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Abstract—Parental control solutions are used by many parents to provide their children a safer
digital environment. These solutions often require dangerous privileges to function. We analyzed
privacy/security risks of popular solutions and found that many leak personal information and
are vulnerable to attacks, betraying the trust of parents and children.
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THE INTRODUCTION

Many children are now as connected to the In-
ternet as adults, if not more. The Internet provides
an important avenue for education, entertainment
and social connection for children. However, the
dark sides are also significant: children are by
nature vulnerable to online exploitation, internet
addiction, and other negative effects of online
social networking, including cyber-bullying and
even cyber-crimes. To provide a safe internet
experience, many parents rely on parental con-
trol solutions, which are also recommended by
government agencies, including US FTC and UK
Council for Child Internet Safety.

Parental control solutions are available for dif-
ferent platforms including desktop applications,
browser extensions, mobile apps, and network
devices that can monitor all connected comput-
ers and smart-devices. Most of these solutions
require special privileges to operate, such as mo-
bile device administration/management capabili-
ties, TLS interception, access to browsing data,
and control over the network traffic. In addition,
they also collect a lot of sensitive user data, such
as voice, video, location, messages and social
media activities. Thus design and implementation

flaws in these solutions can lead to serious privacy
leakage, and online and real-world security and
safety issues.

To better understand privacy and security im-
plications of parental control solutions, we design
an experimental framework with a set of security
and privacy tests, and systematically analyze pop-
ular representative solutions: 8 network devices,
8 Windows applications, 10 Chrome extensions,
and 46 Android apps representing 28 Android
solutions grouped by vendor (an Android solution
is typically composed of a child app, a parent
app, and an online parental dashboard). We found
170 vulnerabilities among the solutions tested; the
majority of solutions broadly fail to adequately
preserve the security and privacy of their users—
both children and parents.

Our notable findings include: (i) The Blocksi
parental control router allows remote command
injection, enabling an attacker with a parent’s
email address to eavesdrop/modify the home net-
work’s traffic, or use the device in a botnet (cf.
Mirai). Blocksi’s firmware update mechanism is
also completely vulnerable to a network attacker.
(ii) 9/28 Android solutions and 4/8 network de-
vices do not properly authenticate their server
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API endpoints, allowing illegitimate access to
view/modify server-stored children/parents data.
(iii) 6/28 Android solutions allow an attacker
to easily compromise the parent account at
the server-end, enabling full account control to
the child device (e.g., install/remove apps, al-
low/block phone calls and internet connections).
(iv) 8/28 Android solutions transmit Personally
Identifiable Information (PII) via HTTP (e.g., kid-
SAFE certified Kidoz sends account credentials
via HTTP).

As part of responsible disclosure, we shared
our findings and possible fixes with all solution
providers. Two months after disclosure, only ten
companies responded, with seven custom and
three automatic replies. Notable changes after the
disclosure: MMGuardian deprecated their custom
browser; FamiSafe fixed the Firebase database
security issue; and FamilyTime enabled HSTS on
their server. Details of our findings and disclosure
responses are available in the ACSAC version of
our paper [7].

Related Work
Over the past years, several parental control

tools have made the news for security and privacy
breaches. Example exposures include: TeenSafe
leaked thousands of children’s Apple IDs and
passwords; and Family Orbit exposed nearly 281
GB of children’s photos and videos on a cloud
server.

Between 2015 and 2017, researchers from the
Citizen Lab (citizenlab.ca), Cure53 (cure53.de),
and OpenNet Korea (opennetkorea.org) published
a series of technical audits [1] of three popular
Korean parenting apps mandated by the Ko-
rean government, revealing serious security and
privacy issues in these apps. In 2019, Feal et
al. [2] studied 46 parental control Android apps
for data collection and data sharing practices,
and the completeness and correctness of their
privacy policies. In some of these apps, we fur-
ther identified new critical security issues (e.g.,
leakage of plaintext authentication information)
using our comprehensive app analysis framework.
Reyes et al. [3] analyzed children Android apps
for COPPA compliance. Out of 5855 apps, the
majority of the analyzed apps were found to
potentially violate COPPA, and 19% were found
to send PII in their network traces.

Our analysis across multiple platforms is in-
spired by the existing work and past security
incidents, and provides a broader picture of the
security and privacy risks of parental control
tools.

Background and Threat Model

Monitoring Techniques
Network parental control devices can monitor

network traffic but usually cannot inspect the
content of encrypted traffic. The devices ana-
lyzed act as a man-in-the-middle between the
client device and the internet router as follows:
performing Address Resolution Protocol (ARP)
spoofing, or creating a separate access point for
all children’s devices. ARP spoofing enables the
network device to impersonate the home router,
and monitor all local network traffic.

Android apps rely on several Android-specific
mechanisms, including the following. (1) Device
administration, which provides several adminis-
trative features at the system level, including:
device lock, factory reset, certificate installation,
and device storage encryption. (2) Mobile de-
vice management (MDM), which enables addi-
tional control and monitoring features, designed
for businesses to fully control/deploy devices in
an enterprise setting. (3) Android accessibility
service, which enables capturing and retrieving
window content, logging keystrokes, and control-
ling website content by injecting JavaScript code
into visited web pages. (4) Android VPN, cus-
tom browsers, and third-party domain classifiers,
which are used to filter web content. (5) Access
to Facebook and YouTube OAuth credentials,
which are used to monitor the child’s activities
on Facebook and YouTube.

Windows applications use the following tech-
niques: a TLS proxy is installed by inserting a
self-signed certificate in the trusted root certificate
store, allowing content HTTPS content analy-
sis/modification; user applications are monitored
for their usage and duration; and user activity
is monitored via screenshots, keylogging, and
accessing the webcam.

Parental control Chrome extensions use
Chrome APIs to monitor the user-requested
URLs, including: intercepting and redirecting
traffic, modifying page content and meta-data
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including cookies.

Threat Model
We consider the following attacker types with

varying capabilities (but require no physical ac-
cess to either the child/parent device or back-
end servers). (1) On-device attacker: a malicious
app with limited permissions on the child/parent
device. (2) Local network attacker: an attacker
with direct or remote access to the same local
network as the child device. (3) On-path attacker:
a man-in-the-middle attacker between the home
network and a solution’s backend server. (4) Re-
mote attacker: any attacker who can connect to a
solution’s backend server.

Potential Security and Privacy Issues
We define the following list of potential se-

curity and privacy issues to evaluate parental
control tools (tested using only our own accounts
where applicable). This list was initially inspired
by previous work [1], [4], [5], [6], and then
iteratively refined by us.

1) Vulnerable client product: A parental con-
trol product (including its update mecha-
nism) being vulnerable, allowing sensitive
information disclosure (e.g., via on-device
side-channels), or even full product com-
promise (e.g., via arbitrary code execution).

2) Vulnerable backend: The use of remotely
exploitable outdated server software, and
misconfigured or unauthenticated backend
API endpoints (e.g., Google Firebase in
Android apps).

3) Improper access control: Failure to prop-
erly check whether the requester owns the
account before accepting queries at the
server-end (e.g., insecure direct object ref-
erence).

4) Insecure authentication secrets: Plaintext
storage or transmission of authentication
secrets (e.g., passwords and session IDs).

5) SSLStrip attack: The parental control tool’s
online management interface is vulnerable
to SSLStrip attacks that strip away the secu-
rity provided by HTTPS, exposing private
information in plaintext; countermeasures
exist (e.g., HSTS) but must be correctly
implemented.

6) Weak password policy: Acceptance of very
weak passwords (e.g., with 4 characters or
less).

7) Online password brute-force: No de-
fense against unlimited login attempts on
the online parental login interface (e.g.,
CAPTCHA).

8) Uninformed suspicious activities: No noti-
fications to parents about indicators of pos-
sible compromise (e.g., the use of parental
accounts on a new device, or password
changes).

9) Insecure PII transmission: PII from the
client-end is sent without encryption, allow-
ing an adversary to eavesdrop for PII.

10) PII exposure to third-parties: Direct PII
collection and sharing (from client devices)
with third-parties.

Selection of Parental Control Solutions
We chose solutions used in the most pop-

ular computing platforms for mobile devices
(Android), personal computers (Windows), web
browsers (Chrome), and selected network prod-
ucts from popular online marketplaces (Amazon).
We used “Parental Control” as a search term on
Amazon and Chrome Web Store and selected
eight devices and ten extensions. For Windows
applications, we relied on rankings and reviews
provided by specialized media outlets, and se-
lected eight applications.

We selected 158 apps with over 10K+ in-
stallations from Google Play, four companion
apps for network devices, six additional apps
available on their official websites with additional
features, making the total to 153 (after removing
15 unresponsive/unrelated apps); 51/153 are pure
children apps; 24 are pure parent apps; and 78
are used for both parent and child devices. For
in-depth analysis, we picked 46 popular Android
apps representing 28 parental control solutions.

Methodology
We combine dynamic (primarily traffic and

usage) and static (primarily code review/reverse-
engineering) analysis to identify security and
privacy flaws in parental control tools; for an
overview, see Fig. 1. For each product, we
first conduct a dynamic analysis and capture
the parental control tool traffic during its usage
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(as parents/children); if the traffic is in plain-
text or decryptable (e.g., via TLS interception),
we also analyze the information sent. Second,
we statically analyze their binaries (via reverse
engineering) and scripts (if available). We pay
specific attention to the API requests and URLs
present in the code to complement the dynamic
analysis. After merging the findings, we look into
the domains contacted and check the traffic for
security flaws (e.g., TLS weaknesses). Third, we
test the security and privacy issues listed under
“Potential Security and Privacy Issues” against
the collected API URLs and requests. For the
parental control tool with an online interface, we
assess the password-related issues and test the
SSLStrip attack against the login page.

Dynamic Analysis
Usage Emulation and Experimental Setup. We set
up test environments for each solution, emulate
user actions for hours to days, with the goal
of triggering UI events looking for signs of PII
leakage, weak security measures, or potential vul-
nerabilities, and collect the traffic from the child,
parent, and network devices, and then perform
relevant analysis. We evaluate the web filtering
mechanism by visiting a blocked website (gam-
bling/adult) and a university website. We also
perform user activities monitored by platform-
specific parental control features and evaluate the
solution’s operations. For example, on Android,
we perform basic phone activities (SMS, phone
call) and internet activities (Instant messaging,
social media, browsing, and accessing blocked
content).

We evaluate the network devices in a lab
environment by connecting them to an internet-
enabled router (like in a domestic network setup)
with the OpenWrt firmware. We use test devices
with web browsing to emulate a child’s device.
If the parental control device uses ARP spoofing,
the test device is connected directly to the router’s
wireless access point (AP); otherwise, the test de-
vice is connected to the parental control device’s
wireless AP. We capture network traffic on both
the test device and the router using Wireshark and
tcpdump, respectively.

For Android apps, we use separate Android
phones to concurrently record and inspect net-
work traffic originating from the child and parent

apps. We test each Windows application and
Chrome extension on a fresh Windows 10 virtual
machine with Chrome, and mitmproxy installed.
Traffic Analysis. After intercepting traffic, we
parse and commit the collected traffic to an
SQLite database and check for the following
security and privacy related issues.

We check for PII and authentication secrets
transmitted in plaintext, or leakage of PII to third-
party domains. We automatically search for PII
items (i.e., case-insensitive partial string match)
in the collected traffic, and record the leaked
information, including the HTTP request URL.
We decode the collected network traffic using
common encoding (base64 and URL encoding)
and encode possible PII using hashing algorithms
(MD5, SHA1, SHA256, and SHA512) to find out
obfuscated leaks.

To find API endpoints with improper access
control, we first identify all the APIs that can
be potentially exploited (without strong authenti-
cation), by replaying the recorded HTTP request
stripped of authentication headers (e.g., cookies
and authorization header). Then, we retrieve the
parameters used by these APIs (e.g., keys, tokens,
or unique IDs), and assess the parameters in terms
of their predictability and confidentiality.

We compile lists of known trackers, and then
identify communication to these trackers and
other third-party SDKs in the parental control
tools traffic (third-parties are defined as any do-
main other than the product providers).
Backend Assessment. We only look into the back-
ends’ software components as disclosed by web
servers or frameworks in their HTTP response
headers, such as “Server” and “X-Powered-By”.
We then match these components against the
CVE database to detect known vulnerabilities
associated with these versions.

Static Analysis
Our static analysis aims to complement the

dynamic analysis whenever we could not decrypt
the network traffic (e.g., in case of network
devices using TLS). We use static analysis to
identify PII leakage, contacted domains, weak
security measures (e.g., bad input sanitization),
or potential flaws in implemented mechanisms.

We analyze the network device firmware
whenever possible. We either attempt to extract
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Figure 1. Overview of our evaluation framework.

the firmware directly from the device (via physi-
cal interfaces), or download the device firmware
from the vendor’s website. We then scan the
network devices with several tools (OpenVas,
Nmap, Nikto and Routersploit), and match the
identified software versions against public vulner-
ability databases.

We manually analyze the source
code of the Chrome extensions, which
mainly consists of scripts, separated into
content scripts and background scripts. We
perform an automated analysis on all 153
Android apps using the Firebase Scanner
(github.com/shivsahni/FireBaseScanner) to
detect security misconfigurations in Firebase, a
widely used backend infrastructure management
for Android apps. We also use LibScout
(github.com/reddr/LibScout) to identify third-
party libraries embedded in these apps.
Since LibScout does not distinguish which
libraries are used for tracking purposes, we
use Exodus-Privacy (reports.exodus-privacy.
eu.org/en/trackers/) to classify tracking

SDKs. We use MOBSF (github.com/MobSF/
Mobile-Security-Framework-MobSF) to extract
the list of third-party tracking SDKs from all
153 apps based on Exodus-Privacy’s tracker list.

Online Interface Analysis
The online user interface is the primary com-

munication channel between parents and parental
control tools. It displays most of the data col-
lected by the solutions, and may remotely enable
more intrusive features. Compromising the parent
account can be very damaging, and thus we eval-
uate the security of this interface. To check for
SSLStrip attacks, we first set up a WiFi Access
Point with a set of network interception tools
installed. Then, we connect the parental control
tool to our WiFi AP, and launch the SSLStrip
script (github.com/moxie0/sslstrip). We confirm
the effectiveness of the attack by comparing the
result to the corresponding traffic in a regular
testing environment. To test the password pol-
icy, we check if the service accepts a password
with 4 characters or less. We also use Burp
Suite (portswigger.net/burp) to perform password
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brute-force attacks, and limit our script only to 50
authentication attempts on our own account from
a single computer. We also test two scenarios
in which a parent should be notified (e.g., via
email): modification of the user’s password, and
connection to the account from a new/unknown
device.

Results
We analyzed the parental control tools be-

tween Mar. 2019 to Sep. 2020, which include:
8 network devices, 46 Android apps representing
28 Android solutions, 10 Chrome extensions and
8 Windows applications. We present some of the
most prominent findings on the tested security
and privacy issues (further details in [7]); for an
overview see Table 1.

Vulnerable Client Product
Network devices. The Blocksi firmware update
happens fully through HTTP. An integrity check
is done on the downloaded binary image, using
an unkeyed SHA256 hash, again retrieved using
HTTP, and thus rendering it useless. Therefore,
an on-path attacker can trivially alter the update
file and inject their own malicious firmware into
the device; see Fig. 2.

Figure 2. Blocksi update mechanism flaw.

Android apps. We found 3/28 Android solutions
(FamiSafe, KidsPlace and Life360) do not en-
crypt stored user data on shared external storage
that can be accessed by any other apps with
the permission to access the SD card. Exam-
ples of the sensitive information include: the
parent’s email and PIN code, phone numbers,
the child’s geolocation data, messages and social
media chats, visited websites, and even authenti-
cation tokens—which enabled us to read private
information from the child account remotely. In
addition, Kidoz, KidsPlace, and MMGuardian use
custom browsers to restrict and filter web content.

The three browsers fail to enforce HSTS (a se-
curity protocol design to protect against SSLStrip
attack), and lack persistent visual indication if the
website is served on HTTP.
Windows applications and Chrome extensions.
Other than Kidswatch, all tested Windows appli-
cations relied on TLS proxies to operate. Some of
these proxies do not properly perform certificate
validation. For example, Qustodio and Dr. Web
accepted intermediate certificates signed with
SHA1, and none of the proxies rejected revoked
certificates. Two Chrome extensions download
and run a third-party tracking script at run time,
bypassing the static control of Chrome for ex-
tension security, which has been exploited in the
wild by tricking developers into adding malicious
scripts masquerading as tracking scripts.

Vulnerable Backend
Android apps. Google Firebase is a popular back-
end service used in 115/153 of our Android
apps dataset. Critical misconfigurations can allow
attackers to retrieve all unprotected data stored on
the cloud server. We found 8 Android apps with
insecure Firebase configurations; prominent expo-
sures include (verified using our own accounts):
FamiSafe with 500K+ installs exposes the parent
email; Locate with 10K+ installs exposes the
child name, phone number, and email; and My
Family Online with 10K+ installs exposes the
child name, child and parent phone numbers,
parent email, and apps installed on child phone.
Following our disclosure, FamiSafe fixed the
Firebase security issue.

Figure 3. Blocksi improper access control.

Improper Access Control
Network devices. For Blocksi’s login API end-
point, the device’s serial number (SN) and the
registered user’s email are required to authenti-
cate the device to the server. However, a remote
attacker needs to know only one of these param-
eters to authenticate as the attacker can retrieve a
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Table 1. Most significant results for security flaws in parental control tools labelled following our threat model. :
On-device attacker; : Local network attacker; : On-path attacker; : Remote attacker; -: not applicable;
blank: no flaw found. In case the vulnerability can be exploited by 2 types of attackers, we display the fullest circle
applicable.
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Vulnerable client product
Vulnerable backend
Improper access control - - -

Insecure authentication secret - - -

SSLStrip attack - - - - - - - - - -

Online password bruteforce - - - - -

Weak password policy - - - - -

Uninformed suspicious activities - - - - -

Insecure PII transmission
PII exposure to third-parties

user’s email using their device SN or vice-versa,
and thus access sensitive information about the
home network, e.g., the WiFi password, and MAC
addresses of connected devices, see Fig. 3.

To authenticate to HomeHalo’s API endpoint,
it uses only the device’s SN and an HTTP header
called secretToken (an apparently fixed value
of 100500). An on-path attacker can intercept and
modify these messages, and gain access to admin
controls, e.g., the wireless SSID, password, or
even the device’s root password.
Android apps. We found 9/28 Android solutions
lack authentication for accessing PII. Prominent
examples include the following. In SecureTeen,
we found an API endpoint that enables any
adversary to remotely compromise any parental
account by knowing only the parent’s email,
allowing the attacker to monitor and control the
child device. In FamilyTime, a six-digit param-
eter childID is generated through a sequential
counter incremented by one per user, allowing a
remote attacker to collect the child name, gender,
date of birth, email address, and child phone num-
ber (by simply trying all 6-digit values for chil-
dID). In FamiSafe, an attacker app can retrieve
all the child social media messages and YouTube
activities labeled as suspicious through an API
request that requires several parameters stored in
a log file on the shared external storage (available

to all installed apps). Bosco’s API endpoint fails
to check the relation between the provided secure
authorization token provided and the information
requested, allowing any parent account with a
valid token to request information about any
registered child knowing only its ID, which is
set to the Android advertising ID (AAID) by
Bosco. However, AAID is available to all apps,
and thus, enabling an attacker with an app on the
child device to easily retrieve child PII (e.g., child
geolocation, phone call history, and pictures).

Insecure Authentication Secret
Network devices. During the setup procedure of
KidsWifi, the device creates an open wireless AP
with SSID “set up kidswifi”, making it temporar-
ily vulnerable to eavesdropping. The parent has
to use this AP’s captive portal to configure the
KidsWifi device to connect to the home network.
Consequently, as this AP is open and the client-
device communication happens through HTTP,
the home router’s WAN and KidsWifi’s LAN
credentials become available to local attackers.
Android apps. Kidoz exposes the user email
and password in HTTP when the “Parental Lo-
gin” link is clicked from the https://kidoz.net
home page. KidsPlace and Qustodio leak session
authentication cookies via HTTP, exposing the
child’s current location, history of movements,
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and remote control functions on the child phone
(e.g., block all phone calls) in Qustodio. For
KidsPlace, the attacker can lock the child phone,
disable the Internet, install malicious apps and
upload harmful content to the child mobile.

SSLStrip and Online Account Issues
We found that 11 Android solutions, four

network devices and three Windows applica-
tions transmitted the parent account credentials
via HTTP under an SSLStrip attack, potentially
granting access to the parental interface for a long
time. In addition, we identified that the BlueSnap.
com online payment solution used by Kidoz was
equally vulnerable, exposing the parent’s credit
card information. In Qustodio, we could extract
the child Facebook credentials provided by the
parent during the configuration of the monitoring
component. Following our disclosure, only Fam-
ilyTime enabled HSTS on their server. In terms
of defense against online password guessing, we
found that two network devices and 17 Android
solutions leave their online login interfaces open
to password brute-force attacks. Also, two net-
work devices, seven Android solutions, and three
Windows applications enforced a weak password
policy (i.e., shorter than four characters).

Insecure PII Transmission
We found that the KoalaSafe and Blocksi

network devices append the child device’s MAC
address, firmware version number, and serial
number into outgoing DNS requests, allowing
on-path attackers to persistently track the child’s
web activities [8]. HomeHalo also appends the
child device’s MAC address to HTTP requests
to its backend server. Several Android solutions
also send cleartext PII, including: FindMyKids
(the child’s surrounding sounds and photo); Kid-
Control (the parent’s name and email, geoloca-
tion, and SOS requests); and MMGuardian (the
parent’s email and phone number, and child’s
geolocation).

Third-party SDKs and Trackers
Some legislations (e.g., US COPPA and EU

GDPR) regulate the use of third-party trackers
in the services targeting children (e.g., under 13
years of age). We thus evaluate potential use of
third-party tracking SDKs in the parental control

tools. We found notable use of third-party SDKs
in parental control tools, except in Windows. For
network devices, we identified the use of third-
party SDKs in the companion apps but not in the
firmware.
Trackers. We identify several tracking third-party
SDKs from network traffic generated during our
dynamic analysis from child device. Except Se-
cureTeen and Easy parental control, 26/28 An-
droid solutions use tracking SDKs, 1–16 unique
trackers. Our traffic analysis confirms violations
of COPPA—over 30% of Android solutions uti-
lize doubleclick.net without passing the proper
COPPA compliant parameter from child device.
We also found that one of the network devices’
companion app, Circle, includes a third-party
analytical SDK from Kochava, and shares the
following: Device ID (enables tracking across
apps), device data (enables device fingerprinting
for persistent tracking). To comply with COPPA,
Kochava provides an opt-out option, which is not
used by Circle.
Restricted SDKs from past work. We also study
the SDKs identified in past studies [3], [2] that
are restricted by their developers (e.g., fully pro-
hibited, or use with particular parameters) for use
in children’s apps (as stated in their policies as of
June 2020). Through analysing traffic generated
by the child device, we confirm that 11 Android
solutions use prohibited SDKs.
PII exposure to third-parties. We found that all
but one Android solution share personal and
unique device information with third-party do-
mains. Prominent examples include the follow-
ing. FamilyTime shares PII with 11 third-party
companies, including, the child name, email and
phone number, and parent device’s Android Ad-
vertising ID (AAID) with Facebook; the parent
phone number is shared with FastSpring.com,
and the parent email is sent to 11 third-parties.
ScreenTime shares PII with four third-party com-
panies, including the child Android ID with Face-
book.
COPPA Safe Harbor providers. We check the
behavior of (3/28) (Kidoz, FamilyTime, Find-
MyKids) Android solutions certified by the US
FTC’s COPPA Safe Harbor program (ftc.gov/
safe-harbor-program). Our traffic analysis col-
lected from the child device reveals that Find-
MyKids uses three trackers and leaks AAID to
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at least two trackers graph.facebook.com and
adjust.com. FindMyKids sets two flags when
calling Facebook to enable application tracking
and advertiser tracking. FamilyTime sends the
child’s name, email address and phone number
(hashed in SHA256) to Facebook. Kidoz uses
eight trackers and leaks the AAID to the third-
party domain googleapis.com through the referer
header.

Potential Practical Attacks
Device compromise. Device compromise presents
serious security and privacy risks, especially if a
vulnerability can be exploited remotely. We found
multiple vulnerabilities in the Blocksi network
device that can compromise the device itself.
These include an exploitable command injection
vulnerability and a vulnerability in protecting
the device’s serial number, which is used in
authentication. A remote attacker can use these
vulnerabilities to take control over the Blocksi
device by simply knowing the parent’s email
address. In particular, using the serial number and
email, an attacker can exploit the command injec-
tion vulnerability and spawn a reverse TCP shell
on the device. At this stage, the attacker gains
full control of the device, and can read/modify
unencrypted network traffic, disrupt the router’s
operation (cf. DHCP starvation [9]), or use it in
a botnet (cf. Mirai [10]).
Account takeover. Parental accounts can be com-
promised in multiple ways. First, none of the
parental control tools’ web interface except Nor-
ton enforced HSTS, and most were found vulner-
able to SSLStrip attacks. Therefore, an on-path
attacker can possibly gain access to the parent
account using SSLStrip, unless parents carefully
check the HTTPS status. Second, login pages
that allow unlimited number of password trials
could allow password guessing (especially for
weak passwords). Note that most parental con-
trol tools’ password policies are apparently weak
(cf. NIST [11]); some products accept passwords
as short as one character. Third, products with
broken authentication allow access to parental
accounts without login credentials. For example,
SecureTeen provides an API endpoint to access
the parental account, by knowing only the parent
email address. If logged-in, the attacker has ac-
cess to a large amount of PII, social media/SMS

messages, phone history, child location—even
enabling possibilities of physical world attacks.
Data leakage from backends. Failure to protect the
parental control backend databases exposes sensi-
tive child/parent data at a large scale, exacerbated
due to the collection and storage of a lot user data
by many solutions. Firebase misconfigurations
exposed data that belongs to 500K+ children and
parents from three apps. Such leakage may lead
to potential exploitation of children both online
and offline.
Unprotected PII on the network. Sending plaintext
PII over the network is in direct violation of
certain regulations, such as the US COPPA, which
mandates reasonable security procedures for pro-
tecting children’s information [12]. We found sev-
eral parental control tools transmit plaintext PII
over the network, enabling any network attacker
instant access to such sensitive data. For example,
FindMyKids leaks surrounding voice, and the
child’s picture, and MMGuardian leaks the child’s
geolocation. This could put a child in physi-
cal danger since the attacker can learn intimate
details from the child’s voice records and her
surrounding, and also identify the child from her
photo, or by using geolocation data. KidControl
allows the child to send SOS messages when she
is in a dangerous situation. However, an attacker
can drop the SOS message at will as it is sent via
HTTP. Moreover, KoalaSafe and Blocksi network
devices append the child’s device MAC address
to outgoing DNS requests, enabling persistent
tracking.

Recommendations for Solution
Providers
Addressing vulnerabilities. Because of the sen-
sitivity of the information manipulated by the
parental control tools, companies should con-
duct regular security audits; our security and
privacy framework can serve as a starting point.
Moreover, they should have a process to address
vulnerabilities such as responsible disclosure and
bug bounty programs. Currently, none except
Kaspersky and Bitdefender participate in such
programs.
Enforcing best practices. Parental control com-
panies should rely on publicly available guide-
lines and best practices, including proper API
endpoint authentication and web security stan-
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dards (e.g., OWASP recommendations). We also
strongly encourage companies to adopt a strong
password policy in their products, because the use
of default, weak and stolen credentials has been
exploited in many known data breaches. In the
case of network devices, manufacturers should
employ a secure firmware update architecture (see
e.g., IETF [13]). Adopting known best practices
is critical due to the especially vulnerable user
base of these products.
Monitoring account activities. Parental control
tools should report suspicious activities on the
parent’s account such as password changes and
accesses from unrecognized devices. These ac-
tivities could indicate account compromise.
Limiting data collection. Parental control tools
should limit the collection, storage, and transmis-
sion of the children’s data to what is strictly nec-
essary. For instance, the solution should not store
PII not required for the solution’s functionality.
The parental control tools should also allow the
parent to selectively opt-out of the data collection
in certain features.
Securing communication. Transmission of PII
should happen exclusively over secure commu-
nication channels. The solution should utilize
MITM mitigation techniques such as host white-
listing, certificate pinning, and HSTS.
Limiting third-parties and SDKs. Parental control
tools should avoid, or at least limit) the use of
trackers and tracking SDKs in apps intended for
children. They should use SDKs that are suitable
for children (e.g., Google has a list of third party
libraries that have been self-certified as compliant
with children legislation). For the SDKs that
allow special parameter for children’s apps, those
parameters must be used appropriately.

Conclusion
Our security and privacy evaluation identified

several systematic problems in the design and
deployment of most analyzed parental control
solutions across different platforms. Even though
many parents may use these products as their
children’s digital guardians, several solutions in
fact can be abused to provide a new avenue
to undermine children’s online and real-world
safety. Our findings call for greater scrutiny of
these solutions, subjecting them to more rigorous
and systematic evaluation, and more stringent

regulations. For parents, they should favor restric-
tion apps over monitoring apps, as monitoring
apps generally collect more data and access more
sensitive resources in a continuous manner, which
then become available to more third-parties, and
perhaps even to attackers if the solution is not
properly secured. Parents may also consider using
only restrictions enabled by operating systems
(available now in both desktop and mobile sys-
tems) to avoid exposure to third-party solution
providers. A possibly better approach would be
to use non-technical measures such as educating
children about safe and effective use of technol-
ogy.
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