions keys
so that C' and F can encrypt and exchange application data. The
Key Schedule is responsible to generate the various secrets between
C and S and includes, among others, the client/server handshake
secrets (hc, hg) used to derive the keys that protect the TLS key
exchange, the client/server application secrets (a ¢, ag) used to derive
the keys that protect the application data, the session resumption
secret () used to generate the PSK for authenticating C' and S. The
Key Schedule generates these secrets thanks to shared secrets such
as PSK or (EC)DHE shared secret KE as well as the TLS handshake
context H.;,. The ClientHello.random N~ and ServerHello.random
Ng provide some randomness to generate these secrets.

TLS supports three basic key exchange modes: (EC)DHE
(Diffie-Hellman over either finite fields or elliptic curves), PSK-only
and PSK with (EC)DHE. The TLS (EC)DHE mode corresponds

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 00, NO. 00, ABC 2023 4

Web Browser

Cloud Provider

Service Provider

HTTP Client

HTTP Server

v

Key Provisioning

TLS 1.3

TLS library

» TLS Engine |

LURK/TLS 1.3I

Crypto Service

[

SGX Enclave

Fig. 1: LURK-T entities: a TLS client C' (a regular web browser), a LURK-T TLS Engine E, and a LURK-T TLS Crypto Service CS (both
part of a third-party hosting provider), and a key provisioning server (under the content owner’s control).

to certificate-based authentication with S being authenticated by C
by proving the ownership of a private key sk via a signature over the
TLS exchange context H.,. designated as PSign = Sign ;. (Hetz)-
sk constitutes the authentication credential. (EC)DHE ensures perfect
forward secrecy, with C' and S generating their respective private
keys u and v, exchanging their respective corresponding public key
KEc=g" and KEg=¢g" to generate a common (EC)DHE shared
secret KE = g"?. The TLS PSK with (EC)DHE mode is based on
a PSK shared between C' and S as well as (EC)DHE, while the
TLS PSK-only mode does not provide perfect forward secrecy. In
both cases, PSK is the authentication credential. The TLS (EC)DHE
mode is commonly used on the web together with the TLS PSK in
the (EC)DHE mode to resume TLS sessions.

LURK-T always assumes that the authentication credentials sk or
PSK are handled and hosted in CS. As a result, in the TLS (EC)DHE
mode, PSign is generated by C'S and in the TLS PSK modes the Key
Schedule is performed by CS. On the other hand, LURK-T enables
the private (EC)DHE key to be generated either by CS or £ which
leads to the respective variants “LURK-T with DHE-active CS”and

“LURK-T with DHE-passive CS "illustrated in Figure 2a and Figure 2b.
The difference is highlighted in red. “LURK-T with DHE-active CS”
provides higher (compared to “LURK-T with DHE-passive CS”)
assurance on perfect forward secrecy (where TEE both protects the
(EC)DHE key and attests the key is not reused), and on resumed TLS
sessions (where TEE protects the PSK). The TLS execution between
C and CS, is actively proxied by F; i.e., E acts as the TLS server
(S) to C, but E does not have direct access to the private key of the
origin (i.e., of CS) in order to generate the PSign TLS message.

Note that Figure 2a and Figure 2b depict LURK-T instantiated
with TLS 1.3 in (EC)DHE mode. For PSK with (EC)DHE, the only
difference stems from the key-derivation in TLS. We now describe
in more detail the two main variants of LURK-T, each of these two
modes. Description of the PSK-only mode is omitted as PSK-only
can be easily derived from the PSK with (EC)DHE mode and this
mode is rarely used in the web context, with even discussions at the
IETF to deprecate that mode [!].

“LURK-T with DHE-active CS” - TLS (EC)DHE mode.
Following Figure 2a, C' initiates the TLS key exchange with F by
sending a ClientHello message which contains the random N as

well as the (EC)DHE public key.

Upon receiving the ClientHello, E applies the freshness
mechanism detailed in Section IV-A to protect against replay and
signing oracle attacks and provides the necessary handshake context
to CS to perform the Key Schedule and generate the signature. £
generates a nonce N and applies a pseudorandom function ¢ to
produce a bitstring denoted N g. In all variants and modes of LURK-T,
N g is deleted from memory at the end of the handshake. Then, £
sends to CS' the whole of its view of the handshake H, (including
N¢ and KE), the bitstring Ng.

CS generates Ng from Ng similarly to E. As in “LURK-T
with DHE-active CS”, CS generates the private (EC)DHE secret
key v and KEg and KE. KE is used together with H.;, by the
Key Schedule to generate the handshake secrets (h¢, hg). CS
generates the signature PSign. CS then generates the remaining
handshake messages to update H..,, and have sufficient context to
generate the application secrets (a ¢, ag). The formed messages are
CertificateVerify (CertificateVerify), which contains the signature,
as well as the server Finished message (Finz) which is a hash MAC
of Hct,. Generating these message avoid an additional round trip
between F and CS. CS then provides E the signature PSign, the
(EC)DHE public key KE ¢ and handshake and application secrets.

Upon receiving KEg, F generates and sends the ServerHello mes-
sage with KEg as well as the previously computed random Ng to the
TLS client C'. E generates the Certificate Verify (CertificateVerify)
and server Finished message (Fing) and encrypts them with the
session keys generated with the handshake secrets (AEy,).

C performs its Key Scheduler (similarly to S), checks the
signature, generates the client Finished message (Fin) and encrypts
it (AEy,) with session keys derived from the handshake secrets (h ¢,
hg) before finally deriving the session resumption secret. Upon
receiving Fing, E forwards it to CS so that CS can generate the
session resumption secret 7 and the PSK, which will be used later
during the session resumption.

“LURK-T with DHE-passive CS” — TLS (EC)DHE mode.In
this variant, CS does not generate the (EC)DHE private key, which
is instead generated by F (see Figure 2b). F generates N g exactly
as in the “LURK-T with DHE-active CS” variant. Then, F generates
the (EC)DHE private key v and associated public key KEg, ¢g*, and
computes KE, g™, which is provided to CS, alongside the H;,, and

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 00, NO. 00, ABC 2023 5

TLS Client C TLS LURK Engine E Crypto Service CS
[Generate Ne+{0.1)" ~—— Mutally Authenticated Channel ——
Generate u«—gZ,
KE¢ « ¢* mod p Ne, KEe
Generate Npe—p{0, 1} Herw, N
Ns < ¢(Ng) o
Ns < o(Ng)
Generate v¢—RZ,
KEs ¢ ¢"mod p
KE « (KE¢)" mod p
s, he — Key Schedule
PSign < Sign,;(Hew)
PSign) Generate Fing, CertVerifys
Ns. KEs PSign, KEs, hs, he, as, ac -5 = ey Schedule
AE; (CertVerifys . Fins) "Gonerate Fing, CertVerifys |
KE « (KEx)" mod p

hp he < Key Schedule
Check PSign

ar. ac « Key Schedule
Generate Finc

r + Key Schedule

AE; (Finc)

r + Key Schedule

(a) “LURK-T with DHE-active CS”, instantiated in (EC)DHE mode

TLS Client C TLS LURK Engine B Crypto Service CS
[Generate Noer{0, 1}" | ~—— Mutally Authenticated Channel
Generate urnZ,
KEc ¢" mod p Ne. KEc:
Generate Ngep{0, 1}
Ng
Generate v+nZ,
KEs « ¢*mod p
KE + (KE¢)" mod p Hetr, Nip KE
Ns < o(Ng)
| hs.he « Key Schedule
| PSign « Sign,; (Hew)
PSign (signer variant)[N
!)| Generate Fing, CertVerify
PSign. hs. he. as, ac| enera Fing, bectiertys
(signer variant)
N, KEs, hs. he,as, ac < Key Schedule
AE;(CertVerifys , Fins) " Generate Fing, CertVerifyg
[KE « (KEz)" mod p

| hip. he + Key Schedule
| Check PSign

ap,ac « Key Schedule
Generate Fing

AE;,(Fine)
| r + Key Schedule
(b) “LURK-T with DHE-passive CS”, instantiated in (EC)DHE mode

r < Key Schedule

Fig. 2: The two variants of LURK-T instantiated with TLS 1.3 in (EC)DHE Mode

Ng. CS then computes Ng as in “LURK-T with DHE-active C'S”,
initiates the Key Scheduler with H.;,, and KE as inputs, computes
PSign and optionally the handshake and application secrets hg,
he, ag, ac — as these later secrets may also be generated by F.
These two sub-variants are represented in blue in Figure 2b, and are
designated respectively as “keyless’ or “normal”. The rest continues
as in the “LURK-T with DHE-active CS” variant. Note that with
“LURK-T with DHE-passive CS”, when session resumption is
enabled, the resumption secret r is generated by £ (not by CS, and
thus CS is unable to guarantee its confidentiality).

LURK-T variants with TLS PSK with (EC)DHE mode. The
main difference between the PSK with (EC)DHE mode and the
(EC)DHE mode is that the former is used for session resumption.
LURK-T in PSK with (EC)DHE vs. (EC)DHE mode varies in as
much as TLS 1.3 varies across these two modes. LURK-T in PSK
with (EC)DHE mode requires more exchanges between E and CS.
Typically, upon the reception of the ClientHello, £ needs to check
the PSK proposed by C by performing a HMAC with a binder key
derived from the PSK; this binder key can be generated only by CS,
and E needs to request it from CS. Once the PSK binders have been
checked, F interacts with CS to generate the various secrets as in
(EC)DHE mode, but without PSign being generated.

Notes on LURK-T’s freshness function . We derive the “server-
nonce” N g by applying a non invertible PRF ¢ instance to a nonce N g
generated by F to prevent replay attacks. If an adversary .27 collects
plaintext information from a handshake, then .o’ will gather N, KE ¢
and Ng (from the channel in between E and C). However, <7 will not
be able to derive N g due to the non-invertible property of . If later on,
o7 corrupts F, o/ will not find the old N nonce in E’s memory; we
require that N g be deleted from E’s memory at the end of its use. Ex-
haustive search of the right /N would also be exponential in the size of
the domain of ¢, so it will be impossible for our polynomial attackers,
and thus preventing replay attacks as N g is necessary for the exchange.

B. LURK-T - Use Cases and Deployment Scenarios

We consider different deployment scenarios for LURK-T as
discussed below. The management of TLS is impacted by the
management of TEE (with attestation) as well as the management of
the long term private key; other aspects of TLS are not impacted. The
CS Manager is the entity responsible to administrate and provision
CS. Unless the private keys are generated inside the enclave, the
CS is responsible to provision the CS with the secret key. Securely
provisioning the enclave can be achieved by combining attestation

and terminating the communication within the enclave. The enclave
implementation must be verified by the CS manager (requiring CS
code to be open-sourced). It also likely requires a TLS library being
embedded into the enclave. Similarly, as only the TLS library is
impacted, LURK-T enables the CDN to continue providing added
services, and as such, keeps TLS a multi-party TLS.
Deployments driven by CDN providers. Figure 3a shows the
case where LURK-T is deployed as a substitute of TLS 1.3 libraries.
In this case, the server-side TLS libraries are replaced both by £
and CS. The main challenge associated with this case is that CDN
providers will need to manage (and provision) multiple instances
of CS. Figure 3b shows the case of a more centralized infrastructure,
with just one CS with an SGX enclave communicating securely
with multiple Es. In both cases, it remains crucial to implement
an attestation-ready provision of the CS. As the attestation is to be
performed by the CDN provider within its own network, DCAP
seems appropriate in combination with TLS-RA [28].
Deployments driven by content owners. Figure 3c shows the
case where CS is provisioned by a CDN tenant, such as a content
owner. Therein, CS is likely to be implemented by a third party (CS
developer), trusted by the content owner and the cloud provider — e.g.,
with open source code. The tenant will need to perform an attestation
of the CS, e.g., using Intel IAS [26]; this should use a group signature
in order for the tenant not to find out the identifier of the exact CPU
running the CS. This is also likely to be combined with RA-TLS [28].
Finally, note that from a tenant’s perspective there is a little
difference between instantiating a centralized CS, or multiple CS
instances; the difference is mostly in the way CS is implemented,
which can also be checked by the tenant via attestation.

V. SYSTEM IMPLEMENTATION

In this section, we describe our implementation® of CS and F
based on OpenSSL. CS centralizes the cryptographic operations.
However, OpenSSL has not been developed with such a centralized
cryptographic architecture and instead performs TLS operations
sequentially. Thus, following the OpenSSL design would lead to
numerous interactions between £ and CS, and degrade performance,
especially when interactions are between the Rich Execution
Environment (REE) and TEE. In particular, for SGX enclaves, the
interaction between TEE and REE results in 8,200 - 17,000 cycles
overhead, as opposed to 150 cycles for a standard system call [49].

6 Available from https:/github.com/lurk-t/

https://github.com/lurk-t/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 00, NO. 00, ABC 2023 6

Cloud Provider

HTTPS Servers
B

(a) Distributed CS

Internet |Cloud Provider

Internet Internet | Cloud Provider

HTTPS Servers
~ ’

(b) Centralized CS

Tenant

HTTPS Servers

{ S Manager |

/

(c) Tenant-controlled CS
Fig. 3: CS deployment use cases

We also balance the compliance to the specification of the LURK
extension for TLS 1.3 [32] and changes to OpenSSL to ease the
maintainability of our code. As a result, we implement F by updating
184 lines of the OpenSSL code and introducing a maximum of 2
additional ECALLs compared to the LURK specification [32]. Our
CS implementation contains 33 files with 3867 LoC.

A. Crypto Service (CS)

We implemented CS in an SGX enclave based on Intel SDK
version 2.13. We had several options regarding the cryptographic
library. While some cryptographic libraries support terminating the
TLS connection inside SGX, we did not use them since they are
either not maintained [3], or not fully compatible with OpenSSL.”
We chose the actively maintained Intel SGX-SSL [25] that compiles
OpenSSL source code as-is to create SGX compatible APIs (ensuring
compatibility and easy upgrades with future versions of OpenSSL).
However, SGX-SSL has limited functionalities. For example, it does
not support terminating TLS inside SGX and lacks all the TLS and
network related structures. Therefore, part of the C'S' implementation
mimics the TLS specific functions implemented by OpenSSL using
lower-level APIs and structures supported by SGX-SSL (we use
OpenSSL 1.1.1g for SGX-SSL).

1) CS in TLS (EC)DHE mode: CS is responsible for generating
the different parts of the handshake such as the signature, and
optionally — depending whether CS operates in the “LURK-T
with DHE-active CS” or “LURK-T with DHE-passive CS”
variant — (EC)DHE keys and secrets as detailed in Section IV-A.
Our implementation supports all these variants as depicted in
Figure 4 which details the exchanges between £ and CS. While
our design defines a single SInitCertificateVerify exchange [32],
our implementation, when necessary (depending on the CS
configuration), repeats up to 3 times that exchange in order to retrieve
different pieces of information (depending on the CS configuration,
see Figure 4). Table I shows the supported CS configurations, and
for each one, which entity (£ or CS) generates the (EC)DHE or the
secrets h, a and 7. Binder keys and signature are always generated
by CS in their respective (EC)DHE or PSK with (EC)DHE modes.
Generating (EC)DHE. In the “LURK-T with DHE-active CS”
variant, CS generates the (EC)DHE private key for S. F retrieves
S’s (EC)DHE public key with an additional SInitCertificateVerify1
exchange (see Figure 4). CS generates the (EC)DHE shared secret

"hitps://www.wolfssl.com/wolfssl-with-intel-sgx

CS config (Cert) | CSTE [CSdhe | CSpery | CSEEVIESE
(EC)DHE cS cS E

handshake cs cs cs E
application cS cs cS E
resumption cs - cs E
#ECALLs 4 3 2 1
CS config (PSK) | C'Sahe | Csdhe | CSr | CSpar
(EC)DHE CS CS E E
handshake CcS CcS CcS cs
application cS cs cSs cs
resumption cS - cs -
#ECALLs 5 4 4 3

TABLE I: CS configurations indicating where (EC)DHE or secrets
are generated (when generated) and associated number of ECALLSs
by our implementation

SInitCertificateVerifyRequestl®
get_ecdhe
ServerHello SInitCertificateVerifyResponsel
ChangeCipherSpec

Wrapper

EncryptedExtensions

Certificate

SInitCertificateVerifyRequest2*

SInitCertificateVerifyResponse2

SInitCertificateVerifyRequest3
a

CertificateVerify sInitCertificateVerifyResponse3| _

Server Finished

Client Finished

i

SNewTicketRequest*

SNewTicketResponse

Fig. 4: Messages between E and CS for the (EC)DHE mode. *
designates an optional exchange depending on the CS configuration

using C’s (EC)DHE public key and the S’s (EC)DHE private
key — that is kept secret by CS. This is implemented with our
get_ecdhe function which represents an additional ECALL
compared to the LURK specification.

Generating h and a.When CS is configured to generate h,
E performs an additional SInitCertificateVerify2 exchange to
retrieve handshake secrets h ¢ and hg (see Figure 4): our function
get_hand_secret takes the ClientHello to ServerHello
messages as inputs and returns h. This represents an additional
ECALL compared to the LURK specification. When CS is
configured to generate a, both a and ag are generated together with
the signature in our get_sig function (SInitCertificate Verify3).
get_sig takes the ClientHello to EncryptedExtension messages,
generates the signature, completes the TLS handshake by generating
the Certificate Verify and the server Finished messages to compute a.
In contrast, in the keyless configuration, get_sig only generates
the signature; therefore, in this case, our implementation fully matches
the LURK specification with a single ECALL.

Session resumption. When session resumption is enabled, a new
session ticket is retrieved via a SNewTicket exchange. This exchange
provides the full TLS handshake (from ClientHello to client Finished)
and a nonce to the CS. Our implementation generates a stateful
ticket in which CS' generates the resumption master secret r and,
subsequently, uses it for generating the PSK. CS stores the PSK
and the LURK-T session ID (that is used as a PSK ID) in the
TEE. Therefore, F caches the LURK-T session ID as a PSK ID
to further identify the PSK. OpenSSL handles the generation of the
NewSessionTickets messages as well as the ability to bind a ticket

https://www.wolfssl.com/wolfssl-with-intel-sgx

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 00, NO. 00, ABC 2023 7

in a resumed session to the PSK generated in a previous TLS session.
To fully reuse OpenSSL ticket management functions, the PSK ID
is stored where OpenSSL used to store the clear text PSK.

2) CS in TLS PSK with (EC)DHE mode: During a session
resumption, our implementation blocks OpenSSL from accessing
the PSK, and instead E' sends a SInitEarlySecretRequest to CS. This
exchange provides the PSK ID so CS can restore the PSK and initiate
a Key Schedule and return the binder key. Similar to Section V-Al,
the specified SHanshakeAndApp is implemented in 3 ECALLs when
CS generates the (EC)DHE (get_ecdhe, get_hand_secret
and get_app_secret), or 2 ECALLs when E generates the
(ECDHE (get_hand_secret and get_app_secret).
Generation of the resumption secrets 7 by CS requires an additional
ECALL (get_res_secret).

B. TLS Engine (E)

E, which is based on OpenSSL 1.1.1g, is implemented by updating
9 C files out of the 44 files in the SSL directory. Upon configuration,
E executes the native OpenSSL function or initiates an exchange with
CS. OpenSSL defines two core structures: SSI, and SSI,_CTX.
SSL is created for each new TLS connection and contains all TLS
sessions’ context (e.g., cipher suite, session, secrets, etc). The com-
munication between £ and CS, is handled via the LURKRequest
and the LURKResponse structures added to the SSL.

SSI_CTX contains the information common to all SSL
structures (e.g., session resumption and the number of new TLS
connections). Typically, C' and S create one SSL_CTX structure
and reuse it for all their TLS connections. Since CS is shared across
all TLS connections, it is instantiated at the creation of SSI._CTX.
Thus, initiating the enclave — which is a time-consuming — only
happens once for S.

To apply the freshness function, we need both the full TLS
messages as well as the ServerHello.random N (before applying the
freshness function) — see Section IV-A. However, by default, OpenSSL
prevents the access to the TLS messages as it continuously hashes the
TLS messages to avoid storing large handshake data. To overcome
this, our implementation stores the value of ServerHello.random (N g
generated by OpenSSL) as well as handshake data. When OpenSSL
generates Nz, it is intercepted by the freshness function, stored in
the LURKRequest, and replaced by Ng so OpenSSL proceeds to
the generation of the ServerHello using Ng. Later on, CS checks
Ns = ¢(Ng), with Ng being the ServerHello.random (Ng) in the
TLS message and N g the stored value.

Finally, CS is integrated into £ as an external library. We
successfully linked (by updating OpenSSL Makefile) and tested our
library for dynamic and static versions of OpenSSL.

VI. PERFORMANCE EVALUATION

A. Methodology for Measuring LURK-T TLS Overhead over
OpenSSL

In this section, we report the performance overhead of our TLS
library. The performance is measured in terms of TLS Key EXchange
per second (KEX/s), following the methodology used in RUST TLS
performance evaluation.® Ag gy expresses the relative difference
in terms of KEX/s between LURK-T TLS and the native OpenSSL
TLS. In particular, A i g x is expressed as a percentage for a given
configuration conf which represents the TLS cipher suites (see
Table II) and the tasks performed by CS (see Table I).

Shitps://jbp.io/2019/07/02/rustls-vs-openssl-handshake- performance.html

A _ |KEXrurk - 1=KEX0openssLleons
KEBEX KEXopenssL

Our measurements are performed on an Intel i19-9900K CPU
@3.60GHz over Ubuntu 18.04 LTS and we took the average time
after performing 10,000 handshakes.

Notation Description KEX/s
RSA-2048 | (prime256vI, RSA-2048) 1715
RSA-3072 | (prime256v1, RSA-3072) 316
RSA-4096 | (secp384, RSA-4096) 243
P-256 (prime256v1, P-256) 5251
P-384 (secp384, P-384) 496
Ed25519 (X25519, Ed25519) 6113
Ed448 (X448, Ed448) 1251

TABLE II: Native OpenSSL TLS key exchange (KEX) performance
for different cipher suites

TLS cipher suites configuration. We base our selection of cipher
suites in Table II, on Mozilla’s modern compatibility configuration
which recommends ECDSA (P-256) or RSA-2048 combined with
X25519, prime256v1, secp384r1.We added ECDSA (P-384) and
Ed25519, projecting the measurement toward long-term deployments.
CS configurations. Besides TLS cipher suites, we measured various
configurations for CS. The primary purpose of CS is to protect
authentication credentials (private key cert or psk). In the (EC)DHE
mode (expressed as cert), session resumption may be enabled
(expressed as r), so future handshakes may use the PSK with
(EC)DHE mode. To remain coherent across sessions in terms of
PFS, we only considered the PSK with (EC)DHE mode (expressed
as psk). As mentioned in Section IV-A, the PSK is derived from
the generated (EC)DHE shared secret. Thus, the PSK used for the
session resumption can only remain confidential in a “LURK-T with
DHE-active CS” variant (e.g., the CS generates the (EC)DHE private
key). This is expressed with the following configuration CS“"%". Of
course, without session resumption, “LURK-T with DHE-active CS”
or “LURK-T with DHE-passive CS” variants are valid configuration
expressed as C'SIe €S,y or C'SEY** (when only the signature
PSign is generated, see Section IV-A). In the PSK with (EC)DHE
mode, and unlike the (EC)DHE mode, session resumption may be
enabled with both “LURK-T with DHE-active CS” or “LURK-T with
DHE-passive CS” variants, and Table I summarizes the meaningful
CS§ configurations with the associated number of ECALLS.

B. Experimental Measurements of LURK-T TLS Overhead over
OpenSSL

(EC)DHE mode. Figure 5 depicts Axpx as a function of the
number of ECALLs which characterizes CS configuration (see
Table I). As shown in Figure 5, ECALLs do not equally affect
all cipher suites and Ag gy does not linearly increase with the
number of ECALLSs. However, as per Table I, cipher suites that
require more resources (RSA-3072, RSA-4096, P-384, Ed448), seem
less impacted by LURK-T TLS and their overhead depends more
linearly on the number of ECALLs. A possible explanation is a low
ratio of allocated slots by the scheduler which results in either an
interruption or an exitless process wasting the remaining allocated
cycles. With our current configurations, the measured overhead for
Ed448, RSA-3072, P-384 and RSA-4096 is low (between 1.2% and
10%) and the number of ECALLSs have very little impact. Other
cipher suites (including RSA-2048) are more impacted by the number
of ECALLs. Nonetheless, our implementation presents a higher
overhead for the P-256 and Ed25519 cipher suites. P-256 has up to
39.7% overhead when (EC)DHE is performed by CS and 14.7%

https://jbp.io/2019/07/02/rustls-vs-openssl-handshake-performance.html

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 00, NO. 00, ABC 2023 8

-o- RSA2048
-+ RSA3072
—— RSA4096
= P256
P-384
¢ Ed25519
Ed448

1(CS397en) 2 (CScent) 3(csdp) 4 (csgen

Number of ECALLs, CS configuration

Fig. 5: KEX LURK-T TLS relative overhead over OpenSSL (Ax g x)
in (EC)DHE mode. Measured values are linked using a linear
regression.

-+ P26
-+ P-384
44~ K2519
4+ X448

. .
4(CShg CS2F) 5 (Csge)

Number of ECALLS, CS configuration

3(CSpu)

Fig. 6: KEX LURK-T TLS relative overhead over OpenSSL (A g x)
in PSK with (EC)DHE mode.

in the keyless configuration. Ed25519 is less affected in the “LURK-T
with DHE-passive CS5” variant (less than 23%) compared to the
“LURK-T with DHE-active CS” variant (up to 33%). Finally, the
keyless configuration provides an apparently acceptable overhead

(17% for P-384, 7.6% for RSA-2048, less than 4.3% for the others).

PSK with (EC)DHE mode. Similar to the (EC)DHE mode, Figure 6
shows the most efficient ciphers (P-256, X25519) are more impacted

by the number of ECALLS than the others — such as P-384 and X448.

Overall, the preliminary measurements of our implementation show
encouraging results with a limited and acceptable overhead.

The observed overhead might be further improved (both for
(EC)DHE and PSK with (EC)DHE modes). Firstly, we can reduce
the number of ECALLSs, which may incur major modifications to
the OpenSSL architecture, and may affect the case of Encrypted
Extension (see Section V). Secondly, we can aggregate multiple
LURK-T requests in each ECALL. The optimal number of LURK-T
requests that need to be aggregated is expected to depend on the CPU,
the cipher suite, and the CS configuration. The optimum performance
will be reached when multiple operations can be completed within
the allocated number of cycles, minimizing the number of unused
cycles. This is likely to benefit Ed25519 or P-256.

C. SGX Vulnerabilities Mitigation Overhead

In this section, we discuss the overhead associated to the available
mitigations — micro code or SDK [23] — of SGX vulnerabilities for
our CPU. The discussion in Section VI-B considers the default SGX

SGXSRDBS’Cf SGXSRDBS’ld SGxdefault
RSA-2048 1162 132 1715
RSA-3072 282 35 316
RSA-4096 181 17 243
P-256 2353 971 5251
P-384 277 48 496
Ed25519 3312 909 6113
Ed448 1081 78 1251

TABLE II: SGX performances (KEX/s) with SRDBS and LVI
miti(%ation enabled versus default SGX for CS configured with
CS,

he,r
cert *

configuration; that is without vulnerabilities. While we expect future
CPUs to address the currently known vulnerabilities —leading to the
performances of Section VI-B- we also anticipate new vulnerabilities
to be disclosed and their mitigation will come with an additional
overhead for the cloud provider. Note that previous proposals did
not measure performance with these added security measures (which
incur significant performance overhead).

According to Intel [23], our CPU remains vulnerable to Special
Register Buffer Data Sampling (SRBDS) [27] and CrossTalk
attack [37] for which Intel provides a microcode update. Similarly,
our CPU is vulnerable to Load Value Injection (LVI) [14] which
we respectively mitigate both via the SDK or via the SGX-SSL
cve_2020_0551_load (Id) or cve_2020_0551_cft
(cf) [25].

Similar to Section VI-A, the performance is measured in terms of
the number of KEX/s. In our case, the overhead of the microcodes —
SRBDS - is negligible while the one of the SDK and SGX-SSL — for
LVI —is not. Table III summarizes our measurements for each cipher
suite. From the table, it is clear that for a given SGX configuration,
the overhead increases with the number of operations performed by
CS. However, for a given cipher suite, we could not correlate the
number of operations to the expected overhead.

D. LURK-T TLS Overhead for HTTPS

We developed a multithreaded HTTPS server in RUST (using
OpenSSL). Subsequently, we modified it to use LURK-T TLS
to confirm that migration to LURK-T TLS is easy and can be
used in other programming languages that support OpenSSL (in
this case RUST). Similar to Axgx in Section VI-A, we measure
Anrrps (see Table IV), the overhead of LURK-T TLS over HTTPS
with OpenSSL by measuring the relative difference in requests by
second of various file sizes being served. To do so, we modified the
benchmark tool wrk® to force select TLS 1.3 as well as to be able
to specify a specific cipher suite. The HTTPS server and benchmark
tools are published as open source.'?

We measure the number of HTTPS requests per second performed
by wrk with 10 parallel connections to introduce some concurrency
similarly to [47] — though in the measurements, we did not observe a
significant difference between 10 and a single connection. To prevent
underestimating the impact of LURK-T TLS, we considered our
LAN with a 10 ms latency with 100 MB bandwidth that reflects
the interactions with a NIC while lowering the impact of the latency.
Similarly, the download file is always cached in the memory of
the HTTPS server, and thus, reducing S’s latency (by avoiding
reading from the hard drive). We limit CS’s configuration to the

most secure configuration which has the highest overhead (CS?:T?T).

https://github.com/wg/wrk
1Ohttps:/github.com/lurk-t/https

https://github.com/wg/wrk
https://github.com/lurk-t/https

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 00, NO. 00, ABC 2023 9

Aprrps | OKB | IKB | 10KB | 100KB | IMB
RSA2048 | 160 | 177 | 89 79 0
RSA-4096 | 74 | 87 72 8.6 0
P-256 50 | 40 | 42 10.8 0
P-384 57 | 8.1 08 3.0 0
Ed25519 | 109 | 139 | 34 34 0.1
Ed448 0 0 0 29 0

(a) Default SGX: LURK-T TLS overhead in term of HTTP request/s is
negligible for files larger than 1MB.

AnrTps | OKB | IKB | 10KB | 100KB | IMB
RSA-2048 | 881 | 880 | 863 8377 06
RSA-3072 | 866 | 867 | 865 865 | 69.1
RSA-4096 | 90.5 | 907 | 90.6 908 | 852
P-256 766 | 764 | 782 788 | 417
P-384 783 | 7189 | 795 798 | 604
Ed25519 | 632 | 634 | 581 385 0
Ed448 781 | 779 | 785 827 | 382

(b) Mitigation-enbaled SGX (Id and .S)

TABLE IV: HTTPS download/s LURK-T TLS relative overhead
over OpenSSL (Agrrps) in (EC)DHE mode and “LURK-T with
DHE-active CS” (C.S2<m),

Moreover, to consider the SGX vulnerabilities, we performed the
same measurements on the fully mitigation-enabled SGX (enabling
ld and SRDB.S), which has the most overhead.

The measurements in Table IV show that even with C'S...;",
overhead is always negligible when downloading 1MB (or larger)
files. In other words, for such files, the transfers overtake the overhead
introduced by the LURK-T TLS handshake. For file sizes lower
than 100KB, LURK-T TLS seems to introduce a slight overhead,
but we are not able to find a clear relation with the file size, and the
overhead seems primarily determined by the cipher suite. Similar
to the measurements of CS in Section VI-B, P-384 and Ed448 seem
to provide better performances compared to other cipher suites. Our
reported measurements are valid from both the client and server
perspectives. Note that, resource wise, S’s LURK-T overhead is the
one reported in Section VI-B.

When the mitigations (Id and SRDBS) are enabled, the
measurements show that P-256, Ed25519, RSA-2048 provide a
negligible overhead for 1MB files. For other cipher suites, such a
pivot seems to occur for file sizes over 1 MB.

dhe,r th

E. SGX Memory Usage

The memory that our design needs depends on the chosen
configuration. Without session resumption, our implementation uses
at most about 25 KB stack and 8§ KB heap memory. Moreover, the

memory requirement does not change with the number of connections.

Similarly, when session resumption is enabled in the stateless mode,
we do not need to store anything in SGX protected memory. However,
in the stateful mode, session information needs to be stored in the
SGX memory. For each session, we need 104 bytes of SGX memory
to store the PSK and session ID. Note that we report memory usage
in the debug version (since the Enclave Memory Measurement Tool
provided by Intel only works in the debug mode). Therefore, the
memory usage will possibly reduce in practice (e.g., due to the
optimization in the release mode).

FE. LURK-T TLS Overhead for HTTPS Over Other Proposals

In this section we briefly discuss the LURK-T TLS overhead with
the one of other solutions of Section II, reported in Table V. The
comparison is only indicative as the overheads have been made in

LURK-T | Talos C-k C-c | Panoply | Graphene
LOC (K) 38 54 | >770 | 1300 20 1300
AgTTPS 0-17.7 22 57 81 49 40

TABLE V: HTTPS measurement comparison between Panoply,
Graphene, Conclave-keyless (C-k), Conclave-crypt (C-c), Talos.
Aprrps represents the relative overhead (%) associated to the
number of HTTPS download per second for a 1 KB file.

very different contexts involving different HTTPS servers (NGINX,
Apache and wrk) and different TLS libraries (different versions of
OpenSSL and libreSSL - though derived from OpenSSL).

LURK-T is the only design applicable to TLS 1.3 with the lowest
overhead in terms of KEX compared to TLS 1.2 and fewest LOC in
TEE. As mentioned in Section II, specific approaches (LURK-T and
Talos) seem to provide a lower overhead over generic frameworks
(Graphene — see Conclave keyless). On the other hand, the large
overhead measured for Panoply, Graphene, Talos and Conclave-crypt
can be attributed to the resources they require for the protection of
the TLS application data.

In terms of LOC, LURK-T and Talos limit the potential
vulnerability with fewer lines of code and make these solutions more
likely to be deployed by cloud providers as less TCB is required. This
results both in limiting the necessary memory resources (limited to
90MB) as well as increasing the ability to share the other part of the
untrusted library between containers and other applications.

VII. FORMAL SECURITY PROOFS AND ANALYSES

There are two schools of thought w.r.t. provable security:
computational analysis (a.k.a. cryptographic proofs) and symbolic
analysis. Computational or provable-security formalisms for security
analysis consider messages as bit strings, attackers to be probabilistic
polynomial-time algorithms who attempt to subvert cryptographic
primitives, and attacks to have a probabilistic dimension of the
security parameters. Computational analysis is proved generally “by
hand” in a game-based cryptographic model and is appropriated to
verify arbitrary corruption and cryptographic AKE (authentication key
exchange). On the other hand, symbolic models abstract messages to
algebraic terms, assume cryptographic primitives to be ideal and not
subject to subversion by the adversary, and the attacks be possibilistic
(i.e., not probabilistic) flaws mounted via a set of Dolev-Yao rules
applied over interleaved protocol executions - assuming cryptography
cannot be broken. Symbolic analysis is tool-assisted, automated, in
a protocol-semantics and is appropriated to prove some properties
such as PFS for example.

We use both the computational analysis: namely, we extend the
(S)ACCE model [8] for multi-party AKEs, and we extend the
symbolic analysis of a TLS 1.3 draft in ProVerif [0]. We extend
the computational analysis to work for the actual current TLS 1.3 and
TEEs, as well as applied it to LURK-T. We also extend the symbolic
verification to work for TLS 1.3 draft 20 in [6] (which does not
consider some AEAD encrypted payloads during the handshake);
then, we apply it to LURK-T. Importantly, we could forego the com-
putational analysis if there was a computational-soundness result [18],
but this does not exist for TLS, let alone for multi-party TLS.

As per Section IV, one can have several modes and several variants
of our LURK-T protocol. In what follows, we will show security-
analyses for all these variants. We start by stating LURK-T’s require-
ments semi-formally, in VII-A1. On top of the existing 3(S)ACCE [£]
properties, we add a requirement and a proof for a new property stem-
ming from our use of TEESs; we call this property trusted key-binding.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 00, NO. 00, ABC 2023 10

In Section VII-A2, we provide the computational-security results
for both “LURK-T with DHE-active CS5” and “LURK-T with
DHE-passive CS” in EC-DHE mode, and discuss in this framework
why “LURK-T with DHE-active CS” offers more provable-security
guarantees. For “LURK-T with DHE-active CS” in EC-DHE
mode, if executed in what we call the runtime-attested handshake-
context mode, the property we call trusted key-binding holds (see
Section VII-Al); this is a stronger form of accountability (than without
the runtime-attested handshake-context mode), hinging on TEEs.

In Section VII-B, we use symbolic verification to show that
“LURK-T with DHE-active CS” in EC-DHE mode attains all the
same requirements that TLS1.3 does, and a new, 3-party security
property that shows that C, F, CS have matching views of the
handshake even in the presence of a Dolev-Yao attacker.

A. Computational Analysis

1) Cryptographic requirements: In order to give our cryptographic
proofs that LURK-T achieves its security goals, we use the recent
3(S)ACCE formal security model for proxied AKE [§].

In essence, we will use this 3(S)ACCE model, extended with an

additional 4th party, namely the attester AS, who interacts with the
CS and (the AS may be called upon via E), but this interaction
AS-CS is outside of the ACCE computation. Because of this, we
continue to call the model 3(S)ACCE (as in, with 3 parties); we just
make a note that a 4th party — the attester— is present, “out of band”.
Security requirements for LURK-T. For LURK-T, we prove the
3(S)ACCE requirements: i.e., entity authentication, channel security
and accountability. Below, we add a new one, linked to the attester
party, and call this requirement trusted key-binding.
LURK-T with runtime-attested handshake-context. In this sub-
variant, a runtime TEE system is called to yield a separate “quote” over
the whole handshake done inside the CS during a TLS session. So, we
request the quote from the remote enclave (found on the CS) and ver-
ify this using the Attestation Service. Namely, we request the quote as
soon as the CS prepares the PSign and before it does so. Then, we en-
crypt the buffer containing the operations on the C'S' and its arguments
(it will just contain H,.), with the shared key established via remote at-
testation (e.g., seal_key). In this optional sub-variant, this step is done
and the Attestation Service therefore will receive a “binding”/*‘context”
to the channel-key calculated during the handshake. We call this type
of LURK-T — LURK-T with runtime-attested handshake-context.

Trusted key-binding. We now state our new attestation-relevant
property more widely than for LURK-T, for a server-controlled
delegated TLS achieves trusted key-binding with runtime attestation
on the CS. We say a server-controlled delegated TLS achieves trusted
key-binding if CS is able to compute the channel keys ck used by
C and F and the handshake context/transcript corresponding to these
keys ck is asynchronously attested. That is, if presented with this
handshake context by the attester again, then CS can recompute
these keys ck and produce the same PSign, h, a, etc sent to F in the
handshake where the keys (ck) were used.

Note that the attester gets only necessary parameters from
the handshake. Notably, it does not get PSign, h, a, so it cannot
impersonate the CS or resume a session as a CS. Further, in some
TEE systems (e.g., if we use a TPM — trusted platform module), we
could open a “TEE session” for the whole part of the handshake run on
the CS and sign that as a proof of computation for the attester, yet we
deliberately go against that. Such a design would give the attester all
the information of the computation on the CS' side which we believe

will place too much trust on the attester, allowing it to see long-term
secrets of the C'S pertaining to another, specific protocol, i.e., TLS.

Finally, trusted key-binding is a type of enhanced 3(S)ACCE
accountability which is based on the LURK-T CS executing its part
of the TLS-server in an enclave.

2) Cryptogtaphic proofs: W.u.t. the properties recalled/given
above, we now state our cryptographic guarantees.
Entity-authentication result. [f TLS 1.3 is secure w.r.t. unilateral
entity authentication, if the protocol between E and CS is a secure
ACCE protocol or they are collocated, if the two protocols (the
one between C and E, and the one between E and CS) ensure
3(S)ACCE mixed entity authentication [S] in the case where E and
CS are not collocated, if the signature and hash in TLS 1.3 server-side
are secure in their respective threat models, if the authentication
encryption used in TLS 1.3 is secure in its model, then “LURK-T with
DHE-active CS” and “LURK-T with DHE-passive CS” in EC-DHE
mode are entity-authentication secure in the 3(S)ACCE model.
Channel security result. If TLS 1.3 is secure w.rt. unilateral entity
authentication, if the protocol between F and CS is a secure ACCE
protocol or they are collocated, if the two protocols ensure 3(S)ACCE
mixed entity authentication [8] in the case where E and CS are
not collocated, if the signature in TLS 1.3 server-side is secure in
its threat model, if the authentication encryption used in TLS 1.3 is
secure in its model, and the freshness function is a non-programmable
PRF [12], then “LURK-T with DHE-passive CS” in EC-DHE
mode are entity-authentication secure in the 3(S)ACCE model attain
channel security in the 3(S)ACCE model.

Note that the two security results above apply to all variants and

sub-variants of LURK-T. These two requirements are the main
requirements for any AKE protocol, now cast and proven here
not over two but over three parties, in the 3(S)ACCE model. This
alone makes LURK-T a secure TLS decoupling between the Crypto
Service to the Engine. So, the next two statements can be viewed
as “bonus” security, attained only by the variants of LURK-T which
are computationally more expensive.
Accountability result. If TLS 1.3 is secure w.rt. unilateral entity
authentication, if the protocol between E and CS is a secure
ACCE protocol or they are collocated, if the two protocols
ensure 3(S)ACCE mixed entity authentication in the case where
E and CS are not collocated, and the freshness function is a
non-programmable PRF [12], then “LURK-T with DHE-active CS”
attains accountability in the 3(S)ACCE model.

Accountability requires that CS always be able to compute all keys
and sub-keys of the session established between the client and E.
So, accountability is incompatible when session-resumption is done
by the E alone (i.e., “LURK-T with DHE-passive C5”). That is the
above security statement w.r.t. accountability only holds for “LURK-T
with DHE-active C'S”. Note that this is not critical in practice. Also,
it comes at a cost (i.e., “LURK-T with DHE-active C'S™ is more com-
putationally expensive expensive than “LURK-T with DHE-passive
CS”). So, with LURK-T, we provide a series of variants, allowing
the deployment-stage to choose between security and efficiency.
Trusted key-binding result. If TLS 1.3 is secure w.rt. unilateral
entity authentication, if the protocol between E and CS is a secure
ACCE protocol or they are collocated, if the two protocols ensure
3(S)ACCE mixed entity authentication in the case where E and CS
are not collocated, and the freshness function is a non-programmable
PRF [12] and if the TEE allows for runtime remote attestation, then
“LURK-T with DHE-active CS” attains trusted key-binding.

Trusted key-binding can be seen as an attested form of
accountability. So, like accountability, it will only hold for variants

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 00, NO. 00, ABC 2023 11

of LURK-T where there is no session resumption by the £ alone.
Again, this is not critical in practice — since trusted key-binding is
an arguably very strong requirement of security and trust.

B. Symbolic Verification

We perform a symbolic verification using ProVerif [9] to show
that the LURK-T protocol, from a symbolic verification perspective,
attains the same security properties as TLS 1.3, along with additional
properties as described below. In this section, we focus on the
verification of “LURK-T with DHE-active CS”. We first show that
LURK-T does not impact TLS security (from a symbolic-verification
perspective). Then, we show that the addition of the 3rd party still
attains security w.r.t. symbolic verification. All this is complementary
to the results in Section VII-A2.

This section is structured as follows. First, we report on a
ProVerif-verification of TLS 1.3 which we lifted from TLS 1.3
pre-standardisation (i.e., draft 18) to the current standard. Then, we
show that all the 2-party, TLS 1.3-centred properties are preserved
on LURK-T. We also add a new 3-party agreement property for
LURK-T, which ProVerif proves to hold, thus showing LURK-T
to be a secure proxied TLS. All our ProVerif files and results are
available at: https://github.com/lurk-t/proverif.

1) Verifying standardised TLS 1.3 in ProVerif: Our approach was
to reuse a ProVerif specification of a draft of TLS 1.3, given in [36],
[6]. The latest available version of this specification encoded draft 20
of TLS 1.3 pre-standardisation (no newer version as confirmed by the
authors). So, first, we updated this existing ProVerif specification of
TLS with the RFC 8446. In short, the ProVerif model did not specify
the handshake to include AEAD encryption for the Certificate, Certifi-
cateVerify and Finished messages. We applied the necessary updates
to ProVerif models and verified that the original properties still held.
The only difference observed is that, in our newly updated models for
standard-TLS 1.3, the automatic proofs take longer, as we detail below.

2) Verifying LURK-T in ProVerif: We modelled LURK-T in
ProVerif. We therefore split the ProVerif S-process in two: a CS
process and an E process. In each, we encoded “LURK-T with
DHE-active CS” and, specifically, also the case in which the CS
and E are not collocated. In this case, we modelled a secure channel
between the CS and F, as per the LURK-T specifications; in
ProVerif, this is what is called a private channel, not accessible to the
underlying Dolev-Yao attacker. We inherited all the Diffie-Hellman
exponentiation aspects (including modelling weak subgroups) from
the TLS implementation. Note that we do not model the TEE
specifically, but since CS cannot be adaptively corrupted in the
model at hand (which is the case symbolic verification), that equates
to the TEE being modelled “by default”.

The query we added to the ones inherited from TLS 1.3 expresses
that there is always a correct/secure session interleaving and execution
between the C, E and CS, even with the Dolev-Yao attacker in
the middle. In practice, this means that a Dolev-Yao attacker cannot
find a way to mis-align the execution of the three parties by doing
a man-in-the-middle-type attack.

As shown in Fig. 7, our added query captures the execution
of the following sequence of events: 1) TLS13_sent_cr_sr_to_CS
denoting that E contacted the CS with clinets handshake details; 2)
CS_sent_CV denoting that the CryptoService sent a signed share to £
3) TLS13_recvd_CV denoting that £ got from the said share signed
from the CryptoService; 4) PreServerFinished denoting that E acted
as a TLS server and reached the point of sending out a DH share
to the client; 5) ClientFinished denoting that C' finished a handshake.

query crirandom, srirandom, cr’:random, sr’:random,
psk:presharedKey, p:pubkey, e:element,
o:params, m:params,
ckiae_key, sk:ae_key,ms:bitstring, cbibitstring, log:bitstring;

inj-event (ClientFinished(TLS13,cr, sr, psk,p, 0,m, ck, sk, cb,ms)) ==>
(inj-event (PreServerFinished (TLS13,cr, s, psk,p, 0, m, ck, sk, cb)) ==>
(inj-event (TLS13_recvd CV (cr, sr, p, log)) ==>
(inj-event (CS_sent_CV(cr, sr, p, log)) ==>
inj-event (TLS13_sent_cr_sr_to_CS (cr, sr, p, log))
)
)
)
|| (event (WeakOrCompromisedKey (p)) && (psk
|| event (CompromisedPreSharedKey (psk)))) ||
event (ServerChoosesKEX (cr, sr,p, TLS13,DHE_13 (WeakDH,e))) ||
event (ServerChoosesHash (cr’, sr’,p, TLS13, WeakHash)) .

NoPSK

Fig. 7: Agreement query between C, E, CS

By considering the introduced parameters in these events, one can
observe that the data is bound among all such events during any given
execution. These events are required to be injective, implying a one-to-
one mapping in occurrences between them. Therefore, not only must
this sequential events and data agreement hold for every LURK-T
execution, but each CS execution will also uniquely correspond to
a single £ execution and a single C' execution, through a distinct
set of matching handshake data. This security agreement goal is
demonstrated to persist, except in the cases of compromised CS, or
compromised PSK, or due to the use of a weak DH subgroup, or a
weak hash function. Such exceptions are comprehensively addressed
by the list of disjunct terms appended at the end of the query.

3) Experimental setup: We conducted our ProVerif verification
in two settings: (a) using an Ubuntu 20.04 Focal VM with a V100
GPU and 128 GB RAM on KVM,; (b) using a laptop with Windows
10 and Intel(R) Core(TM) i7-8650U CPU @1.90GHz and 32 GB
RAM and the latest version 2.02 for ProVerif. While the powerful
setting (a) is evidently very suitable for the development phase of
our ProVerif models and for fast verification, we consider that setting
(b) is more plausible to be used for reproducing our proofs. In setting
(b), without the option to generate the attack graphs, analyzing all
29 queries automatically (the 24 queries inherited from [36] plus the
5 queries we added specifically for LURK-T including the query
detailed above), takes 17.25 hours. Verified separately, the query in
Figure 7 requires 1.5 hours to be proved (true).

VIII. POTENTIAL VULNERABILITIES

Although LURK-T protocol’s security goals are formally verified, a
LURK-T deployment may still face practical security challenges. For
example, several new SGX attacks have been reported almost every
year for the past several years—see e.g., the recent Downfall [33] and
APIC attacks [10]; a survey of attacks, CPU update delays, and ex-
ploits for commercial SGX applications are provided by SGX fail [46];
and a comprehensive list!! is also maintained by Intel. A LURK-T
deployment must remain up-to-date with all pertinent fixes (SDK and
microcode, if available). Missing any such updates, or attacks with
no available mitigations may make any SGX deployment vulnerable,
including LURK-T. Possible vulnerabilities may also be introduced in
LURK-T’s implementation. Our code is open-sourced, and relatively
small in size (under 4K LOC), and thus the possibility of such
vulnerabilities is relatively low. The private keys that LURK-T aim to
protect, can still be leaked through content owner’s negligence; e.g., if
keys are provisioned without attesting a C:S' implementation (solutions
such as Blindfold [2 1] can be used for secure key provisioning).

https://www.intel.com/content/www/us/en/developer/topic-technology/
software-security- guidance/processors-affected-consolidated- product-cpu-
model.html

https://github.com/lurk-t/proverif
SGX.fail
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 00, NO. 00, ABC 2023 12

IX. CONCLUSIONS

We introduced LURK-T — a provably secure and efficient extension
of TLS 1.3, and of the generic LURK framework.We designed LURK-
T with a TLS server decoupled into a LURK-T TLS Engine and a
LURK-T Crypto Service and split the TLS handshake across the
two modules; the Crypto Service is executed inside a TEE and it
accepts very specific and limited requests. We offered several modular
variants of LURK-T, balancing security and efficiency. In addition, we
implemented the Crypto Service using Intel SGX, and integrated our
implementation to OpenSSL with minor changes. Finally, our exper-
imental results looked at LURK-T’s overheads compared to TLS 1.3
handshakes and demonstrated that it provides competitive efficiency.

(1]
[2]

3]

[4]

[5]

[6]

[7]

[8]

9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

REFERENCES

RFC 9257. [Online]. Available: https://www.rfc-editor.org/rfc/rfc9257.txt

S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Keeffe, M. Stillwell, D. Goltzsche, D. M. Eyers,
R. Kapitza, P. R. Pietzuch, and C. Fetzer, “SCONE: secure linux containers with
intel SGX,” in USENIX OSDI, 2016, pp. 689-703.

P-L. Aublin, F. Kelbert, D. OKeeffe, D. Muthukumaran, C. Priebe, J. Lind,
R. Krahn, C. Fetzer, D. Eyers, and P. Pietzuch, “Tal.oS: Secure and Transparent
TLS Termination inside SGX Enclaves,” 2017.

R. Barnes, S. Iyengar, N. Sullivan, and E. Rescorla, “Delegated
Credentials for TLS,” Internet Engineering Task Force, Internet-Draft
draft-draft-ietf-tls-subcerts, Jan. 2021, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-draft-ietf-tls-subcerts

M. Bartock, M. Souppaya, R. Savino, T. Knoll, U. Shetty, M. Cherfaoui,
R. Yeluri, A. Malhotra, and K. Scarfone, ‘“Hardware-Enabled Security:
Enabling a Layered Approach to Platform Security for Cloud and Edge
Computing Use Cases,” in Draft NISTIR 8320, may 2021. [Online]. Available:
https://doi.org/10.6028/NIST.IR.8320-draft

K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and reference
implementations for the TLS 1.3 standard candidate,” in 2017 IEEE Symposium
on Security and Privacy (SP), 2017, pp. 483-502.

K. Bhargavan, I. Boureanu, A. Delignat-Lavaud, P.-A. Fouque, and C. Onete,
“A Formal Treatment of Accountable Proxying over TLS,” in Proceedings of
IEEE S&P. 1EEE, 2018.

K. Bhargavan, 1. Boureanu, P. Fouque, C. Onete, and B. Richard, “Content
delivery over TLS: a cryptographic analysis of keyless SSL,” in I[EEE EuroS&P,
2017, pp. 1-16.

B. Blanchet, “Modeling and verifying security protocols with the applied Pi
calculus and ProVerif,” Found. Trends Priv. Secur., vol. 1, no. 1-2, pp. 1-135, 2016.
P. Borrello, A. Kogler, M. Schwarzl, M. Lipp, D. Gruss, and M. Schwarz, “EPIC
leak: Architecturally leaking uninitialized data from the microarchitecture,” in
Usenix Security Symposium, Boston, MA, USA, Aug. 2022.

1. Boureanu, D. Migault, S. Preda, H. A. Alamedine, S. Mishra, F. Fieau, and
M. Mannan, “LURK: server-controlled TLS delegation,” in IEEE TrustCom,
2020, pp. 182-193.

1. Boureanu, A. Mitrokotsa, and S. Vaudenay, “On the pseudorandom function
assumption in (secure) distance-bounding protocols - prf-ness alone does not
stop the frauds!” in LATINCRYPT, vol. 7533, 2012, pp. 100-120.

A. Brandao, J. Resende, and R. Martins, “Hardening of cryptographic operations
through the use of secure enclaves,” Computers & Security, p. 102327, 2021.
J. V. Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin, Y. Yarom,
B. Sunar, D. Gruss, and F. Piessens, “LVI: hijacking transient execution through
microarchitectural load value injection,” in 2020 IEEE Symposium on Security
and Privacy. 1EEE, 2020, pp. 54-72.

S. Checkoway and H. Shacham, “Tago attacks: why the system call API is a
bad untrusted RPC interface,” in ASPLOS. ACM, 2013, pp. 253-264.
Cisco, “Cisco visual networking index: forecast and
methodology, 2017-2022, 2017. [Online]. Available:
https://s3.amazonaws.com/media.mediapost.com/uploads/CiscoForecast.pdf
T. Cloosters, M. Rodler, and L. Davi, “TeeRex: Discovery and exploitation
of memory corruption vulnerabilities in SGX enclaves,” in USENIX Security
Symposium, 2020, pp. 841-858.

V. Cortier, S. Kremer, and B. Warinschi, “A survey of symbolic methods in compu-
tational analysis of cryptographic systems,” J. Autom. Reason., vol. 46, no. 3-4, pp.
225-259, 2011. [Online]. Available: https://doi.org/10.1007/s10817-010-9187-9
V. Costan and S. Devadas, “Intel SGX explained,” JACR Cryptol. ePrint Arch.,
vol. 2016, p. 86, 2016. [Online]. Available: http://eprint.iacr.org/2016/086

X. d. C. de Carnavalet and P. C. van Oorschot, “A survey and analysis of tls inter-
ception mechanisms and motivations,” arXiv preprint arXiv:2010.16388, 2020.
H. Galal, M. Mannan, and A. Youssef, “Blindfold: Keeping private keys in PKIs
and CDNs out of sight,” Computers & Security, vol. 118, Jul. 2022.

[22]
[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]
[41]

[42]

[43]

[45]

[46]

[47]

”»

S. Herwig, C. Garman, and D. Levin, “Achieving keyless cdns with conclaves,
in USENIX Security Symposium, 2020, pp. 735-751.

“Affected Processors: Transient Execution Attacks & Related Security
Issues by CPU,” Intel Security Center, apr 2021. [Online]. Available:
https://software.intel.com/security-software- guidance/processors-affected-
transient-execution- attack-mitigation-product-cpu-model

Intel Corporation, “Intel QuickAssist Technology (Intel
QAT) and OpenSSL-1.1.0: Performance,” 2018. [Online].
Available: https://01.org/sites/default/files/downloads/intelr-quickassist-

technology/337003-001-intelquickassisttechnologyandopenssl- 1 10.pdf

: “intel/intel-sgx-ssl,” 2021. [Online]. Available:
https://github.com/intel/intel-sgx-ssl
S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F Mckeen,
“Intel ~ Software Guard Extensions: EPID Provisioning and

Attestation Services ,” Intel White Paper, 2016. [Online]. Available:
https://software.intel.com/content/dam/develop/public/us/en/documents/
ww10-2016-sgx-provisioning-and-attestation-final.pdf

“SRBDS - Special Register Buffer Data Sampling,” The Linux kernel users and
administrators guide, The kernel development community. [Online]. Available:
https://www.kernel.org/doc/html/latest/admin- guide/hw-vuln/special-register-
buffer-data-sampling.html

T. Knauth, M. Steiner, S. Chakrabarti, L. Lei, C. Xingand, and M. Vij,
“Integrating Intel SGX Remote Attestation with Transport Layer Security,” Intel
White Paper, jul 2019. [Online]. Available: https://arxiv.org/pdf/1801.05863.pdf
J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu, “When HTTPS meets
CDN: A case of authentication in delegated service,” in 2014 IEEE Symposium
on Security and Privacy, 2014, pp. 67-82.

J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P. Aublin, F. Kelbert,
T. Reiher, D. Goltzsche, D. M. Eyers, R. Kapitza, C. Fetzer, and P. R. Pietzuch,
“Glamdring: Automatic application partitioning for intel SGX,” in 2017 USENIX
Annual Technical Conference, 2017, pp. 285-298.

W. Liu, H. Chen, X. Wang, Z. Li, D. Zhang, W. Wang, and H. Tang, “Understand-
ing TEE containers, easy to use? hard to trust,” CoRR, vol. abs/2109.01923, 2021.

D. Migault, “LURK Extension version 1 for (D)TLS 1.3 Authentication,”
Internet Engineering Task Force, Internet-Draft draft-draft-mglt-
lurk-tls13, Jan. 2021, work in Progress. [Online]. Available:

https://datatracker.ietf.org/doc/html/draft- draft-mglt-lurk-tls 13

D. Moghimi, “Downfall: Exploiting speculative data gathering,” in Usenix
Security Symposium, Anaheim, CA, USA, Aug. 2023.

D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. R. Ldpez,
K. Papagiannaki, P. R. Rodriguez, and P. Steenkiste, “Multi-context TLS
(mcTLS): Enabling secure in-network functionality in TLS,” in ACM SIGCOMM,
2015, pp. 199-212.

C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov, and P. R.
Pietzuch, “SGX-LKL: securing the host OS interface for trusted execution,”
CoRR, vol. abs/1908.11143, 2019.

“RefTLS,” 2018. [Online]. Available: https://github.com/Inria-Prosecco/reftls
H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida, “CROSSTALK:
Speculative Data Leaks Across Cores Are Real,” 2020. [Online]. Available:
https://download.vusec.net/papers/crosstalk_sp21.pdf

E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,” RFC
8446, Aug. 2018. [Online]. Available: https:/rfc-editor.org/rfc/RFC8446.txt
Y. Sheffer, P. Saint-Andre, and T. Fossati, ‘“Recommendations for
Secure Use of Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS),” RFC 9325, Nov. 2022. [Online]. Available:
https://www.rfc-editor.org/info/RFC9325

S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “Panoply: Low-TCB Linux
applications with SGX enclaves,” in NDSS, 2017.

D. Stebila and N. Sullivan, “An analysis of TLS handshake proxying,” in IEEE
TrustCom/BigDataSE/ISPA, Helsinki, Finland, 2015, pp. 279-286.

K. Suzaki, K. Nakajima, T. Oi, and A. Tsukamoto, “TS-Perf: General
performance measurement of trusted execution environment and rich execution
environment on Intel SGX, Arm TrustZone, and RISC-V Keystone,” IEEE
Access, vol. 9, pp. 133 520133 530, 2021.

H. Tadepalli, “Intel QuickAssist Technology with Intel Key Protection
Technology in Intel Server Platforms Based on Intel Xeon Processor Scalable
Family,” in White Paper. Intel Corporation, 2017. [Online]. Available:
https://www.aspsys.com/images/solutions/hpc-processors/intel-xeon/Intel-
Key-Protection-Technology.pdf

D. J. Tian, J. I. Choi, G. Hernandez, P. Traynor, and K. R. B. Butler, “A practical
intel SGX setting for linux containers in the cloud,” in ACM CODASPY, 2019,
pp. 255-266.

C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library OS
for unmodified applications on SGX.,” in 2017 USENIX Annual Technical
Conference, USENIX ATC, 2017, 2017, pp. 645-658.

S. van Schaik, A. Seto, T. Yurek, A. Batori, B. AIBassam, C. Garman, D. Genkin,
A. Miller, E. Ronen, and Y. Yarom, “SoK: SGX.Fail: How stuff get eXposed,”
https://sgx.fail, 2022.

C. Wei, J. Li, W. Li, P. Yu, and H. Guan, “STYX: a trusted and accelerated
hierarchical SSL key management and distribution system for cloud based CDN
application,” in ACM SoCC, 2017, pp. 201-213.

https://www.rfc-editor.org/rfc/rfc9257.txt
https://datatracker.ietf.org/doc/html/draft-draft-ietf-tls-subcerts
https://doi.org/10.6028/NIST.IR.8320-draft
https://s3.amazonaws.com/media.mediapost.com/uploads/CiscoForecast.pdf
https://doi.org/10.1007/s10817-010-9187-9
http://eprint.iacr.org/2016/086
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://01.org/sites/default/files/downloads/intelr-quickassist-technology/337003-001-intelquickassisttechnologyandopenssl-110.pdf
https://01.org/sites/default/files/downloads/intelr-quickassist-technology/337003-001-intelquickassisttechnologyandopenssl-110.pdf
https://github.com/intel/intel-sgx-ssl
https://software.intel.com/content/dam/develop/public/us/en/documents/ww10-2016-sgx-provisioning-and-attestation-final.pdf
https://software.intel.com/content/dam/develop/public/us/en/documents/ww10-2016-sgx-provisioning-and-attestation-final.pdf
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/special-register-buffer-data-sampling.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/special-register-buffer-data-sampling.html
https://arxiv.org/pdf/1801.05863.pdf
https://datatracker.ietf.org/doc/html/draft-draft-mglt-lurk-tls13
https://github.com/Inria-Prosecco/reftls
https://download.vusec.net/papers/crosstalk_sp21.pdf
https://rfc-editor.org/rfc/RFC8446.txt
https://www.rfc-editor.org/info/RFC9325
https://www.aspsys.com/images/solutions/hpc-processors/intel-xeon/Intel-Key-Protection-Technology.pdf
https://www.aspsys.com/images/solutions/hpc-processors/intel-xeon/Intel-Key-Protection-Technology.pdf
https://sgx.fail

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 00, NO. 00, ABC 2023

[48] N. Weichbrodt, P. Aublin, and R. Kapitza, “sgx-perf: A performance analysis
tool for intel SGX enclaves,” in ACM/IFIP Middleware, 2018, pp. 201-213.

[49] O. Weisse, V. Bertacco, and T. M. Austin, “Regaining lost cycles with hotcalls:
A fast interface for SGX secure enclaves,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, 2017, pp. 81-93.

[50] P. Yuhala, J. Ménétrey, P. Felber, V. Schiavoni, A. Tchana, G. Thomas,
H. Guiroux, and J. Lozi, “Montsalvat: Intel SGX shielding for graalvm native
images,” in ACM/IFIP Middleware, 2021, pp. 352-364.

Behnam Shobiri is a security researcher at Tigera wher
he is researching Cloud and Kubernetes security. Prior to
that, he was a master’s student at Concordia University and
worked on TLS and CDN security. He got his bachelor’s
degree from the Ferdowsi University of Mashhad in the
field of computer engineering.

Sajjad Pourali is currently pursuing his Ph.D. degree
in Information and Systems Engineering at Concordia
University. His research interests include internet,
application and system security and privacy.

Daniel Migault is an expert in the Ericsson cybersecurity
team and is actively involved in standardizing security
protocols at the IETE.

Toana Boureanu is a Professor in Secure Systems at
University of Surrey. She is the deputy director of Surrey
Centre for Cyber Security, the co-director of University
of Surrey Gold-level ACE-CSE, as well as Director of
our GCHQ-accredited Information Security MSc.

Stere Preda received his PhD in Computer Science from
TELECOM Bretagne, France. He is currently a senior
researcher with expertise in cybersecurity at Ericsson. He
has been an an active contributor to ETSI NFV security
standardization.

Mohammad Mannan in an associate professor at the
Concordia Institute for Information Systems Engineering,
Concordia University. His research interests lie in the area
of Internet and systems security. Dr. Mannan is involved
with several well-known conferences (e.g., USENIX
Security, ACM CCS), and journals (e.g., IEEE TIFS and
TDSC).

Amr Youssef received the B.Sc. and M.Sc. degrees
from Cairo University, Cairo, Egypt, in 1990 and
1993 respectively, and the Ph.D. degree from Queens
University, Kingston, ON., Canada, in 1997. Dr. Youssef
is currently a professor at the Concordia Institute for
Information Systems Engineering (CIISE) at Concordia
University, Montreal, Canada. His research interests
include cryptology, security and privacy.

	Introduction
	Related Work
	TLS and TEE
	TLS Protocol Extensions

	Design Goals and Threat Model
	Goals
	Adversary Capabilities

	LURK-T Design and Deployment Scenarios
	LURK-T – Design
	LURK-T - Use Cases and Deployment Scenarios

	System Implementation
	Crypto Service (CS)
	CS in TLS (EC)DHE mode
	CS in TLS PSK with (EC)DHE mode

	 TLS Engine (E)

	Performance Evaluation
	Methodology for Measuring LURK-T TLS Overhead over OpenSSL
	Experimental Measurements of LURK-T TLS Overhead over OpenSSL
	SGX Vulnerabilities Mitigation Overhead
	LURK-T TLS Overhead for HTTPS
	SGX Memory Usage
	LURK-T TLS Overhead for HTTPS Over Other Proposals

	Formal Security Proofs and Analyses
	Computational Analysis
	Cryptographic requirements
	Cryptogtaphic proofs

	Symbolic Verification
	Verifying standardised TLS 1.3 in ProVerif
	Verifying LURK-T in ProVerif
	Experimental setup

	Potential Vulnerabilities
	Conclusions
	References
	Biographies
	Behnam Shobiri
	Sajjad Pourali
	Daniel Migault
	Ioana Boureanu
	Stere Preda
	Mohammad Mannan
	Amr Youssef

