
Reboot-Oriented IoT: Life Cycle Management in Trusted
Execution Environment for Disposable IoT devices

Kuniyasu Suzaki
National Institute of

Advanced Industrial Science and Technology
k.suzaki@aist.go.jp

Akira Tsukamoto
National Institute of

Advanced Industrial Science and Technology
akira.tsukamoto@aist.go.jp

Andy Green
Warmcat

andy@warmcat.com

Mohammad Mannan
Concordia University

m.mannan@concordia.ca

ABSTRACT
Many IoT devices are geographically distributed without human
administrators, which are maintained by a remote server to enforce
security updates, ideally through machine-to-machine (M2M) man-
agement. However, malware often terminates the remote control
mechanism immediately after compromise and hijacks the device
completely. The compromised device has no way to recover and
becomes part of a botnet. Even if the IoT device remains uncom-
promised, it is required to update due to recall or other reasons.
In addition, the device is desired to be automatically disposable
after the expiration of its service, software, or device hardware to
prevent being cyber debris.

We present Reboot-Oriented IoT (RO-IoT), which updates the to-
tal OS image autonomously to recover from compromise (rootkit or
otherwise), and manages the life cycle of the device using Trusted
Execution Environment (TEE) and PKI-based certificates (i.e., CA,
server, and client certificates which are linked to device, software,
and service). RO-IoT is composed of three TEE-protected compo-
nents: the secure network bootloader, periodic memory forensics,
and life cycle management. The secure network bootloader down-
loads and verifies the OS image by the TEE. The periodic memory
forensics causes a hardware system-reset (i.e., reboot) after detect-
ing any un-registered binary or a time-out, which depends on a
TEE-protected watchdog timer. The life cycle management checks
the expiration of PKI-based certificates for the device, software, and
service, and deactivates the device if necessary. These features com-
plement each other, and all binaries and certificates are encrypted
or protected by TEE. We implemented a prototype of RO-IoT on
an ARM Hikey board with the open source trusted OS OP-TEE.
The design and implementation take account of availability (over
99.9%) and scalability (less than 100MB traffic for a full OS update,
and estimated at a cent per device), making the current prototype
specifically suitable for the AI-Edge (Artificial Intelligence on the
Edge) IoT devices.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ACSAC 2020, December 7–11, 2020, Austin, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00
https://doi.org/10.1145/3427228.3427293

CCS CONCEPTS
• Security and privacy→Operating systems security; • Com-
puter systems organization→ Embedded systems; • → Security
in hardware.

KEYWORDS
Reboot-Oriented IoT, Trusted Execution Environment (TEE), Public
Key Infrastructure (PKI), Life Cycle Management

ACM Reference Format:
Kuniyasu Suzaki, Akira Tsukamoto, Andy Green, and Mohammad Mannan.
2020. Reboot-Oriented IoT: Life Cycle Management in Trusted Execution
Environment for Disposable IoT devices. In Annual Computer Security Ap-
plications Conference (ACSAC 2020), December 7–11, 2020, Austin, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3427228.3427293

1 INTRODUCTION
Many Internet of Things (IoTs) are geologically distributed, and
used for AI-Edge to enable a wide range of applications such as
crowd tracking, traffic monitoring, and weather forecasting smart
cities [73, 95] and smart farming [104]. The AI-Edge IoT Devices are
managed by Edge-Computing [24, 87, 92, 110] or Fog-Computing [69,
83], which decouples computing resources into a cloud and IoT
devices, and maintains many IoT devices by a remote server au-
tomatically through a machine-to-machine (M2M) management
system. These IoT devices collect and process large amounts of data
to reduce the network traffic and computation on the back-end
servers. These devices are maintained via Over-The-Air (OTA)
updates [23, 56, 77] to reduce end-user responsibility.

Edge- and Fog-Computing consider the power consumption
needs of IoT devices. Past work indicated that solar power can sup-
port long-term functioning of IoT devices (e.g., Raspberry Pi [5, 94,
98]). Disposability of physical IoT devices is also an essential factor
and has been discussed through biologically self-destruction [37, 62]
and physical collection policies defined by ITU E-Waste [48].

Most IoTs run a few domain-specific applications, mostly on
Linux, due to the availability of many development tools on Linux.
Although the Linux kernel itself is well maintained, and bugs are
often fixed quickly [1, 51, 99, 105] (e.g., for Meltdown [66, 67] and
Spectre [58, 59]), most Linux IoT devices are not updated accord-
ingly, and become an easy target of attacks. Notable example attacks
include: Mirai [9, 60], Linux.Darlloz [19, 108], BASHLITE [70], and
Hajime [34]. Some attacks terminate the remote control mechanism

https://doi.org/10.1145/3427228.3427293
https://doi.org/10.1145/3427228.3427293

ACSAC 2020, December 7–11, 2020, Austin, USA Kuniyasu Suzaki, Akira Tsukamoto, Andy Green, and Mohammad Mannan

immediately after compromise, and hijack the devices to use them
as part of a botnet. In addition, malware is also often designed to be
persistent across device-reboot and hide its presence as a rootkit.
Such compromised IoT devices are difficult-to-detect/restore.

IoTs are also subject to a product recall or urgent security patch
when a severe vulnerability is found; e.g., the recall incident of
child-tracking smartwatches [18] and web cameras [88]. IoT device
providers also ideally want to deactivate the device after the expi-
ration of the maintenance period. When IoT devices are no longer
supported by their providers, they may eventually become rogue
IoT devices, or simply, cyber debris.

To alleviate similar issues, several academic solutions have been
proposed as system-reset architectures, including: Crash Only Soft-
ware [25], MicroReboot [26], Let It Crash [11], collective[29], Misery
digraphs [7], ReSecure [3], Restart-Based Protection [2], YOLO [13],
CIDER [106], and TPM2.0’s Authenticated Countdown Timer [97].
However, these are mostly reactive solutions and cannot adequately
handle undetected or unknown malware. IoT device compromise
and management issues are also being actively considered in in-
dustry/policy forums. For example, the IEEE Internet Technology
Policy Community [45] suggested that device manufacturers should
provide a “formal plan for users to sanitize and dispose of obso-
lete IoT devices.” The MITRE Challenge IoT competition [74] also
included the detection of rogue IoT devices. However, the IoT life cy-
cle depends on long supply chains that include many stakeholders,
which makes this problem difficult to solve, cf. Wang et al. [103].

We propose Reboot-Oriented IoT (RO-IoT) to address these prob-
lems by extending existing system-reset architectures [7, 11, 25,
26, 29, 97, 106]. RO-IoT consists of network boot, live memory
forensics, and life cycle management—all of which are protected by
the Trusted Execution Environment (TEE) [28, 76, 85, 90] to pro-
tect critical RO-IoT components from the untrusted OS. We utilize
rebooting and reinstalling the OS as an essential mechanism to
recover from a compromised system. In addition, the life cycles of
device, software, and service are linked to Public Key Infrastructure
(PKI) based TLS certificates (i.e., certificates for CA, server, and
client). It means that the IoT device can boot only if the TLS con-
nection is established for a secure network boot. Other difference
between RO-IoT and past system-reset architecture is that the past
projects are based on reactive protection, but RO-IoT is based on
proactive protection. Therefore, RO-IoT causes occasional reboot-
ing and recovers from an undetected or unknown compromise. In
addition, the occasional rebooting also enables emergency security
patching and product recalls. When the rebooting process detects
the expiration of PKI-based certificates, RO-IoT makes the device
safely disposable—the TEE and bootloader images on the storage
are encrypted by hardware-protected keys.

In terms of deployability, RO-IoT poses two major challenges:
suspension caused by occasional reboots, and power consumption.
The suspension can be accommodated by our target AI-Edge ap-
plications, although more careful evaluation is needed for mission-
critical and real-time applications. The power consumption needs
in IoT devices have been explored by Edge-Computing and Fog-
Computing. Our current prototype is based on aHiKey board, which
has a similar power profile as a Raspberry Pi that can be perma-
nently run using solar power [5, 94, 98]. The backgrounds of these
challenges are discussed more in Section 3.

Contributions and Challenges:
(1) Reboot-oriented IoT:RO-IoTmanages the IoT security and

life cycle. It is tailored for IoT characteristics such as a limited
number of applications, small OS image, and quick booting.
The architecture aims to recover from a compromise (known
or unknown) by autonomous rebooting, and guarantees safe
termination of the device after the expiration of service,
software, and device supports, which are linked by PKI-based
certificates.

(2) Secure network bootloader protected by TEE: The se-
cure network bootloader establishes a TLS connection from
the protected TEE (i.e., ARM TrustZone secure world) and
downloads an OS image. The certificate of the OS image
is verified in the TEE, and the OS is booted in the normal
world. As the total OS is renewed, we enable full recovery
from a compromised OS. The network boot is autonomous
and periodic. The bootloader uses a cached image when the
OS is not required to be renewed, and thus saves the network
traffic and boot time.

(3) TEE-protected live memory forensics: Periodic memory
forensics of the normal OS is performed in the TEE and
involves application whitelisting. The periodic activation of
memory forensics utilizes a watchdog timer, which is also
protected by TEE. RO-IoT sets a short period (e.g., 30 seconds)
for the watchdog timer and enforces the time-extend-request
periodically, which is used as a trigger for periodic memory
forensics. When the request counter reaches the threshold,
RO-IoT enforces the occasional system-reset to renew the OS,
if necessary; it also serves as a trigger to check the life cycle.
(Note: “occasional” system-reset requires a much longer time
period than “periodical” memory forensics.)

(4) IoT life cycle management protected by TEE and PKI-
based certificates: At the provisioning of the supply chain,
RO-IoT clearly assigns responsibility for each stakeholder:
the IoT device, software, and service providers. Each life cycle
element is linked to a certificate of CA, server, or client used
in TLS. The TEE manages each life cycle element, and makes
the device inoperable when one of them is expired. After the
expiration, the IoT device becomes physically disposable in
a safe manner because software and data in the storage are
encrypted with a key protected physically (i.e., SoC Key).

(5) Implementation of RO-IoT: The implementation of RO-
IoT utilizes a small Linux image as the bootloader, which col-
laborates with OP-TEE [64, 79], a trusted OS for ARM Trust-
Zone [28, 85]. Although the secure boot loader requires func-
tionalities such as the management of TEE, secure network-
ing, secure storage, and self-update, they are easily enabled
by the small Linux. Linux is also well maintained [1, 51, 99,
105], offers a kernel self protection mechanism [32, 33, 54],
and can be small in size [57, 61, 65, 80]. From the view of
Trusted Computing Base (TCB), these features are perhaps
more important than the size of code. Availability and scala-
bility are also important features, and our implementation
takes them into account. The security features and perfor-
mance were evaluated on a LeMaker HiKey board with
ARM64 HiSilicon Kirin 620 chip with 2GB memory. Our
experiments showed the secure network boot took about

Reboot-Oriented IoT: Life Cycle Management in Trusted Execution Environment for Disposable IoT devices ACSAC 2020, December 7–11, 2020, Austin, USA

21 seconds on 14MB Minimal Linux. Even if the network
rebooting occurs after 10,000 memory forensics (42 hours),
the availability is 99.986%.

2 ATTACK TYPES AND THREAT MODEL
This section gives a brief description of attack types we consider
on M2M IoT device and our threat model.

2.1 Attack Types
We assume that attackers can easily find vulnerable M2M IoT de-
vices, including rogue IoT (i.e., cyber debris), using dedicated search
engines designed for discovering Internet-connected IoT devices
(e.g., Shodan [93], Censys [27], and ARE [10, 36]). Many IoT mal-
ware instances (e.g., Mirai variants [9, 19, 34, 60, 70, 108]) exploit
weak security configurations, or known vulnerabilities. After the
exploit, they hijack the remote control mechanism (e.g., by chang-
ing the SSH password) and run a downloaded tool to launch DDoS
attacks.

Some malware may also persist on the device after rebooting,
by infecting the file system or bootloader. Infections can be subtle
and very difficult to detect (e.g., Subvirt [55] and Blue Pill [89]).
Complete recovery from such persistent infection is very challeng-
ing. An effective way is full OS reinstallation from scratch—for PC
environments, cf. [47, 100, 101].1 Although the overhead to reinstall
a full OS must be taken into account, M2M IoT can leverage the
domain-specific features, such as running a few applications, to
bring the overhead to an acceptable level.

Runtime security is also important to (drastically) reduce the
period of a compromise. However, achieving runtime security is a
long-standing challenge. IoT can also utilize the domain-specific
features, such as application whitelisting, which is effective for
small systems (see e.g., [19, 81, 91]).

For non-fixable critical vulnerabilities, the suppliers might issue
a product recall. However, 100% recall is difficult, and some of these
devices may even be forgotten by the end-users, and eventually be-
come cyber debris. We argue that IoT devices should be terminated
at the expiration of their life cycle for security purposes, especially
for pervasive/ubiquitous IoT devices that are not actively managed
by users/admins.

Although modern TEE-enabled CPUs can enhance system secu-
rity, flaws in TEEs are also not too uncommon. Many such issues are
implementation bugs, but some are system intrinsic. For example,
the boomerang attack [68] abuses a pointer operation in the ARM
TrustZone’s secure world. On the other hand, replay attacks [30, 71]
abuse the creation procedure of TEE-application on the untrusted
OS. RO-IoT must be carefully implemented to avoid these known
vulnerabilities.

2.2 Threat Model and Security Assumptions
Security goals and assumptions for RO-IoT include the following:

(1) RO-IoT’s main security goal is to prevent abuse of an M2M
IoT device (e.g., DDoS caused by Mirai) and to ensure that
the M2M IoT device is used only for its intended purposes.

1Note that a system backup image is useful for recovery from faults, but not from
compromise as backup copies may also be infected.

(2) RO-IoT requires occasional system-reset and must suspend
the service for a certain length (less than approximately 60
seconds). The application must be designed to compensate
for the service suspension, for example, by multiplexing IoT
devices. The primary target for the current RO-IoT proto-
type is AI-Edge, and the 60-second suspension is accept-
able in these use cases (when booting happens occasion-
ally/infrequently). We discuss mission critical IoT use cases
in Section 7.4.

(3) The current RO-IoT prototype does not protect physical side
channel attacks as ARMTrustZone lacksmemory encryption
(unlike Intel SGX).

(4) RO-IoT cannot protect attacks that use code from legitimate
application and kernel binaries, e.g., Return Oriented Pro-
grams (ROPs). These vulnerabilities must be fixed by the
occasional system-reset.

(5) Our currentmemory forensics implementation protects against
library replacement attacks that use LD_LIBRARY_PATH and
LD_PRELOAD, but does not detect dynamically changing
code, i.e., self-modifying code, as enabled by e.g., dl_open(),
plug-in, and JIT (Just In Time compiler). We discuss these
issues more in Sections 6 and 7.1.

(6) RO-IoT assumes a private Certificate Authority (CA). Cer-
tificates for the CA, client, and server are used for the life
cycle management for the device, software, service. Each
certificate is set at each stakeholder, (i.e., device supplier,
software vendor, and service provider).

(7) Current implementation on a LeMaker Hikey board has some
hardware limitations (i.e., no SoC key and watchdog-timer
access from the normal world, see Section 5.3.2).

3 RELATEDWORK AND BACKGROUND
RO-IoT extends the system-reset architectures [7, 11, 25, 26, 29, 97,
106], and invokes network boot to replace the whole OS image
occasionally (i.e., reinstalling).

To recover from failure, rebooting is a sound strategy for OS
management. For example, Crash Only Software [25] and MicroRe-
boot [26] show that crashing is the faster way to reboot the OS
than a normal reboot procedure with recovery. Let It Crash [11]
shows that crashing eliminates troublesome error handling.

From a security perspective, quick invalidation of a compromised
system makes further abuse difficult. Additionally, a swift update
reduces vulnerable time-window. For example, Misery digraphs [7]
show that VM instances in a web service provider like Amazon
can be periodically reset and replaced with updated OS to prevent
intrusion attacks. ReSecure [3], Restart-Based Protection [2], and
YOLO [13] show the same effectiveness on small cyber physical
systems that run real-time OSes.

Similar to RO-IoT, TPM 2.0’s Authenticated Countdown Timer
(ACT) [97] and CIDER [106] enable secure system-reset. ACT causes
a system-reset from a TPM chip, which works as a protected watch-
dog timer, but it does not guarantee an OS update after system-reset.
On the other hand, CIDER uses TEE for implementing the authen-
ticated watchdog timer (AWDT) only. RO-IoT uses TEE to protect
some critical components: boot loader, memory forensics, and life
cycle management. These three components cooperate with each

ACSAC 2020, December 7–11, 2020, Austin, USA Kuniyasu Suzaki, Akira Tsukamoto, Andy Green, and Mohammad Mannan

other. In addition, CIDER relies on administrators to discover a
compromise, but RO-IoT causes a system-reset proactively (i.e., oc-
casionally) to protect from an undetected and hijacked compromise.
The TEE of RO-IoT also protects PKI-based certificates and a private
key, which are used for life cycle management of device, software,
and service.

Some types of malware infect the file system or bootloader to
persist after rebooting. To counter such malware, RO-IoT uses
an isolated network bootloader and runs an OS on the memory
only, which includes a file system. The core idea is similar to the
Collective [29], a cache-based system management architecture,
but RO-IoT does not require virtual machines. RO-IoT is operated
through a secure network bootloader protected by TEE.

On the other hand, RO-IoT must address the suspension time
caused by occasional rebooting. AI-Edge applications targeted by
RO-IoT generally collect and process a large amount of video or
sensor data for various use cases, including: smart cities [73, 95]
and smart farming [104]. However, the cameras and sensors are
blocked by obstacles occasionally, causing data loss/unavailability.
Fortunately, many distributed devices report their results to the
cloud and the statistical processing on the cloud solves this missing
data issue. Apparently, unavailability caused by occasional reboot-
ing in RO-IoT is acceptable for such AI-Edge applications, as long
as many devices are not rebooted at the same time (discussed more
in Section 7.3).

Power consumption of IoT device is also essential factors for
IoT deployment. One reason to introduce Edge-Computing [24, 87,
92, 110] and Fog-Computing [69, 83] is the distribution comput-
ing/network resources to IoT devices, instead of fully-centralized
processing (requiring significant bandwidth and CPU costs). Dis-
tributed IoT devices must run with low power because some AI-
Edge applications may be used for a long period. Some deployments
can assume AC power supply, while others must function as stan-
dalone (i.e., no direct power line). Fortunately, past studies [5, 94, 98]
showed that current solar power and battery could permanently
run an IoT device with Raspberry Pi (ARM Cortex-A CPU, Linux
OS); the current RO-IoT prototype uses similar hardware (LeMaker
Hikey board) with Linux.

In addition, IoT device becomes inexpensive and used for single
use [75],which makes them physically disposable after use. This
movement may cause significant environmental issues. The most
desired solution is a biologically self-destructive device [62] (see
also Internet of Disposable Things [37]); however, these devices
currently cannot run Linux and AI-Edge applications. The reason-
able solution is physical collection by legal regulation and policy
enforcement [14]; see also the E-Waste Handbook [48] from the
International Telecommunication Union (ITU). The deployment of
RO-IoT must follow such regulations and policies.

Other technologies required by RO-IoT are secure network boot-
loader [6, 46, 84], live memory forensics [43, 52, 86, 96, 102, 107],
PKI [31, 35, 44], and TEE (e.g., ARM TrustZone) [15, 16, 28, 40, 50,
78, 82, 85].

4 DESIGN
RO-IOT makes IoT devices to reboot the OS occasionally and renew
theOS from the server, if necessary. During the device operation, the

Boot First Linux
with TEE

Boot Second Linux
with TEE

IoT App

Live
Memory
Forensics

Life Cycle
Management

Terminate the device
(disposable)

Network
Bootloader

Second Linux + TEE
+ IoT App

Firmware/bootloader
(First Linux + TEE)

Firmware/bootloader
Update.

System
Reset

System
Reset

Figure 1: RO-IoT design overview. The dotted components
are protected by TEE.

memory is scanned periodically, and the IoT device reboots the OS if
an unregistered binary is found. At boot time, three TLS certificates
(server, client and root) are examined, and RO-IoT renders the device
inoperable when any of them is expired; i.e., the IoT device can be
active only if the TLS connection is established at boot time. RO-IoT
is composed of a secure network bootloader, live memory forensics,
and life cycle management. These components are protected by
TEE. See Figure 1 for a design overview of RO-IoT.

4.1 Two types of Linux on RO-IoT
RO-IoT uses two types of Linux images alternately. The first Linux
works as a network bootloader and life cycle manager. The second
Linux is downloaded from the server, and runs the IoT applica-
tions. The first Linux may be replaced by another boot loader (e.g.,
iPXE [46]). However, the bootloader for RO-IoT has some special
requirements: 1) management of TEE (especially for OP-TEE); 2)
secure networking to download a Linux image; 3) file system to save
the Linux image as cache; and 4) self-update. These requirements
are satisfied by most Linux distributions.

The two types of Linux have some different features. The first
Linux allows the use of the storage, but the stored data is encrypted
by the key included in the TEE. On the other hand, the second Linux
kernel has no driver for storage and file system. In addition, the
first Linux kernel includes kexec system call, which allows booting
another Linux kernel. However, the second Linux kernel excludes
it to stop anonymous kernel booting.

Along with the first and second Linux running on the normal
world, a trusted application (TA i.e., TEE-application) runs on the se-
cure world; TA-Boot and TA-Forensics, respectively. TA-Boot enables
secure network booting and life cycle management. TA-Forensics
allows live memory forensics of the second Linux.

The size of Linux kernel is another problem, but Linux has size
reduction mechanisms (e.g., tinification [65, 80], Link Time Opti-
mization (LTO) [57, 80], and undertaker [61]). RO-IoT utilizes the
undertaker to make a small Linux kernel.

The bootloader included in the storage of IoT device (i.e., trusted
boot firmware, secure monitor, OP-TEE, the first Linux, and PKI-
based certificates) is assumed to be encrypted by the SoC key or
a TEE protected key. Such a hardware-protected key makes the
device disposable after the expiration of service.

Reboot-Oriented IoT: Life Cycle Management in Trusted Execution Environment for Disposable IoT devices ACSAC 2020, December 7–11, 2020, Austin, USA

4.2 Securing Network Boot
RO-IoT utilizes the secure network bootloader, which cooperates
with live memory forensics and life cycle management.

4.2.1 Booting Mechanism with TEE. The booting mechanism coop-
erates with the TEE, and part of it is implemented in the TA-Boot.
The URL of the download server for the second Linux and the client
certificate are available to the TA-Boot application. The TLS con-
nection is established between the download server and TA-Boot
by mutual authentication with the TLS server and client certificates
(the client private key is protected by TA-Boot). The download
server identifies the IoT device by its unique client certificate and
chooses the appropriate second Linux image. The Linux image,
which includes the Linux kernel, root file system, and device tree,
is also signed by a private signing key on the server and verified
by a public verification key in TA-Boot.

4.2.2 Reusing Downloaded Linux Image. The downloaded Linux
image is relatively small, but still repeated downloading affects the
boot time. If a new Linux is not released, RO-IoT reuses the current
image and omits the downloading. This mechanism requires the
help of the first Linux because the TEE OS (i.e., OP-TEE) has no
storage or file system. The downloaded Linux image is encrypted
and stored in the file system of the first Linux; the encryption key
is embedded in TA-Boot.

4.2.3 Updating Firmware/Bootloader. When a vulnerability in
the firmware/bootloader is found, RO-IoT allows updating the
firmware/bootloader itself (e.g., a set of trusted boot firmware, se-
cure monitor, and OP-TEE) from the back-end server. Especially,
the bootloader may need frequent updates as it contains a Linux
kernel. The bootloader updates the firmware/bootloader image on
the storage while it runs on memory only. The secure connection
and image verification are performed by TA-Boot. All secret keys
used by RO-IoT can be renewed except for the SoC key.

4.2.4 Scalability. The OS image for the IoT is small (currently
under 100MB). We assume even if an emergency update is required
by a lot of devices, the total traffic volume will remain manageable,
considering the high-capacity of existing content delivery networks
(CDNs). For example, if 10,000 devices are managed by a provider,
the total network traffic is 1TB, which costs about 100 USD (i.e.,
1 cent for a full OS update on a device) on Amazon AWS [8] and
Google Cloud Platform [42].

4.2.5 Availability. The period of occasional system-reset and re-
boot time resemble to be Mean Time Between Failure (MTBF) and
Mean Time To Repair (MTTR). The availability is estimated to be
99.93% when a system-reset is caused every day, and network re-
booting time is 60 seconds. RO-IoT has a mechanism to short the
reboot time by reusing the cached image when there is no update.
It means that the availability can be higher.

4.3 Live Memory Forensics
RO-IoT offers live memory forensics, enabling application whitelist-
ing in the second Linux. In general, memory introspection, espe-
cially virtual machine introspection (VMI) [17, 20, 38], is a technique
to analyze live applications. However, memory introspection works

as a general tool, and includes functions of debugging and moni-
toring. RO-IoT is designed to use memory forensics only in TEE to
protect integrity of the forensics process.

4.3.1 Hash Database for Memory Forensics. At the setup phase, a
hash database for each 4KB text page (i.e., code) of an ELF binary
is created. The database includes hashes for the dynamic linking
libraries to prevent library replacement attacks. Therefore, the anal-
ysis tool traces the dynamic linking libraries used by the ELF file.
Unfortunately, the tool cannot trace the library opened dynamically
(e.g., dl_open() or plug-in) because the library name depends on
the binary context and cannot be determined by the linking infor-
mation statically. As such, our current RO-IoT prototype does not
allow applications which include dl_open() and related functions.

The hash database is stored in TA-Forensics which scans the
memory of the second Linux periodically. All running processes
are subjected to page hash verification. If a page in memory does
not match a hash, e.g., unregistered or compromised ELF binary,
the TEE issues a system-reset. The page verification procedure may
be targeted in a boomerang attack [68] as it allows pointer access
to the normal world. The implementation takes such attacks into
consideration (see Section 5.2.2).

The hash database depends on the downloaded image, and it
must be set in the TEE securely before the second Linux boots. This
issue is addressed by OP-TEE, by making a TA to survive kexec
reboot (see Section 5.1.3).

4.3.2 Enforcement of the Periodic TA Service. A TA is a passive ser-
vice because OP-TEE does not offer sleep and wake-up mechanism.
To support periodic TA-Forensics, it must accept a periodic request
from the normal world. However, the activation mechanism may be
stopped by an attacker to terminate the memory forensics process.
This is addressed by using a hardware watchdog timer, which is typ-
ically used to recover frommalfunctions. The watchdog timer sets a
short time length to issue a system-reset frequently. If the watchdog
timer is not extended, the device enforces a system-reset. Thewatch-
dog timer is protected by TEE in a similar manner as in CIDER [106].
The time setup mechanism is allocated by TA-Forensics (i.e., in the
TEE) only, and the untrusted OS must activate TA-Forensics peri-
odically (as otherwise the operation in the normal OS, as well as
trusted OS, is rebooted). The period of time-extend-request is short
(e.g., 15 seconds) to trigger the memory forensics frequently.

4.3.3 Enforcement of Occasional System-Reset. TA-Forensics has a
counter and increments the number when a time-extend-request
comes from the normal world; it enforces a system-reset when
the counter reaches a threshold. When the threshold is 10,000,
and periodic time-extend-request is issued every 15 seconds, the
occasional system-reset happens in every 42 hours. This mechanism
is different from CIDER, which has no threshold. The occasional
system-reset enforces the expiration of the device life cycle.

4.4 Life Cycle Management
The life cycle management for M2M IoT devices is more critical than
normal devices (e.g., home IoT), because they are geographically
distributed without human administrators. The relation of supply
chain stakeholders is complex, but the lack of coordination between
them leads to serious security issues (e.g., the lack of security patch

ACSAC 2020, December 7–11, 2020, Austin, USA Kuniyasu Suzaki, Akira Tsukamoto, Andy Green, and Mohammad Mannan

coordination). Therefore, a major goal for RO-IoT is to enable life-
cycle management for M2M IoT devices.

RO-IoT assumes that the supply chain of IoT consists of four
stakeholders (device factory, device supplier, software vendor, and
service provider), and the last three stakeholders are responsible
for the corresponding life cycle (RO-IoT assumes the responsibility
of the device factory is covered by the device supplier). The three
life cycles are linked to the expiration of three certificates used in
TLS connections (i.e., CA, server, and client). TA-Boot verifies the
certificates at boot time and deactivates the device to prevent abuse
if necessary.

4.4.1 Life Cycle of the IoT hardware device. The expiry time of
the device is managed by the device supplier. This relates to the
warranty of the device, and the device supplier may want to stop
the operation of the device after the expiration of repair terms and
conditions (e.g., the device supplier may not want to offer security
patches after a certain time period).

RO-IoT assumes that a device supplier creates their own private
Certificate Authority (CA) for an SoC product. The CA certificate
is embedded in the TA-Boot, and the expiration causes the SoC
device to be inoperable. The pre-established expiry of the device
prevents it from becoming cyber debris. An expired device can
only be revived by the supplier, by replacing the firmware that is
assumed to be encrypted by the SoC key.

4.4.2 Life Cycle of Software. The expiration of software is defined
by the software vendors. RO-IoT assumes that the life cycle of the
software is linked to a client certificate for TLS.

RO-IoT offers a provisioning mechanism for software vendors,
which enables them to embed a client certificate in the TEE. The
provisioning mechanism also embeds other critical data, i.e., a pack-
aging public key to verify the second Linux, and the download URL
which is offered by a service provider.

4.4.3 Life Cycle of Service. We assume that the service provider is
responsible for the distribution of OS images to M2M IoT devices.
The OS image is downloaded by HTTPS, and the server has a
server certificate to establish a TLS connection. The expiration
of the server certificate is used to control the expiry time of the
service. This mechanism also enables the service provider to handle
emergency security incidents (e.g., product recall).

5 IMPLEMENTATION
RO-IoT is implemented on a LeMaker Hikey board (ARM Cortex-
A53 SoC Kirin 620, 64-bit 8-core 1.2GHz, 2GB Memory, and 8GB
eMMC storage) with Linux and OP-TEE [64, 79]. As the board has
no wired NIC, we add a 100Mbps Logitec USB 2.0 Adapter.

5.1 Secure Network Bootloader
Figure 2 shows an overview of the reboot (kexec or watchdog timer
system-reset) cycle of RO-IoT. (Note: the upper of secure boot is
the boot procedure defined by ARM TrustZone. The usage of TA-
Client and TEE-Supplicant follows the manner of OP-TEE [64, 79].
It involves two phases: secure booting and normal operation (live
memory forensics). Each phase has its own Linux in the normal
world—termed as the first and second Linux. Each phase also has its
own TA in the secure world: TA-Boot for secure network boot and

Poweron

BL1: BootROM

SecureWorld NormalWorld

TA‐Boot
(BoringSSL, Libwebsocket)

TA‐Forensics

kexec

TA‐
Client1

eMMC

ROMFSfile

Secure
booting

Normal
operation
(live
memory
forensics)

Rebooting

Termination of service, or license, or IoT device

If a TLS certificate
fails.

Download
Server

TEE‐Supplicant

TA‐Forensics,
kernel,
dtb,

Initramfs.gz
(TA‐Client2)
signature

Second Linux

TA‐Forensics

Invoked
by TA‐Client1

Survive after
kexec

memory
forensics

Invoked
by TA‐Client1 TLS

BL2:
Trusted Boot
Firmware

BL31:
Secure Monitor

BL32:
OP‐TEE

BL33:
First Linux

TA‐
Clinet2

TEE‐
Supplicant
IoT

Application

Connected
by TA‐Client2

Figure 2: Overview of the reboot (kexec or system-reset) cy-
cle of RO-IoT. Gray components are encrypted in the eMMC.

BL2: Trusted Boot
Firmware (29KB)
BL31: Secure

Monitor (33KB)
BL32: Secure OS
OP‐TEE (286KB)

BL33: First Linux
ROMFS (7,100KB)
Kernel (5,464KB)

dtb (37KB)

intramfs.gz (1,598KB) For Network
dhcp
netdate
ip

For OP‐TEE
TEE‐Supplicant (197KB)
TA‐Client1 (17KB)
TA‐Boot (1,173KB)

For Boot
kexec

For Update fib.bin
dd

For HTTP Protocol
LibWebSockets

For Security
BoringSSL

Keys
CA Pub Cert
Provisioning URL
AES Key for Secure Storage
AES Key for ImageCache

URL
URL of Provisioning Server

intramfs.gz

TA‐Boot

Secure Storage
encrypted by key in TA

Download URL
Client Public Cert
Client Private key

ROM
fip.bin (7,590KB)

encrypted by key in SOC Key in SOC

Run in normal world

Run in secure world

eMMC

First Linux FS (EXT4)
Imagecache
encrypted by key
in TA

BL1: Boot ROM

Figure 3: Software components embedded in the Hikey
board. Gray components are encrypted by each key.

life cycle management, and TA-Forensics for live memory forensics,
which are designed in section 4.

Figure 3 shows the software components embedded in the Hikey
board. The boot ROM (Boot Loader1: BL1) is stored in ROM of the
Hikey board, and the other components are stored in the eMMC.
The eMMC has three secure areas: fib.bin, secure storage, and cache
image; each area is encrypted by a different key: fib.bin is assumed

Reboot-Oriented IoT: Life Cycle Management in Trusted Execution Environment for Disposable IoT devices ACSAC 2020, December 7–11, 2020, Austin, USA

SecureWorld NormalWorld Download
Server
(HTTPS)

SecureWorld NormalWorld

Download image
withHTTPS

Verify signature

Encrypt the image
and save it as acache

kexec

Write the
encrypted image

Save the plain image Write the image

Download image

Download Signature

Decrypt the
image and save it

no

no

halt

HTTP is established between
TA‐TBand Download server

romfsmount
/mnt/romfs

no
yes

FristLinuxOP‐TEE

Socket is established between
TEE‐Supplicant and Download server

TA‐Boot
TEE‐Supplicant

TA‐
Client1

End

Load and invokeTA‐TB

Load and invokeTA‐Forensics

no

Read image
cache

Temporal RAM disk
/tmp/romfs

Write the image

yes

loop

*
romfs mount and
get TA‐Forensics,

kernel, dtb initrd.gz

Jump to*

TA‐
Client1

eMMC
/im/imagecacheFind image cache Find image cache

Read image
cache

eMMC
/im/imagecache

verify signature

Is it the latest?

yes

yes

ROMFS file

TA‐Forensics,
kernel, dtb,
Initramfs.gz,
(TB‐Client2)

signature

signature

Temporal RAM disk
/tmp/romfs

eMMC
/im/imagecache

loop

Setwatchdog
timer

SecondLinux

TA‐Forensics

Setwatchdog
timer Every

15
seconds

Watchdog
timer

Set 30 seconds for
periodic activation
(If TA‐Forensics is not invoked
within30 seconds, the device
reboots. Memory forensics
must finish within 30 seconds.)

Set 120 seconds
for boot failure
(If the second
Linux is not
booted and TA‐
Forensics is not
invoked within
300 seconds,
thedevice
reboots.)

Memory
Forensics

TEE‐Supplicant

TA‐Forensics

Same TA‐Forensics
survive after rebooting

Connect
TA‐Monitor
From TA‐Client2

TA‐
Client2

Se
cu
re
 N
et
w
or
k
Bo

ot
lo
ad

er

O
S
an

d
TE
E
fo
rI
oT

Ap
pl
ic
at
io
n

Continue to the upper right

IoT‐Application

Process on Linux or OP‐TEE

Procedure In a process

Figure 4: Detail steps for the secure network bootloader (left figure), and OS and TEE for the IoT application (right figure).

to be encrypted by the SoC key, and secure storage and cache image
are encrypted by AES keys in TA-Boot.

5.1.1 Booting the First Linux. The boot ROM (BL1) first loads the
“fip.bin” file to a fixed memory region. The fip.bin file includes
all software used for the first Linux booting. The Trusted Boot
Firmware (BL2) is invoked and loads Secure Monitor (BL31), OP-
TEE (BL32), and the first Linux (BM33) image. The most part of the
userland of the first Linux is occupied by networking tools (com-
bined in a busybox), OP-TEE tools (TEE-Supplicant, TA-Client1,
and TA-Boot), kexec, and dd commands.

The init script, the first program of first Linux, runs TA-Client1
and TEE-Supplicant. TA-Client1 loads TA-Boot on the secure world
using the OP-TEE API “TEE_IOC_OPEN_SESSION”. TA-Boot ac-
cesses the secure storage with the help of TEE-Supplicant on the
first Linux, which has drivers for the eMMC storage and EXT4 file
system. TA-Boot gets the URL of the download server, client public
certificate, and client private key from the secure storage, which
are set at the provisioning phase (see Section 5.3).

5.1.2 HTTPS connection from TA-Boot. OP-TEE has no driver for
the network interface, and thus TA-Boot cannot establish a network
connection directly. TA-Boot uses TEE-Supplicant to relay a packet
to the download server. The socket connection between the down-
load server and TEE-Supplicant is established, i.e., Transport Layer
Protocol (TLS). TA-Boot connects with TEE-Supplicant via OP-TEE
and passes packets for TLS and HTTP to communicate with the

download server. The packets are created by boringSSL [22] and lib-
WebSocket [63] in TA boot. TA-Boot also has CA public and client
certificates, and the TLS handshake (i.e., mutual TLS authentication)
is performed.

5.1.3 Booting the Second Linux. Figure 4 depicts the booting pro-
cess for the second Linux, performed in parallel while establishing
the HTTPS connection. The contents for the second Linux are
packed in a ROMFS file, which is a lightweight read-only loopback
file system. The most important parts of booting are implemented
in TA-Boot and TEE-Supplicant. The booting process consists of
the following four phases.
(1) Check for a cached OS image TA-Boot checks the existence
of an encrypted cache image (i.e., /im/imagecache which is an en-
crypted ROMFS file) on eMMC’s EXT4 file system, with the help of
TEE-Supplicant. If the /im/imagecache file does not exist, TA-Boot
downloads a ROMFS file (see the next phase). If the /im/imagecache
file exists, TA-Boot decrypts it with imagecahce AES key embedded
in TA-Boot (See Figure 3) and stores at /tmp/romfs (i.e., ROMFS file)
on the RAMFS of the first Linux with the help of TEE-Supplicant.
The image cache is read speculatively, which can start before the
network connection is established. The file’s signature is also veri-
fied with the built-in packaging public key in TA-Boot. If the sig-
nature verification fails, TA-Boot downloads a ROMFS file. Even
after successful verification, TA-Boot still downloads the packaging
signature from the download server, to check if a new OS image
is released. If the two signatures differ, TA-Boot downloads the

ACSAC 2020, December 7–11, 2020, Austin, USA Kuniyasu Suzaki, Akira Tsukamoto, Andy Green, and Mohammad Mannan

OP‐TEE

TA‐
Client2

Secure World Normal World

Firmware
(SMC, Shared Memory)

Watchdog timer
every 30 sec

Clearing watchdog
timer every 15 sec

App1 App2
TA‐Forensics

DB for App pages

App1: hash11, hash12, …
App2: hash21, hash22, …

stack
heap
bss

text

stack

heap
bss

textCounter

ASLR ASLR

state
Pid
sibring
active_mm

task_struct mm_struct

mmap

vm_end

vm_start

When counter
is reached

Occasional
System Reset

int_struct

0xFFF..

0x00…

0xFFF..

0x00…

vm_file
vm_strat
vm_end

vm_area_struct

vm_end

vm_start

Second Linux Kernel

SMC
Driver

(Time for system reset is set,
but it will be extended many times.)

When an unregistered
ELF is found

Direct
System Reset

Extend

Figure 5: Overview of live memory forensics

new ROMFS file. If the signatures are the same, go to (5.1.3) Set up
TA-Forensics.
(2) Downloading OS Image TA-Boot downloads the ROMFS file
through HTTPS. However, the secure world has 16MB memory
only and thus cannot hold the whole ROMFS file. Therefore, every
128KB data is downloaded by TA-Boot, and the data is stored in
the file system of Linux via TEE-Supplicant. The data is saved in
two files: /tmp/romfs on RAMFS, and /im/imagecache on EXT4 on
eMMC, which is a cache image encrypted by the imagecache key.
(3) Set up TA-Forensics for the Second Linux The /tmp/romfs
(i.e., ROMFS file) is signed by the packaging private key on the
server and is verified by the packaging public key in the secure
storage (placed during setup). If the verification fails, the IoT device
halts. If succeeded, the /tmp/romfs file is loopback-mounted, and
the Linux kernel, initramfs.gz, dtb, and TA-Forensics are extracted.
TA-Forensics must be loaded and invoked by TA-Client1 on the first
Linux just before booting the second Linux because TA-Forensics
verifies the applications on the second Linux. If TA-Forensics was
invoked from the second Linux, the loading process might be com-
promised, or the database of whitelisted applications may be leaked.
In addition, the launching of TA-Forensics should be hidden from
the second Linux to avoid replay attacks [30, 71]. Fortunately, TA-
Forensics can survive after the second Linux reboot of kexec on the
normal world. TA-Client2 on the second Linux can connect to TA-
Forensics using the same UUID used by TA-Client1. TA-Forensics
sets the watchdog timer with 120 seconds in the secure world. The
set-time is longer than the memory forensics period because it
includes the time for kexec booting. This mechanism also handles
boot failures.
(4) Boot the Second Linux with kexec The kernel, dtb, and in-
tramfs.gz are passed to kexec to boot the second Linux. At the
booting, TA-Client2 connects to TA-Forensics with the UUID. TA-
Forensics extends the watchdog timer with 30 seconds and starts
memory forensics.

5.2 Live Memory Forensics
Figure 5 shows the outline of live memory forensics for the second
Linux, which is performed by TA-Forensics.

5.2.1 Creating the database of ELF binaries. The hash database
used by TA-Forensics is created by our “elfcheck” tool. It scans
all ELF binaries in the second Linux. The elfcheck analyses the
dynamically linked libraries with ldd and calculates a SHA256 hash
(32 bytes) of each 4KB page (.text region). The database also includes
the name of each ELF file to verify the name of a process.

At the kernel building time, RO-IoT detects the address of
init_struct in the Linux kernel, which is the entry point of task_struct.
All running processes on Linux are managed by the task_struct
linked list. Each SHA256 hash of 4KB code page is compared with
the database.

5.2.2 Memory forensics. When TA-Forensics runs, it looks at the
running kernel’s task tree in memory directly (i.e., from init_struct
to vm_area_struct in Figure 5), without cooperation from the run-
ning kernel. For each running task, it tries to match the task by
name with its database. Unknown ELF file names directly indicate a
compromise. For known ELF file names, TA-Forensics hashes every
executable page in the task’s memory map and compares it with
the hash database. Any unexpected executable pages indicate a
compromise. Writable pages (i.e., bss and data) cannot be verified,
since they may be changed arbitrarily.

When an ELF file is loaded into process memory, it will skip some
sections present in the ELF image and may partially load (demand-
load) others. Therefore, the footprint in memory of the executable
or library is not wholly related to the layout in the original ELF
file and may be dynamic as demand-paged content is added to or
removed from memory. For that reason, validation must be done
at page granularity with individual hashes. All pages marked with
the “Executable” attribute are subject to verification. TA-Forensics
issues a system-reset if it finds an unregistered memory hash.

To implement TA-Forensics, two new APIs, TEE_Physmem() and
TEE_Spinlock(), are added to OP-TEE. TEE_Physmem() is used for
translation from a virtual address to a physical address on the
secure world. TEE_Spinlock() is used for the exclusive control of
task_struct. During verification, TA-Forensics locks the task_struct
of a process to prevent any concurrent update of process memory
pages using kernel spinlock at the untrusted kernel side. It means
that only the process being verified is blocked by TA-Forensics, and
the rest of the processes can run along with TA-Forensics.

TEE_Physmem() and TEE_Spinlock() can be the attack surface
of the boomerang attack [68]. However, they are limited to access
the text region and task_struct only. Therefore, boomerang attacks
are not effective against the current implementation. Furthermore,
RO-IoT assumes that the IoT device has no sensitive information in
the user space, and there is no threat to expose.

Thememory forensics process does not cause a problem for ASLR
(Address Space Layout Randomization) on the userland because
TA-Forensics knows the entry point of task_struct. However, the
kernel ASLR may cause a problem as it changes the entry point.
Fortunately, current kexec on ARM does not support kernel ASLR.
We leave this issue for future work.

Reboot-Oriented IoT: Life Cycle Management in Trusted Execution Environment for Disposable IoT devices ACSAC 2020, December 7–11, 2020, Austin, USA

Device
Factory

Service
Provider

Fresh eMMC

Provisioning Server (Port 444)
EstablishTLS
with
provisioning
ServerCert

Download
Booting URL
& Client Cert
& PackageCert

EstablishTLS
with
Download
Server Cert
& ClientCert

Download
ROMFS

License
Termination

Service
Termination

Device
Termination

Server Public Cert

Booting Server (Port 443)

SOKKey

Device
Supplier

Software
Vendor

Provisioning Server PrivateKey
Provisioning Server Public Cert
Client Private Key
Client Public Cert
Package Private Key
Package Public Key
DownloadURL

Secure Storage Encrypted
by Key inTA‐Boot

Ext4 on FirstLinux

Download Server Private Key
Download Server Public Cert

request

request

request

fip.bin
(Secure Storage AES Key,
ImageCache AES Key)
ProvisioningURL

CA PrivateKey
CA Public Cert

ROMFS signed by
Package PrivateKey

fip.bin encrypted
by SOC Key

Build in TA‐Boot

ProvisioningURL
CA PublicCert

Download URL
Client Public Cert
Client Private Key
Package PublicKey

romfs encrypted by
Key inTA

Secure Storage Encrypted
by Key inTA‐Boot

Ext4 on FirstLinux

fip.bin encrypted
by SOC Key

Build in TA‐Boot

ProvisioningURL
CA PublicCert

Download URL
Client Public Cert
Client Private Key
Package PublicKey

Secure Storage Encrypted
by Key inTA‐Boot

Ext4 on FirstLinux

fip.bin encrypted
by SOC Key

Build in TA‐Boot

ProvisioningURL
CA PublicCert

CA

Server Public Cert

Operation
Setup

Figure 6: Setup and operation of the life cycle management

Table 1: Life cycle management keys and certificates based
on PKI

Entity Key type Location Function
CA Private Secret Sign server and client certificates

Public device supplier, Used by everyone to confirm
Cert HTTPS server,

TA-Boot
certificates were created by the or-
ganization with CA private key

Server Private Secret Used to confirm the server really
has a certificate signed by CA

Public HTTPS server Send to clients to claim the server
Cert has a private key signed by CA

Client Private Secret Used to confirm the client really has
a certificate signed by CA

Public Secure Storage Send to the server to prove the
client

Cert has a valid cert signed by CA

5.2.3 Periodic invocation of TA-Forensics. As mentioned in Section
4.3.2, RO-IoT uses a watchdog timer on the Hikey board (SP805
on Kirin 620) to enforce the periodic invocation of TA-Forensics.
At every memory TA-Forensics, the timer is extended to prevent
the hardware system-reset. An attacker is faced with two choices,
i.e., let the memory forensics process run periodically, or change
the system to stop the memory forensics process, and then face a
system-reset.

The watchdog timer is set every 30 seconds by TA-Forensics
(See lower-right Figure 4). The time-extend-request to extend the
timer is operated from TA-Client2 every 15 seconds after the mem-
ory forensics process finishes. It means that the memory forensics
process must finish within 15 seconds, and 15 seconds must be left
for TA-Client2. Even if memory forensics fails for any reason, the
watchdog timer issues a system-reset in 30 seconds.

5.3 Life Cycle Management
RO-IoT uses three TLS certificates for the CA, client, and server
for life cycle management for IoT device, software, and service, re-
spectively, as defined in Section 4.4. Each certificate is set up by the
corresponding stakeholder and verified by TA-Boot. Table 1 shows
the life cycle management keys and certificates, and Figure 6 shows
an overview of the setup and operation of life cycle management.

5.3.1 Provisioning. RO-IoT provides a mechanism to provision the
IoT device for setup and operation phases. At the setup phase, a
provisioning server is operated by a software vendor and used to
install the software on the IoT device. At the operation phase, a
download server is operated by the service provider for a second
Linux. Our current implementation assumes that the provisioning
server uses port 444, and the downloading server uses port 443 for
HTTPS to avoid confusion (see Figure 6).

5.3.2 Device Manufacturer. Usually, the specification of SoC is ne-
gotiated with the device supplier. Unfortunately, the HiKey board
does not include an SoC key, although the specification of kirin
620 mentions that the setting depends on the eFUSE configuration.
Therefore, our current implementation assumes that code and data
on the eMMC are safe. In addition, the Hikey board does not limit
the watchdog timer to the secure world only. Therefore, the watch-
dog timer can be set by an application in the normal world. In a real
business situation, the SoC key must be installed, and the watchdog
must be set from the secure-world only.

5.3.3 Device Supplier. The device supplier is responsible for the IoT
device and its firmware. RO-IoT assumes a device supplier creates
its own private Certificate Authority (CA) and offers a provisioning
mechanism for the software vendor and service provider. The sup-
plier includes the provisioning server’s URL and CA certificate in
the firmware (i.e., TA-Boot in fip.bin). The URL is set by the software
vendor as it must prepare the provisioning server. The device sup-
plier sets up the secure storage and EXT4 file system on the eMMC,
accessed from the first Linux, and used by the software vendor
and service provider, respectively. TA-Boot includes 128-bit AES
keys for secure storage and imagecache. The two keys are used in
TA-Boot only and do not need to be exposed to other stakeholders.

5.3.4 Software Vendor. The software vendor is responsible for the
software on the IoT device, except the firmware. The software ven-
dor creates three sets of public-private key pairs: for OS packaging,
the provisioning server, and IoT device (as a client). The public
packaging key is used for verifying a ROMFS file. The keys for
the provisioning server and client must be certified by the device
supplier’s CA. The expiration of the client certificate for an IoT
device implies that the support for the second Linux has ended, and
the IoT device cannot boot it any longer.

The provisioning server is used for setting up contents in the
secure storage, i.e., the client private key, client public certificate,
package public key, and the URL for the download server. The
download server is managed by the service provider, which must
set the URL and provide it to the software vendor.

5.3.5 Service Provider. The service provider is responsible for dis-
tributing the ROMFS file for the second Linux. It creates a key-pair
for the TLS connection of the download server. The public key is

ACSAC 2020, December 7–11, 2020, Austin, USA Kuniyasu Suzaki, Akira Tsukamoto, Andy Green, and Mohammad Mannan

0 10 20 30 60 70

Debian
download
(69,120KB)

Debian
cached

(69,120KB)

minimal
download
(13,863KB)

minimal
chached

(13,863KB)

(sec)
Power on to Signature check Download

40 05

Mount and load TA-F Kexec

17.040

20.731

47.624

62.357

Figure 7: Elapsed time (in second) for each element to boot
the second Linux (Minimal or Debian) with/without down-
loading.

used for the server certificate and certified by the device supplier’s
CA. The server certificate can be revoked when an emergency
vulnerability is found.

6 EVALUATION
The software size, performance, and security are evaluated.

6.1 Size of RO-IoT
RO-IoT consists of two types of software: the secure network boot-
loader stored in the eMMC of Hikey board, and the second Linux in
a downloaded ROMFS file. Their sizes affect hardware specification
and performance for booting and memory forensics.

6.1.1 Size of Software on eMMC. The software used as a secure
network bootloader is included in the “fip.bin” file and stored on the
eMMC of the Hikey board as shown in Figure 3. The size of fip.bin is
7,590KB, which consists of Trusted Boot Firmware (29KB, BL2: Boot
Loader 2), Secure Monitor (33KB, BL31), Secure OS OP-TEE (286KB,
BL32), and the first Linux’s ROMFS (7,100KB, BL33). The ROMFS
file consists of the Linux kernel 4.15.0 (5,464KB), device tree file “dtb”
(37KB), and initramfs.gz (1,598KB). The Linux kernel is minimized
by the attack surface reduction tool “undertaker” [61]. The most part
of initramfs.gz is occupied by TA-Boot (1,173KB), which includes
general network tools (i.e., BoringSSL [22] and libWebSocket [63]).

The size of fib.bin is compared with Intel ME (Management
Engine) which is based on MINIX3 kernel and offers the HTTPS
service. The ME Cleaner project [72] shows the size of Intel ME
(generation 3) is 7MB, which includes normal firmware. The fip.bin
is almost the same size as the Intel ME, but it includes software to
protect the normal Linux and the size is apparently acceptable.

6.1.2 Size of Downloaded ROMFS. We have prepared two images
for the second Linux: a small-sized one (Minimal Linux) and an-
other for easy-to-install (Debian Linux). Both images use the same
kernel (4,960KB) and dtb (37KB), which are also minimized by the
undertaker tool and removed some device drivers. Consequently,
the total size difference comes from the divergence of the size
of intramfs.gz and TA-Forensics. The Minimal Linux (13,863KB)
includes initramfs.gz (8,637KB), and TA-Forensics (226KB). The
Debian Linux (69,120KB) includes initramfs.gz (63,340KB), and TA-
Forensics (781KB).

Table 2: Time for live memory forensics

simple-task Scan Pages Scan Time (sec)
0 2,591 0.296

100 4,324 1.566
200 5,997 2.862
300 7,687 4.117

The size of TA-Forensics depends on the size of the database for
memory forensics. The Minimal Linux includes 64 ELF binaries and
creates 2,375 SHA256-hashes (76KB) for the database in 226KB TA-
Forensics. The Debian includes 788 ELF binaries and creates 11,796
SHA256-hashes (377KB) for the database in 781KB TA-Forensics.
TA-Forensics contains the hash database, and the size becomes
larger accordingly. The current OP-TEE passes TA-Forensics from
the normal world to the secure world through shared memory
(4MB), and TA-Forensics must be smaller than 4MB due to the
OP-TEE implementation. Both TA-Forensics implementations are
within the range.

As discussed the scalability in Section 4.2.4, 1TB traffic is esti-
mated at 100 USD. When the size of Minimal and Debian Linux are
14MB and 70MB, the update traffic for 10,000 images are 0.14TB
(14 USD) and 0.7TB (70 USD), respectively. The cost for a device
is less than 1 cent. It is a simple estimation but shows the cost is
inexpensive.

6.2 Performance
The time for booting and live memory forensics is measured for
the two types of the second Linux.

6.2.1 Time for Booting. Figure 7 shows the elapsed time for each
element to boot the second Linux. It illustrates the time until fin-
ishing the signature check of the cached ROMFS file, downloading,
loopback-mounting, and booting the second Linux by kexec. The
time until finishing the signature check is 10.8 seconds for 13,863KB
Minimal Linux image and 14.4 seconds at 69,120KB Debian Linux
image. The difference of approximately 4 seconds at finishing signa-
ture is due to the size difference of the second Linux in the eMMC.

The time for downloading the second Linux (i.e., ROMFS file)
would be added when the signature check fails. The download time
was 2.245 seconds for 13,863KB Minimal Linux image and 13.658
seconds for 69,120KB Debian image. They include time for world
switch for every 128KB transfer, writing the copy of the image in
memory for the next boot stage, and writing the download image
to eMMC while encrypting it. The throughput was roughly 49Mbps
and 40Mbps, respectively, which show good performance over the
100Mbps USB Ethernet.

The time from power on to finish network boot was 20.731 sec-
onds and 62.357 seconds on Minimal and Debian, respectively. The
availability was calculated to 99.986% and 99.958% if the system-
reset is caused in 42 hours as mentioned in Section 4.3. If the
cached images were valid, the boot times were 17.040 seconds
and 47.624 seconds, and the availability was 99.988% and 99.968%,
respectively. The results are apparently acceptable for replacing
the whole OS image for a compromised system.

Reboot-Oriented IoT: Life Cycle Management in Trusted Execution Environment for Disposable IoT devices ACSAC 2020, December 7–11, 2020, Austin, USA

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

C
PU

 u
sa

ge
 (

%
)

time (second)

No extra process
 Scanning 2,591 pages

core 0
core 1
core 2
core 3
core 4
core 5
core 6
core 7

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

C
PU

 u
sa

ge
 (

%
)

time (second)

100 extra processes
 Scanning 4,324 pages

core 0
core 1
core 2
core 3
core 4
core 5
core 6
core 7

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

C
PU

 u
sa

ge
 (

%
)

time (second)

200 extra processes
 Scanning 5,997 pages

core 0
core 1
core 2
core 3
core 4
core 5
core 6
core 7

Figure 8: CPU utilization for memory forensics when 0, 100, and 200 “simple-task” processes run.

core 0

core 1

core 2

core 3

core 4

core 5

core 6

core 7

4.5 9 13.5 18

CP
U

us
ag

e
(%

)

time (second)

100%

0%
100%

0%
100%

0%
100%

0%
100%

0%
100%

0%
100%

0%
100%

0%

core 0

core 1

core 2

core 3

core 4

core 5

core 6

core 7

4.5 9 13.5 18

CP
U

us
ag

e
(%

)

time (second)

100%

0%
100%

0%
100%

0%
100%

0%
100%

0%
100%

0%
100%

0%
100%

0%

Figure 9: CPU utilization on each core with 8 heavy pro-
cesses to measure the effect of memory forensics. The lower
adds extra 200 “simple-task” processes. Small dotted lines
showUSERCPU utilization and dashed gray lines show SYS-
TEM CPU utilization.

6.2.2 Time for Live Memory Forensic. To confirm the performance
of live memory forensics, a stress test is performed. An extra pro-
cess (named “simple-task”), which adds two variables and sleeps 1
second in an infinite loop, is included in the Minimal Linux. The
simple-task consumes memory pages and little CPU time. Figure 8
shows the CPU utilization when memory forensics occurred for 0,
100, and 200 simple-task processes.2 When active processes were
over 100, the CPU utilization went up to 100% on only one core,
but the other 7 cores had no stress, implying that regular processes
continue running without additional overhead.

Table 2 shows the scan time of live memory forensics for simple-
task process numbers. The average times for memory forensics
were 0.296, 1.566, 2.862, and 4.117 seconds at 0, 100, 200, and 300
simple-task processes, respectively. The evaluation shows simple-
task increased about 17 pages per one simple-task. The scan time

2Note: SMC instruction is executed on any core. The core number has no meaning in
Figures 8 and 9.

increased about 1.274 seconds when every 100 simple-task pro-
cesses were added. The results suggest that approximately 1,177
simple-task processes become 20,000 pages, and it reaches 15 sec-
onds to finish memory forensics. In this situation, the watchdog
timer will not be extended, and a system-reset will be issued. We
think the system is designed carefully, and this time-runs-out situ-
ation may not occur, but we discuss this problem in Section 7.2.

In addition, the impact of memory forensics was measured with
8 heavy processes which caused 100% CPU utilization on all 8 cores.
The heavy process is designed to consume 15 seconds of CPU time
to overlap the memory forensics. The memory forensics is a higher
privilege and invoked during 8 processes. Figure 9 shows the impact.
The upper case showed that memory forensics did not cause a big
impact and the lower case added 200 simple-task processes that
were executed to increase the overhead of memory forensics but
little impact on the heavy processes. The 8 heavy processes were
executed on 7 cores during the memory forensics ran. They were
scheduled equally, and the finish time of each process was almost
the same. The total time was delayed by the overhead of memory
forensics and terminated after 18 seconds in Figure 9. This result
also showed that TEE_Spinlock(), which locked the task_struct, did
not affect the CPU performance.

6.3 Experimental Security Evaluation
We attempted to cause several security issues and experimentally
confirmed that our current RO-IoT prototype can withstand such
attacks. We describe a few examples here. RO-IoT live memory
forensics process successfully detected an unregistered application
in memory and issued a system-reset at the predefined interval.
Note that this runtime integrity check and unknown binary detec-
tion differs from regular anti-virus malware detection (generally
performed at download time or in the storage). In our case, a pack-
age manager (in this case Debian’s apt command) could run and
install applications, which RO-IoT could easily detect (as confirmed
in our tests). Such an application was detected after it was loaded
and executed, and the system-reset occurred because the binary
hash of the application was not whitelisted in TA-Forensics.

The second Linux also could include an unregistered binary.
However, TA-Forensics issued a system-reset when the binary was
executed. Library replacement attack based on LD_PRELOAD was
also detected, and the system-reset was issued duly.

We also tested performance of the security update process. Up-
date of the firmware/bootloader (i.e., fip.bin 7.5MB) on the eMMC
took about 2 seconds for downloading and 1.5 seconds for copying
to eMMC (by dd command). The total time in our case, including

ACSAC 2020, December 7–11, 2020, Austin, USA Kuniyasu Suzaki, Akira Tsukamoto, Andy Green, and Mohammad Mannan

the time until the signature check (see Section 6.2.1) was 10.8 and
14.4 seconds, for Minimal and Debian Linux, respectively.

7 SECURITY AND OTHER CONSIDERATIONS
In this section, we discuss several security and deployment issues
related to RO-IoT, including: mission-critical applications, time span
for live memory forensics and system-reset.

7.1 Self-Modifying Code and Swap
Our current memory forensics can detect the library replacement
attacks that change LD_ LIBRARY_PATH and LD_PRELOAD envi-
ronment variables (see Section 6.3). However, we do not support
self-modifying code (including e.g., dl_open(), plug-ins, and Just-
In-Time compiler), as such code is created dynamically, and we
cannot pre-compute the hash values statically to check for unau-
thorized code. Although self-modifying code offers flexibility, it
also increases the attack surface [21, 39]. Therefore, the use of self-
modifying code should be refrained on special purpose systems,
such as M2M IoT.

When a target memory page is swapped out to the storage, TA-
Forensics cannot verify it. However, our second Linux excludes any
storage driver, and consequently, no swap mechanism is available.

7.2 Time Span between Memory Forensics
The live memory forensics process may suffer from a time-runs-out
problem, i.e., may fail to check all memory pages within a short
period of time (before the next trigger of the watchdog timer). This
can be easily mitigated by extending the watchdog timer period,
albeit with the risk of enabling a larger time-window for malware to
run. From the performance evaluation, our live memory forensics
process can check 20,000 memory pages within 15 seconds. This
seems to be adequate for many IoT applications.

The current time span is fixed to 15 seconds, but it can also be
random. The random time span cannot be guessed by an attacker
and makes it more difficult to abuse. To avoid the time-runs-out
problem, the random time span must have a minimum duration.

7.3 Time Span between System-Reset
Emergency updates and recalls should be applied as soon as pos-
sible, but the automatic system-reset of RO-IoT is performed only
occasionally on each device. Device termination caused by the life
cycle management must wait for the next system-reset. Therefore,
RO-IoT should not allow long time for the occasional system-reset.
For our evaluation, we set the time span for 2 days, but it can be
modified to suit the deployment needs for a target application.

Another concern for system-reset is the following: if many IoT
devices reboot at the same time, this will break the assumption
that the suspension time for rebooting on each device is hidden
by AI-Edge applications. Therefore, each device should cause a
system-reset randomly. The design of RO-IoT has no mechanism
to adjust the system-reset, and each device causes a system-reset
autonomously. Fortunately, the suspension time for rebooting is
less than 60 seconds, and overlaps of suspensions seem to be rare
because each device boots independently, and the boot time is short.

However, the administrators must prevent aligning the system-
reset on many devices. The random time span of memory forensics
discussed in Section 7.2 could be one solution.

7.4 Reboot-time and Mission-critical IoT
The current RO-IoT prototype is assumed to run AI-Edge appli-
cations, which can accommodate the 60-second suspension time
during rebooting. However, such a long reboot time may be a prob-
lem for some mission-critical applications (e.g., mobility system or
life support equipment). However, rebooting (with the possibility of
reinstallation) is essential for recovering from unknown attacks. To
mitigate the reboot time, the use of fault-tolerance technology can
be considered; e.g., see [4, 49] for examples of how fault-tolerance
and rebooting can coexist, in special conditions such as a helicopter
controlled by real time OS.

On the other hand, OS update without complete rebooting is
a long standing research topic [12, 41, 53, 109]. However, our cur-
rent RO-IoT design focuses on preventing long-lived malware (e.g.,
rootkit), and adopts a full system-reset. Existing techniques for OS
updating without a complete reboot should be examined in future
work to make RO-IoT amenable to mission-critical IoT applications.

8 CONCLUSION
We propose the Reboot-Oriented IoT as a security mechanism
for M2M IoT devices, especially for AI-Edge applications. RO-IoT
causes a system-reset proactively in the TEE (namely, the ARM
TrustZone), which enables recovery from a hijacked/compromised
device. The rebooting process is also protected by TEE, which veri-
fies the life cycles of device, software, and service components of the
IoT device, which are linked to PKI-based certificates of CA, server,
and client. When one of the certificates expires, the device becomes
inoperable, allowing strict life-cycle management, and facilitating
product recalls, if necessary. The data stored in the IoT device is
encrypted by a hardware-protected SoC key, and therefore the de-
vice is disposable. While the normal OS is running, RO-IoT repeats
a memory scan to enforce application whitelisting and the integrity
of the allowed applications. Our current prototype is carefully im-
plemented to avoid known TrustZone vulnerabilities, such as the
boomerang attack and replay attack. The implementation on the
ARM Hikey board shows a reasonable storage size (8MB bootloader
protected by TrustZone), performance (14MB Linux boots within
21 seconds from the network or 17 seconds from cache), scalability
(less than 1 cent for full OS update per device), and availability
(over 99.9%).

ACKNOWLEDGMENTS
We are grateful to our shepherd Hussain Almohri for guiding us
in the final version of this paper. We also thank the ACSAC2020
anonymous reviewers for their insightful suggestions and com-
ments.

REFERENCES
[1] Iago Abal, Claus Brabrand, and Andrzej Wasowski. 2014. 42 variability bugs in

the Linux kernel: a qualitative analysis. In International Conference on Automated
Software Engineering (ASE).

Reboot-Oriented IoT: Life Cycle Management in Trusted Execution Environment for Disposable IoT devices ACSAC 2020, December 7–11, 2020, Austin, USA

[2] Fardin Abdi, Chien-Ying Chen, Monowar Hasan, Songran Liu, Sibin Mohan, and
Marco Caccamo. 2018. Guaranteed Physical Security with Restart-Based De-
sign for Cyber-Physical Systems. In International Conference on Cyber-Physical
Systems (ICCPS).

[3] Fardin Abdi, MonowarHasan, SibinMohan, Disha Agarwal, andMarco Caccamo.
2016. ReSecure: A Restart-Based Security Protocol for Tightly Actuated Hard
Real-Time Systems. In IEEE Workshop on Security and Dependability of Critical
Embedded Real-Time Systems (CERTS).

[4] Fardin Abdi, Rohan Tabish, Matthias Rungger, Majid Zamani, and Marco Cac-
camo. 2017. Application and System-Level Software Fault Tolerance through
Full System Restarts. In International Conference on Cyber-Physical Systems
(ICCPS).

[5] Murat Ali, Jozef Hubertus Alfonsus Vlaskamp, Nof Nasser Eddin, Ben Falconer,
and Colin Oram. 2013. Technical Development and Socioeconomic Implications
of the Raspberry Pi as a Learning Tool in Developing Countries. In Computer
Science and Electronic Engineering Conference (CEEC).

[6] Werner Almesberger. 2006. kboot - A boot loader based on Kexec. In Proceedings
of the Linux symposium (OLS).

[7] Hussain MJ Almohri, Layne TWatson, and David Evans. 2017. Misery Digraphs:
delaying intrusion attacks in obscure clouds. IEEE Transactions on Information
Forensics and Security 13, 6 (2017), 1361–1375.

[8] Amazon Web Services. 2019. Amazon EC2 Pricing,
https://aws.amazon.com/ec2/pricing/on-demand/.

[9] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, ZaneMa, JoshuaMason, DamianMenscher,
Seaman Chad, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding
the Mirai Botnet. In USENIX Security symposium.

[10] ARE Project. 2018. http://are1.tech/.
[11] Joe Armstrong. 2003. Making reliable distributed systems in the presence of

software errors. Ph.D. Dissertation. Mikroelektronik och informationsteknik.
[12] Jeff Arnold and M Frans Kaashoek. 2009. Ksplice: Automatic Rebootless Kernel

Updates. In European conference on Computer systems, (EuroSys).
[13] Miguel A Arroyo, M Tarek Ibn Ziad, Hidenori Kobayashi, Junfeng Yang, and

Simha Sethumadhavan. 2019. YOLO: Frequently Resetting Cyber-Physical
Systems for Security. In Autonomous Systems: Sensors, Processing, and Security
for Vehicles and Infrastructure 2019, Vol. 11009.

[14] Tarek M. Attia. 2019. Challenges and Opportunities in the Future Applications of
IoT Technology. https://www.econstor.eu/bitstream/10419/201752/1/ITS2019-
Aswan-paper-61.pdf

[15] AhmedMAzab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision Across Worlds: Real-time
Kernel Protection from the ARM TrustZone Secure World. In Computer and
Communications Security (CCS).

[16] Ahmed M Azab, Kirk Swidowski, Rohan Bhutkar, Jia Ma, Wenbo Shen, Ruowen
Wang, and Peng Ning. 2016. SKEE: A lightweight Secure Kernel-level Execution
Environment for ARM. In Network and Distributed System Security Symposium
(NDSS).

[17] Erick Bauman, Gbadebo Ayoade, and Zhiqiang Lin. 2015. A Survey on
Hypervisor-Based Monitoring: Approaches, Applications, and Evolutions. ACM
Computing Surveys (CSUR) 48, 1 (2015), 1–33.

[18] BBC News. 2019. Children’s smartwatch recalled over data fears,
https://www.bbc.com/news/technology-47130269.

[19] Elisa Bertino and Nayeem Islam. 2017. Botnets and Internet of Things Security.
Computer 50, 2 (2017), 76–79.

[20] Manish Bhatt, Irfan Ahmed, and Zhiqiang Lin. [n.d.]. Using Virtual Machine
Introspection for Operating Systems Security Education. In ACM Technical
Symposium on Computer Science Education.

[21] Dion Blazakis. 2010. Interpreter exploitation: Pointer inference and JIT spraying.
In Black Hat DC.

[22] BoringSSL. 2014. https://boringssl.googlesource.com/boringssl/.
[23] Benjamin Bucklin Brown. 2018. Over-the-Air (OTA) Updates in Embedded

Microcontroller Applications: Design TradeOffs and Lessons Learned. Analog
Dialogue Technical Journal 52 (2018), 52–11.

[24] Seraphin B Calo, Maroun Touna, Dinesh C Verma, and Alan Cullen. 2017. Edge
Computing Architecture for applying AI to IoT. In IEEE International Conference
on Big Data (Big Data).

[25] George Candea and Armando Fox. 2003. Crash-Only Software. In Hot Topics in
Operating Systems (HotOS).

[26] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando
Fox. 2003. Microreboot–A Technique for Cheap Recovery. In USENIX Annual
Technical Conference (USENIX ATC).

[27] Censys. 2016. https://censys.io/.
[28] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. 2020. SoK:

Understanding the Prevailing Security Vulnerabilities in TrustZone-assisted
TEE Systems. In IEEE Symposium on Security and Privacy (IEEE S&P).

[29] Ramesh Chandra, Nickolai Zeldovich, Constantine Sapuntzakis, and Monica S.
Lam. 2005. The Collective: A Cache-based System Management Architecture.

In Networked Systems Design & Implementation (NSDI).
[30] Yue Chen, Yulong Zhang, Zhi Wang, and Tao Wei. 2017. Downgrade Attack on

TrustZone. arXiv.
[31] Suranjan Choudhury, Kartik Bhatnagar, and Wasim Haque. 2002. Public key

infrastructure implementation and design. John Wiley & Sons, Inc.
[32] Kees Cook. 2017. Linux Kernel Self-Protection. ; login: 42, 1 (2017), 14–17.
[33] Kees Cook. 2018. The State of Kernel Self Protection. In Linux Conf AU.
[34] Sam Edwards and Ioannis Profetis. 2016. Hajime: Analysis of a decentralized

internet worm for IoT devices. Rapidity Networks 16 (2016).
[35] Carl Ellison and Bruce Schneier. 2000. Ten Risks of PKI: What you are not being

told about Public Key Infrastructure. Computer security journal 16, 1 (2000),
1–7.

[36] Xuan Feng, Qiang Li, Haining Wang, and Limin Sun. 2018. Acquisitional Rule-
based Engine for Discovering Internet-of-Thing Devices. In USENIX Security
symposium.

[37] Alissa M Fitzgerald. 2018. The Internet of disposable things: Throwaway paper
and plastic sensors will connect everyday items. IEEE Spectrum 55, 12 (2018),
30–35.

[38] Yangchun Fu and Zhiqiang Lin. 2012. Space Traveling across VM: Automatically
Bridging the Semantic Gap in Virtual Machine Introspection via Online Kernel
Data Redirection. In 2012 IEEE symposium on security and privacy (IEEE SP).

[39] Robert Gawlik and Thorsten Holz. 2018. SoK: Make JIT-Spray Great Again. In
USENIX Workshop on Offensive Technologies (WOOT).

[40] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. 2014. Sprobes: En-
forcing Kernel Code Integrity on the TrustZone Architecture. Mobile Security
Technology Workshop (MoST) (2014).

[41] Cristiano Giuffrida, Anton Kuijsten, and Andrew S Tanenbaum. 2013. Safe and
Automatic Live Update for Operating Systems. ACM SIGPLAN Notices 48, 4
(2013), 279–292.

[42] Google Cloud Platform. 2019. Network Pricing,
https://cloud.google.com/compute/network-pricing.

[43] Mariano Graziano, Andrea Lanzi, and Davide Balzarotti. 2013. Hypervisor
Memory Forensics. In Recent Advances in Intrusion Detection (RAID).

[44] Russ Housley and Tim Polk. 2001. Planning for PKI: best practices guide for
deploying public key infrastructure. John Wiley & Sons, Inc.

[45] IEEE Internet Technology Policy Community. 2017. Internet of Things (IoT)
security best practices. In IEEE Internet Technology Policy Community White
Paper.

[46] iPXE. 2010. https://ipxe.org/.
[47] IT Cornell. 2018. Recover From a System Compromise,

https://it.cornell.edu/security-essentials-it-professionals/recover-system-
compromise.

[48] ITU. 2019. Handbook for the development of a policy framework on ICT/e-
waste. https://www.itu.int/en/ITU-D/Climate-Change/Documents/2018/
Handbook-Policy-framework-on-ICT-Ewaste.pdf

[49] Pushpak Jagtap, Fardin Abdi, Matthias Rungger, Majid Zamani, and Marco
Caccamo. 2020. Software Fault Tolerance for Cyber-Physical Systems via Full
System Restart. ACM Transactions on Cyber-Physical Systems 4, 4 (2020), 1–20.

[50] Jin Soo Jang, Sunjune Kong, Minsu Kim, Daegyeong Kim, and Brent Byunghoon
Kang. 2015. SeCReT: Secure Channel between Rich Execution Environment and
Trusted Execution Environment. In Network and Distributed System Security
Symposium (NDSS).

[51] Yujuan Jiang, Bram Adams, and Daniel M German. 2013. Will my patch make
it? And how fast? Case study on the Linux kernel. In Working Conference on
Mining Software Repositories.

[52] Stephen T Jones, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2006.
Antfarm: Tracking Processes in a Virtual Machine Environment. In USENIX
Annual Technical Conference (USENIX ATC).

[53] Sanidhya Kashyap, Changwoo Min, Byoungyoung Lee, Taesoo Kim, and Pavel
Emelyanov. 2016. Instant OS Updates via Userspace Checkpoint-and-Restart. In
USENIX Annual Technical Conference (USENIX-ATC).

[54] Kernel Self-Protection. 2019. https://www.kernel.org/doc/html/v5.4/security/self-
protection.html.

[55] Samuel T King and Peter M Chen. 2006. SubVirt: Implementing malware with
virtual machines. In IEEE Symposium on Security and Privacy (IEEE SP).

[56] Ryozo Kiyohara, Satoshi Mii, Mitsuhiro Matsumoto, Masayuki Numao, and
Satoshi Kurihara. 2009. A new method of fast compression of program code for
OTA updates in consumer devices. IEEE Transactions on Consumer Electronics
55, 2 (2009), 812–817.

[57] Andi Kleen. 2013. gcc link time optimization and the Linux kernel. In Linux
Collab Summit.

[58] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. In arXiv.

[59] Paul Kocher, J. Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
M. Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
IEEE Symposium on Security and Privacy (IEEE SP).

https://www.econstor.eu/bitstream/10419/201752/1/ITS2019-Aswan-paper-61.pdf
https://www.econstor.eu/bitstream/10419/201752/1/ITS2019-Aswan-paper-61.pdf
https://www.itu.int/en/ITU-D/Climate-Change/Documents/2018/Handbook-Policy-framework-on-ICT-Ewaste.pdf
https://www.itu.int/en/ITU-D/Climate-Change/Documents/2018/Handbook-Policy-framework-on-ICT-Ewaste.pdf

ACSAC 2020, December 7–11, 2020, Austin, USA Kuniyasu Suzaki, Akira Tsukamoto, Andy Green, and Mohammad Mannan

[60] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas.
2017. DDoS in the IoT: Mirai and Other Botnets. IEEE Computer 50, 7 (2017),
80–84.

[61] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin
Rothberg, Andreas Ruprecht, Wolfgang Schröder-Preikschat, Daniel Lohmann,
and Rüdiger Kapitza. 2013. Attack SurfaceMetrics andAutomated Compile-Time
OS Kernel Tailoring. In Network and Distributed System Security Symposium
(NDSS).

[62] Rongfeng Li, Liu Wang, Deying Kong, and Lan Yin. 2018. Recent progress on
biodegradable materials and transient electronics. Bioactive materials 3, 3 (2018),
322–333.

[63] LibWebSocket. 2013. https://libwebsockets.org/.
[64] Linaro. 2020. OP-TEE Documentation. https://readthedocs.org/projects/optee/

downloads/pdf/latest/
[65] Linux Tinification. 2014. https://tiny.wiki.kernel.org.
[66] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al.
2018. Meltdown: Reading kernel memory from user space. In USENIX Security
Symposium.

[67] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. In arXiv.

[68] Aravind Machiry, Eric Gustafson, Chad Spensky, Chris Salls, Nick Stephens,
Ruoyu Wang, Antonio Bianchi, Yung Ryn Choe, Christopher Kruegel, and
Giovanni Vigna. 2017. Boomerang: Exploiting the semantic gap in trusted
execution environments. In Network and Distributed System Security Symposium
(NDSS).

[69] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. 2018. Fog
computing: A taxonomy, survey and future directions. In Internet of everything.
Springer, 103–130.

[70] Artur Marzano, David Alexander, Osvaldo Fonseca, Elverton Fazzion, Cristine
Hoepers, Klaus Steding-Jessen, Marcelo HPC Chaves, Ítalo Cunha, Dorgival
Guedes, and Wagner Meira. 2018. The Evolution of Bashlite and Mirai IoT
Botnets. In IEEE Symposium on Computers and Communications (ISCC).

[71] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection
for Trusted Execution. In USENIX Security Symposium.

[72] ME Cleaner Project. 2017. https://github.com/corna/me_cleaner/.
[73] Yasir Mehmood, Farhan Ahmad, Ibrar Yaqoob, Asma Adnane, Muhammad

Imran, and Sghaier Guizani. 2017. Internet-of-Things-Based Smart Cities: Recent
Advances and Challenges. IEEE Communications Magazine 55, 9 (2017), 16–24.

[74] Mitre Challege IoT. 2017. https://www.mitre.org/research/mitre-challenge/mitre-
challenge-iot.

[75] Vivek Mohan. 2018. Disposable IoT ready to open new opportuni-
ties, https://www.networkworld.com/article/3262970/disposable-iot-ready-to-
open-new-opportunities.html. NETWORK WORLD (2018).

[76] Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho, and Sarah
Martin. 2016. TrustZone Explained: Architectural Features and Use Cases. In
International Conference on Collaboration and Internet Computing (CIC).

[77] Dennis K Nilsson and Ulf E Larson. 2008. Secure Firmware Updates over the
Air in Intelligent Vehicles. In IEEE International Conference on Communications
Workshops (ICC).

[78] Zhenyu Ning and Fengwei Zhang. 2017. Ninja: Towards Transparent Tracing
and Debugging on ARM. In USENIX Security symposium.

[79] OP-TEE. 2016. https://www.op-tee.org/.
[80] Michael Opdenacker. 2017. Embedded Linux size reduction techniques. In

Embedded Linux Conference (ELC).
[81] Himanshu Pareek, Sandeep Romana, and PRL Eswari. 2012. Application

whitelisting: approaches and challenges. International Journal of Computer
Science, Engineering and Information Technology (IJCSEIT) 2, 5 (2012), 13–18.

[82] Heejin Park, Shuang Zhai, Long Lu, and Felix Xiaozhu Lin. 2019. Streambox-TZ:
secure stream analytics at the edge with trustzone. In USENIX Annual Technical
Conference (USENIX ATC).

[83] Charith Perera, Yongrui Qin, Julio C Estrella, Stephan Reiff-Marganiec, and
Athanasios V Vasilakos. 2017. Fog Computing for Sustainable Smart Cities: A
Survey. ACM Computing Surveys (CSUR) 50, 3 (2017), 1–43.

[84] Andy Pfiffer. 2003. Reducing System Reboot TimeWith kexec. OSDLWhitepaper
(2003).

[85] Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: A Compre-
hensive Survey. ACM Computing Surveys (CSUR) 51, 6 (2019), 1–36.

[86] Alessandro Reina, Aristide Fattori, Fabio Pagani, Lorenzo Cavallaro, and Danilo
Bruschi. 2012. When Hardware Meets Software: A Bulletproof Solution to Foren-
sic Memory Acquisition. In Annual Computer Security Applications Conference
(ACSAC).

[87] Ju Ren, Hui Guo, Chugui Xu, and Yaoxue Zhang. 2017. Serving at the Edge: A
Scalable IoT Architecture Based on Transparent Computing. IEEE Network 31, 5
(2017), 96–105.

[88] Reuters. 2019. China’s Xiongmai to recall up to 10,000 webcams after
hack, https://www.reuters.com/article/us-cyber-attacks-china/chinas-xiongmai-to-
recall-up-to-10000-webcams-after-hack-idUSKCN12P1TT.

[89] Joanna Rutkowska. 2006. Subverting VistaTM Kernel For Fun And Profit. Black
Hat USA.

[90] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. 2015.
Trusted Execution Environment: What It is, and What It is Not. In 2015 IEEE
Trustcom/BigDataSE/ISPA.

[91] Adam Sedgewick, Murugiah Souppaya, and Karen Scarfone. 2015. Guide to
application whitelisting. NIST Special Publication 800 (2015).

[92] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
computing: Vision and challenges. IEEE internet of things journal 3, 5 (2016),
637–646.

[93] Shodan. 2013. https://www.shodan.io/.
[94] Bill Stearns. 2020. Making a Solar Powered Raspberry Pi. https://www.

activecountermeasures.com/making-a-solar-powered-raspberry-pi/
[95] Kehua Su, Jie Li, and Hongbo Fu. 2011. Smart City and the Applications. In 2011

international conference on electronics, communications and control (ICECC).
[96] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Sushil Jajodia. 2014. TrustDump:

Reliable Memory Acquisition on Smartphones. In European Symposium on
Research in Computer Security (ESORICS).

[97] TCG. 2019. TPM 2.0 Authenticated Countdown Timer (ACT) Com-
mand. https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM_
ACTCommand_v1r3_pubrev.pdf

[98] Sonam Tenzin, Satetha Siyang, Theerapat Pobkrut, and Teerakiat Kerdcharoen.
2017. Low Cost Weather Station for Climate-Smart Agriculture. In 2017 9th
international conference on knowledge and smart technology (KST).

[99] Yuan Tian, Julia Lawall, and David Lo. 2012. Identifying Linux Bug Fixing
Patches. In International Conference on Software Engineering (ICSE).

[100] UC Berkeley Information Security and Policy. 2018. Reinstalling Your Com-
promised Computer, https://security.berkeley.edu/resources/best-practices-how-
articles/compromised-systems/reinstalling-your-compromised-computer.

[101] UCL Information Security Group. 2013. Recovering from an intrusion,
https://www.ucl.ac.uk/informationsecurity/itsecurity/knowledgebase/ securitybase-
lines/recovering.

[102] JiangWang, Angelos Stavrou, and Anup Ghosh. 2010. HyperCheck: AHardware-
Assisted Integrity Monitor. In Recent Advances in Intrusion Detection (RAID).

[103] Xueqiang Wang, Yuqiong Sun, Susanta Nanda, and XiaoFeng Wang. 2019. Look-
ing from the Mirror: Evaluating IoT Device Security through Mobile Companion
Apps. In USENIX Security Symposium.

[104] Sjaak Wolfert, Lan Ge, Cor Verdouw, and Marc-Jeroen Bogaardt. 2017. Big Data
in Smart Farming–A Review. Agricultural Systems 153 (2017), 69–80.

[105] Guanping Xiao, Zheng Zheng, Bo Jiang, and Yulei Sui. 2019. An Empirical Study
of Regression Bug Chains in Linux. IEEE Transactions on Reliability 69, 2 (2019),
558–570.

[106] Meng Xu,Manuel Huber, Zhichuang Sun, Paul England,Marcus Peinado, Sangho
Lee, Andrey Marochko, Dennis Mattoon, Rob Spiger, and Stefan Thom. 2019.
Dominance as a New Trusted Computing Primitive for the Internet of Things.
In IEEE Symposium on Security and Privacy (IEEE SP).

[107] Fengwei Zhang, Jiang Wang, Kun Sun, and Angelos Stavrou. 2013. HyperCheck:
A Hardware-Assisted Integrity Monitor. IEEE Transactions on Dependable and
Secure Computing 11, 4 (2013), 332–344.

[108] Zhi-Kai Zhang, Michael Cheng Yi Cho, Chia-Wei Wang, Chia-Wei Hsu, Chong-
Kuan Chen, and Shiuhpyng Shieh. 2014. IoT Security: Ongoing Challenges
and Research Opportunities. In International Conference on Service-Oriented
Computing and Applications (SOCA).

[109] Lei Zhou, Fengwei Zhang, Jinghui Liao, Zhengyu Ning, Jidong Xiao, Kevin
Leach, Westley Weimer, and Guojun Wang. 2020. KShot: Live Kernel Patching
with SMM and SGX. In IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN).

[110] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. 2019.
Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge
Computing. Proc. IEEE 107, 8 (2019), 1738–1762.

https://readthedocs.org/projects/optee/downloads/pdf/latest/
https://readthedocs.org/projects/optee/downloads/pdf/latest/
https://www.activecountermeasures.com/making-a-solar-powered-raspberry-pi/
https://www.activecountermeasures.com/making-a-solar-powered-raspberry-pi/
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM_ACTCommand_v1r3_pubrev.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM_ACTCommand_v1r3_pubrev.pdf

	Abstract
	1 Introduction
	2 Attack Types and Threat Model
	2.1 Attack Types
	2.2 Threat Model and Security Assumptions

	3 Related Work and Background
	4 Design
	4.1 Two types of Linux on RO-IoT
	4.2 Securing Network Boot
	4.3 Live Memory Forensics
	4.4 Life Cycle Management

	5 Implementation
	5.1 Secure Network Bootloader
	5.2 Live Memory Forensics
	5.3 Life Cycle Management

	6 Evaluation
	6.1 Size of RO-IoT
	6.2 Performance
	6.3 Experimental Security Evaluation

	7 Security and Other Considerations
	7.1 Self-Modifying Code and Swap
	7.2 Time Span between Memory Forensics
	7.3 Time Span between System-Reset
	7.4 Reboot-time and Mission-critical IoT

	8 Conclusion
	Acknowledgments
	References

