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Abstract

Malicious websites often mimic top brands to host malware and launch social engineering attacks, e.g., to collect user
credentials. Some such sites often attempt to hide malicious content from search engine crawlers (e.g., Googlebot),
but show harmful content to users/client browsers—a technique known as cloaking. Past studies uncovered various
aspects of cloaking, using selected categories of websites (e.g., mimicking specific types of malicious sites). We
focus on understanding cloaking behaviors using a broader set of websites. As a way forward, we built a crawler
to automatically browse and analyze content from 100,000 squatting (mostly) malicious domains—domains that are
generated through typo-squatting and combo-squatting of 2883 popular websites. We use a headless Chrome browser
and a search-engine crawler with user-agent modifications to identify cloaking behaviors—a challenging task due to
dynamic content, served at random; e.g., consecutive requests serve very different malicious or benign content. Most
malicious sites (e.g., phishing and malware) go undetected by current blacklists; only a fraction of cloaked sites (127,
3.3%) are flagged as malicious by VirusTotal. In contrast, we identify 80% cloaked sites as malicious, via a semi-
automated process implemented by extending the content categorization functionality of Symantec’s SiteReview tool.
Even after 3 months of observation, nearly a half (1024, 45.4%) of the cloaked sites remained active, and only a few
(31, 3%) of them are flagged by VirusTotal. This clearly indicate that existing blacklists are ineffective against cloaked
malicious sites. Our techniques can serve as a starting point for more effective and scalable early detection of cloaked
malicious sites.

1. Introduction

Websites are often used to launch social engineering
attacks. For example, phishing websites exploit human
weaknesses to steal sensitive user information; similarly,
malware websites employ techniques to deceive users to
download malware (e.g., ransomware) infecting user ma-
chines; cyber-criminals take advantage of ads hosted on
low-tier networks using social engineering techniques [1].
Sophisticated phishing and malware websites hosted on
squatting domains are deployed to deceive users by
impersonating websites of high profile companies and
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organizations (the so-called elite phishing domains [2,
3]). The domains hosting these phishing sites are sub-
jected to typo-squatting (e.g., foxnewsw.com) and combo-
squatting (e.g., support-apple.com-identify.us). These
phishing sites impersonate trusted brand names using fake
web content and typo-squatted domain names.

Additionally, phishing and malicious sites employ eva-
sion techniques to avoid exposing malicious content to
search engine crawler as opposed to human users [4, 5, 6].
The practice of displaying different content to a crawler as
opposed to a browser/user is known as cloaking. Cloak-
ing helps attackers to reduce the possibility of getting
their services blacklisted. To discourage such practices,
search engine providers also offer guidelines for website
owners/maintainers—see e.g., Google [7].

There have been several studies on malware and phish-



ing sites, albeit not so much on squatting/elite phishing
and malicious domains engaged in cloaking. Past studies
on cloaked malicious sites relied on specific types of web-
sites and attacks (e.g., payment sites and phishing). Tian
et al. [2] found 1175 (0.18%) phishing sites that are likely
impersonating popular brands from 657,663 squatting do-
mains (extracted from a collection of 224 million DNS
records listed in ActiveDNS project [8]). They focused
mainly on phishing web pages identified using specific
keywords from logos, login forms, and other input fields
(mostly credential phishing). Invernizzi et al. [6] studied
web cloaking resulting from blackhat search engine op-
timizations and malicious advertising, using websites re-
lating to luxury storefronts, health, and software. Oest et
al. [9, 10, 11] used crafted PayPal-branded websites, and
impersonated websites targeting a major financial service
provider to study phishing. As such, the data sets used in
these past studies do not cover a wide variety of malicious
URLs. Our methodology also includes capturing cloaking
in dynamic elements (e.g., iframes) of websites and tak-
ing semantics of web content into consideration, which
were not adequately addressed in the past; e.g., Tian et
al. [2] did not consider dynamically/JavaScript-generated
page content due to high overhead.

We focus on understanding cloaking behaviors of a
broad set of malicious sites hosted on squatting domains.
These sites engage in phishing, malware distribution,
and other social engineering attacks. We use DNST-
wist [12] to generate already registered squatting domains
that are potentially malicious. DNSTwist uses fuzzy hash-
ing to identify malicious squatting domains by compar-
ing its web page content with the corresponding seed
domain. The squatting domains extracted from DNST-
wist host content from a wide variety of possible mali-
cious websites. To verify the ground truth of malicious
squatting sites generated from DNSTwist, we adopt a
semi-automated process leveraging the Symantec SiteRe-
view [13] tool, which significantly outperformed both
commercial and academic tools (e.g., VirusTotal [14],
Off-the-Hook [15]) in our manual tests; cf. Vallina et
al. [16].

We compare page content between a search engine
crawler and browser client to detect cloaked malicious
websites. For this purpose, we develop a crawler to col-
lect page source, links, content, screenshots, headers from
websites hosted on squatting domains. To distinguish be-

tween dynamic vs. cloaked pages, we employ a set of
heuristics; see Section 3.3.5. To mimic a regular user
browser (Chrome) and a search engine crawler (Google),
we simply rely on custom browser user-agents and re-
ferrer headers. For the remainder of this paper, we use
GooglebotUA, ChromeUA, ChromeMobileUA for search
engine crawler, browser (desktop) and browser (mobile)
user-agents interchangeably. Attackers may also leverage
various evasion techniques to obfuscate the page-layout
and HTML source, e.g., keywords in response headers to
trick a search engine crawler [2], manipulate visual sim-
ilarity between a phishing and a corresponding benign
site [5]. Hence, we also examine the extent of such ob-
fuscation in cloaked malicious websites.

Out of the 100,000 squatting domains (i.e., domain
list category A in Table 1), VirusTotal flagged only 2256
(2.3%) domains as malicious—in contrast to the ground
truth (74%), as verified via our semi-automated process.
From the 100,000 squatting domains, we found 3880
(3.88%) as cloaked; 127 (i.e., 3.3% of 3880) of these
cloaked domains are flagged by VirusTotal—in contrast
to our established ground truth (80%).

On dynamic sites, we observed different types of
cloaked content (e.g., technical support scams, lottery
scams, malicious browser extensions, malicious links)
served to users from the same domain at different times.1

The number of cloaked sites identified from dynamic sites
(861, 0.9%) is also significant, although it is certainly a
lower bound as the dynamicity exhibited by these sites is
inconsistent between consecutive requests.

Our results may be impacted by several factors: sites
disallowing requests from automated crawlers, limitation
of our heuristics, dynamicity of cloaking, and the use of
SiteReview for establishing our ground-truth. Still, our
findings uncover several cloaking behaviors of malicious

1Note that serving dynamic content to GooglebotUA by a website
may not necessarily be treated as cloaking. Response from a dynamic
site to GooglebotUA may serve a non-dynamic version of the content
that is tailored for that site (e.g., static HTML version), known as dy-
namic rendering; see: https://developers.google.com/search/
docs/guides/dynamic-rendering. Although with dynamic render-
ing, a static view of a dynamic website is shown to GooglebotUA, the
response content rendered to ChromeUA is dynamic. However, we
consider serving significantly different content between ChromeUA and
GooglebotUA as cloaking (e.g., page about cats to GooglebotUA and a
page about dogs to ChromeUA).
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sites and our methodology can also help detect these sites
at scale.
Contributions.

1. We measure cloaking in malicious websites between
a client browser (ChromeUA) and a search engine
crawler (GooglebotUA) using a broader set of mali-
cious domains with a more comprehensive method-
ology compared to existing work. Our technique im-
proves the detection of cloaked malicious sites com-
pared to past studies (e.g., cloaking in dynamically
generated web content), and detect various scams
(e.g., deceptive prize notices and lottery scams) and
malicious content (e.g., malicious browser exten-
sions) rendered in cloaked web pages.

2. Our methodology can identify 80% cloaked mali-
cious domains from our ground truth; the detection
rate also remained consistent between repeated mea-
surements. For comparison, see e.g., Oest et al. [11]
(detected 23% cloaked phishing sites in their full
tests), Invernizzi et al. [6] (detected 4.9% and 11.7%
cloaked URLs with high-risk keywords in Google
advertisements and search results respectively), and
VirusTotal (3.3% with our own dataset).

3. We highlight the role of domain generation engines
such as DNSTwist [12], which can quickly provide
a list of highly-likely malicious domains to serve
as ground-truth, especially if used along with our
heuristics.

2. Related Work

In this section, we compare previous work on detecting
malicious sites, analyzing resiliency of blacklists, and the
use of various heuristics to detect malicious sites. We also
compare our methodology and results with past work.

Vadreu et al. [1] studied social engineering attacks de-
livered via malicious advertisements, and found 11,341
(16.1%) out of 70,541 publisher sites hosting malicious
ads. Except for lottery/gift (18%) and fake software
(15.4%), Google Safe Browsing (GSB) [17] detected only
under 1.4% of other types of malicious ads (e.g., tech-
nical support). Tian et al. [2] studied elite phishing do-
mains targeting desktop and mobile users, and found sites
hosted on these domains were mostly used for creden-
tial phishing (e.g., impersonating of payment, payroll and

freight systems). They found 1175 out of 657,663 squat-
ting domains were related to phishing; as the source of
their domain list, they used 224 million DNS records in
ActiveDNS project [8]). However, only 100 (8.5% of
1175) domains were flagged as malicious by PhishTank,
eCrimeX and VirusTotal (with 70+ blacklists). They
also compared evasion techniques between a desktop
and a mobile client (Chrome). We study search-engine-
based cloaking (ChromeUA vs. GooglebotUA), focusing
on various types of malicious websites (beyond credential
phishing).

Invernizzi et al. [6] studied variations in cloaking with
search and advertisement URLs. They used several cloak-
ing detection techniques based on web page features, e.g.,
content, screenshot, element, request tree and topic sim-
ilarities; we adopt some of these techniques. In addi-
tion to static content analysis, we also analyze dynamic
content. We compare screenshots of web pages between
ChromeUA and GooglebotUA using OCR to find discrep-
ancies in visual appearance (i.e., cloaking). Some of these
discrepancies are not detected by simply comparing the
content, but by supplementing other methods (e.g., se-
mantics of a web page). The differences in the meaning of
a page’s content between the crawler and the browser (i.e.,
semantic cloaking) are used to deceive a search engine
ranking algorithm [18], where search engine operators are
more likely to be duped with the cloaked content. We use
topic similarity evaluated using the LDA algorithm [19]
to identify the semantic differences of web pages between
ChromeUA and GooglebotUA.

Oest et al. [11] presented a scalable framework called
PhishFarm for testing the resiliency of anti-phishing and
browser blacklists, using 2,380 phishing sites deployed by
the authors. Between mid-2017 and mid-2018, they found
that the blacklisting functionality in mobile browsers was
broken and cloaked phishing sites were less likely to be
blacklisted compared to non-cloaked sites. The authors
also mentioned blacklisting malicious websites remained
low for mobile browsers compared to desktop browsers.
We also observed a similar trend in our tests.

Rao et al. [20] used characteristics of a URL (i.e., host-
name, full URL) to determine legitimate websites. Mar-
chal et al. [15] used parts of a URL that are manipulated
by a phisher (e.g., subdomains, web application path) to
detect phishing sites. Panum et al. [5] reviewed highly
influential past work to assess strategies with adversar-
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ial robustness to detect phishing. These strategies include
distinguishing between phishing and benign websites us-
ing visual similarity and leveraging URL lexical features.
In our study, we use DNSTwist to generate potential ma-
licious typo-squatting domains using lexical information
of seed domains.

In summary, past measurement studies [2, 21, 6, 1] are
mostly focused on specific categories of malicious web-
sites (e.g., phishing, malware, social engineering). Each
of these categories of websites may participate in cloak-
ing. Several studies have used self-crafted URLs hosting
content of particular malicious categories (e.g., phishing)
or brands (e.g., PayPal) [9, 11, 2]. We use a broad set of
registered squatting domains—combo-squatting (HTTPS
only) and typo-squatting domains, hosting different types
of potentially malicious websites to study cloaking behav-
iors.

3. Methodology

In this section, we explain our methodology to study
cloaking behaviors in phishing and malware websites.
We generate domains that may host potential phish-
ing/malicious sites and pass them as input to our crawler.
Various features (e.g., headers, links, page source/content,
screenshots) are saved, and processed by an analyzer to
identify cloaked sites and the results are stored into a
database for further evaluation; see Fig. 1 for an overview
of our experimental setup.

3.1. Generating squatting domains

Attackers are more inclined to impersonate popular
websites, both in content and domain name, by hosting
malicious sites on squatting domains [22, 23, 2]. These
domains can be categorized as typo-squatting or combo-
squatting. The domain lists used in our work is listed in
Table 1. We generate 100,000 squatting domains (see list
category A) using the following methods. The squatting
domains sampled from these methods are from possible
malicious domains.

3.1.1. Typo-squatting domains from DNSTwist
DNSTwist [12] takes a specific domain name as a

seed, and generates a variety of potential registered phish-
ing/malware domains. The domains generated in two con-

secutive runs of DNSTwist are not the same. This is be-
cause DNSTwist passes the seed domain provided to a
function (DomainFuzz), which randomly generates many
permutations of domain names similar to the seed do-
main, but with typographical errors. To determine do-
mains hosting malicious content, DNSTwist use fuzzy
hashes to identify sites serving similar content as their
original domains (using the ssdeep option).

We provide top 1983 Tranco websites [24] as seeds to
DNSTwist. From Mar. 22, 2019 to Mar. 27, 2019, we gen-
erate 277,075 already registered, unique typo-squatting
domains; we then randomly choose 92,200 of these do-
mains for our experiments (to save time). We choose the
timings of the extraction of domains around the same time
as the actual crawling of the sites, to ensure most of them
are still responsive during crawling as typo-squatting do-
mains can be recycled quickly [2].

The typo-squatting domains generated from DNSTwist
are of the following types, explained using google.com

as the seed domain. (1) Addition: A character is added
at the end of the public suffix+12 segment of the do-
main (googlea.com). (2) Bitsquatting: Flips one bit
of the domain (foogle.com). (3) Homoglyph: visu-
ally similar domains, although the characters are not the
same as the seed domain (g0og1e.com). (4) Hyphen-
ation: A hyphen is added in between the characters of
the seed domain (g-oogle.com). (5) Insertion: A char-
acter is inserted in between characters of the seed domain
(goo9gle.com). (6) Omission: A character in the seed
domain is removed (goole.com). (7) Repetition: A char-
acter in the seed domain is repeated consecutively, two or
more times (ggoogle.com). (8) Replacement: A charac-
ter in the seed domain is replaced with another character
(toogle.com). (9) Sub-domain: A period is inserted in
between any two characters of the seed domain to trans-
form it to a sub-domain (g.oogle.com). (10) Transpo-
sition: Position of two characters in the seed domain is
swapped (gogole.com). (11) Vowel-swap: A vowel char-
acter is replaced with another vowel (goagle.com).

2A public suffix is defined as “one under which Internet users
can (or historically could) directly register names” see: https://

publicsuffix.org.
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List
label

Number of
domains

Experiment type

A 100,000 Cloaking is measured between ChromeUA and GooglebotUA
B 25,000 Cloaking is measured between ChromeUA and GooglebotUA for desktop environment,

and between ChromeMobileUA and GooglebotUA for mobile environment. A random
subset of domains from list A is used.

C 10,000 Comparison of HTTP vs. HTTPS cloaked sites (5000 each) hosted on combo-squatting
domains. We use the same user-agents as in list A to identify cloaked domains.

D 5000 Comparison of user-agent vs. referrer cloaking of sites hosted on squatting domains. For
referrer cloaking, we use ChromeUA with referrer header: http://www.google.com.

Table 1: Squatting domain lists used in our experiments

Figure 1: Our system setup.
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3.1.2. Combo-squatting domains

Combo-squatting domains are concatenations of the
target domain with other characters or words. These do-
mains generally do not have spelling deviations from the
target, and require active involvement from the attacker
(e.g., social engineering); cf. typo-squatting is passive and
relies on a user’s accidental typing of a domain name [21].
Combo-squatting domains are also used in phishing at-
tacks [2]. Therefore, we generate 7800 combo-squatting
domains as follows.

We collect top-50 sites of 16 categories (e.g., adult,
business, computers, health, news, shopping, sports), and
top-50 Alexa sites specific to China—a total of 850. Dur-
ing our preliminary manual verification, we observe a lot
of phishing and malware sites are hosted in China, and
thus we choose Alexa top-50 sites from China.

Then, we identify domain names that partially match
any of these 850 domains from certificates that are used
to host HTTPS phishing/malware sites in order to deceive
legitimate users [25]. We only consider certificates issued
after Jan. 1, 2019 to minimize the collection of already
recycled domains. We collect combo-squatting domains
that serve content over HTTPS between Apr. 4–9, 2019
using the following sources. (1) Censys: This is a search
engine [26] that aggregates information of networked de-
vices, websites and certificates deployed. We check the
subject common name field of certificates against our
850 target domains. (2) CertStream: The certificate data
in Certificate Transparency (CT) logs is polled over a
websocket (wss://certstream.calidog.io) in Cert-
Stream [27]. We then check the common name field of
certificates against our target domains.

To derive combo-squatting domains served via HTTP,
we extract domain names from the DNS A records from
Project Sonar [28]. After extracting the domains running
on port 80 that return a 200 response code (i.e., non-
recycled domains), we partially match them with the 850
target domains, to filter the combo-squatting domains that
are derivations of the top brands.

As many combo-squatting domains are benign (e.g.,
mail.google.com), we use SquatPhish [29] to filter only
those domains exploited for phishing that are derived
from above sources (i.e., Censys, CertStream, Project
Sonar). SquatPhish leverages a machine learning model
to identify phishing pages based on the HTML source

and text extracted from images included in a web page.
We use SquatPhish to filter 7800 phishing domains from
205,263 combo-squatting domains collected from the
above mentioned sources. We do not consider domains
that return a 4xx or 5xx response code, as those domains
may already have been recycled.

3.2. Our Crawler

To identify cloaking activity, we extract features from
100,000 web pages hosted on potential malicious squat-
ting domains, using GooglebotUA and ChromeUA (and
a subset of the same websites by ChromeMobileUA). We
use GooglebotUA, ChromeUA and ChromeMobileUA for
our experiments by manipulating the “user-agent” field of
the request header; see Appendix A for a discussion on
cloaking types.3

We use Puppeteer [30] to implement our crawler. Pup-
peteer provides high level APIs to control the Chrome
browser and can be customized to run as headless to load
dynamic content before saving the web pages. Compared
to other alternatives (including Selenium [31]), Puppeteer
offers the flexibility of handling failed requests gracefully
and is less error prone [2]. Tian et al. [2] also used a
crawler based on Puppeteer. However, unlike them, our
crawler renders content that is dynamically generated be-
fore saving (Tian et al. [2] chose not to consider con-
tent dynamically generated by JavaScript due to the high
overhead). We believe that dynamic source files (e.g.,
JavaScript, Flash) may render differently based on the
user-agent of a request (e.g., the list of links shown in
an iframe are benign for GooglebotUA, but malicious for
ChromeUA). To identify web pages with dynamic con-
tent, we request the home page of each website twice
from GooglebotUA and ChromeUA. The GooglebotUA
and ChromeUA are represented as C and B, and the itera-
tions of requests from each client is 1 and 2, the sequence
of requests made for a particular website is labeled as C1,
B1, C2, B2.

3The user-agent string selected for GooglebotUA: ‘‘Mozilla/5.0 (
compatible; Googlebot/2.1; +http://www.google.com/bot.html)’’,
ChromeUA: ‘‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) Apple
WebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/5
37.36’’, and ChromeMobileUA: ‘‘Mozilla/5.0 (Linux; Android 8.0.0; T
A-1053 Build/OPR1.170623.026) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/67.0.3368.0 Mobile Safari/537.36’’.
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Web servers may have heuristics to determine auto-
mated crawlers and reject their service. We incorporated
few mitigation steps in our crawler to minimize these ef-
fects; e.g., we manipulate webdriver, plugins and lan-
guage properties of the navigator object of the browser
accordingly [32].

We crawl the sites hosted on squatting domains be-
tween April 10 to April. 13, 2019, and run the crawler on
10 Amazon EC2 instances (c5.2xlarge) setup with Ubuntu
16.04 (8 vCPU, 16GB RAM). For our experiments, we
do not consider sites where the differences in content be-
tween GooglebotUA and ChromeUA are minor or be-
nign. Some of these sites redirect to non-malicious top-
1M Tranco sites [24] from ChromeUA. There are also
sites that throw connection errors; see Appendix B for
an overview of issues encountered during crawling.

During crawling of each site, we gather features to
identify potential cloaking activity of possible malicious
domains. These features include HTTP headers, page
source/content (both static and dynamic), links including
those generated from dynamic content (includes those in
DOM objects within iframe elements) and screenshots.

3.3. Analyzer

The analyzer process applies heuristics to features of
websites collected during crawling, in order to identify
cloaked websites. In this section, we explain the heuris-
tics and rules applied while processing the saved fea-
tures. These heuristics are only applied if the HTML page
source and screenshots are successfully saved for all C1,
B1, C2, B2 visits of a website. The results evaluated by
the analyzer are saved into a SQLite database.

3.3.1. Skipping domains with benign content
Domain name registrars (e.g., GoDaddy, Sedo) adver-

tise domains available for sale on their landing pages. The
content of such landing pages sometimes differ slightly
between GooglebotUA and ChromeUA. Since such dif-
ferences should not be attributed to cloaking, we skip
those domains from processing. For non-English sites,
we use Google translator to detect the language of those
sites and translate the content to English prior to process-
ing. For screenshots, we use the Tesserect-OCR [33] li-
brary to extract the textual content. If the extracted text
from a screenshot is non-English, Tesserect-OCR library

takes a significant amount of time to process (sometimes
over 30 seconds). Therefore, we call the Tesserect-OCR
library for only those sites identified as cloaked with con-
tent dissmilarites method using our heuristics described
in Section 3.3.5. Some domains are redirected to top-1M
Tranco sites [24]. Legitimate companies may buy squat-
ting domains to protect users (a request to the possible
squatting domain is redirected to the corresponding legit-
imate site [22])—see Section 3.3.2. Therefore, we do not
consider these domains for our experiments.

3.3.2. Eliminating squatting domains owned by popular
sites

Entities owning popular domains (e.g., top Tranco
sites) buy squatting domains to safeguard its clients who
may accidentally browse to those sites by mistyping their
URLs. These squatting domains may not always redirect
a user to the original popular site. To eliminate such do-
mains from our measurements, we use the organization
owning both the squatting and corresponding popular do-
mains using the WHOIS records [34]. If both these do-
mains are registered by the same organization, we disre-
gard them from our analysis. Out of all cloaked domains,
only one squatting domain (expesdia.com) is owned
by the same organization (Expedia, Inc: expedia.com).
Therefore, we eliminate the particular domain from our
analysis. However, the following types of squatting do-
mains are not eliminated from the analysis, as we can-
not determine if those domains are also owned by the
corresponding popular domain’s organization: 8 domains
with WHOIS registrant name/organization information
recorded as “REDACTED FOR PRIVACY”, and 20
squatting domains registered by Domains By Proxy [35]
where the registrar itself is listed as the WHOIS adminis-
trative contact.

3.3.3. Domains with exceptions
We observe that some sites do not allow automated

crawlers to access them. This observation holds for both
GooglebotUA and ChromeUA. Unfortunately, our au-
tomation cannot determine potential cloaking activities in
some sites that are prevented from accessing with Google-
botUA. Some sites display failures such as “Too many re-
quests“, “Page cannot be displayed. Please contact your
service provider for more details” and “404 - File or di-
rectory not found” when requested from our automated
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crawler. We experience such failures despite the use of
known techniques to avoid crawler issues with accessing
websites [32]. However, upon manual inspection, we no-
tice that some of these sites engage in cloaking.

3.3.4. Links flagged by blacklists
Target URLs hosting phishing or malicious content

that are flagged by blacklists are of different forms.
Sites redirecting to websites flagged by blacklists. We
record URLs redirected from squatting domains to web-
sites that are also flagged by blacklists. We use VirusTotal
to determine how many of the redirected sites are flagged
as phishing or malicious.
Identify links in iframes flagged by blacklists. We tra-
verse the Document Object Model (DOM) objects within
iframes elements (including child iframes) of sites hosted
on squatting domains (level 1 URLs) to find dynamically
generated second level links of sites that are flagged by
blacklists. A listing of such second level links appearing
on an iframe of a site is shown in Figure 2b. However,
most of these links show a set of related third level links
when clicked on any one of them. These third level links
will lead to actual sites described in link descriptions. We
run 5000 link URLs from each of these 3 levels through
VirusTotal on a daily basis to identify if any of those are
flagged as phishing or malware. The first level URLs for
this exercise is selected randomly from list category A in
Table 1. This help us find the rate at which link URLs
hosting phishing or malware content is detected by avail-
able blacklists.

3.3.5. Evaluate dissimilarities of website features
We evaluate the following dissimilarities based on the

website features collected during crawling. These heuris-
tics facilitate in finding websites engaged in cloaking.
Header dissimilarities. Although title, keyword and de-
scription are not part of the standard HTTP response
header, adversaries appear to include these fields in the
HTTP response headers [18]. Therefore, we compare
these fields between ChromeUA and GooglebotUA to find
instances of cloaking.
Link dissimilarities. We find the links in rendered
web pages from GooglebotUA that are missing from
ChromeUA, and vice-versa. In addition, we also identify
which of those links are malicious using VirusTotal.

Content dissimilarities. We extract text surrounding h, p,
a and title tags of the HTML page source following ren-
dering of dynamic source code (e.g., JavaScript). We also
consider HTML forms along with type, name, submit and
placeholder attributes. Stop words (e.g., the, a, an) are re-
moved from the extracted content.4. Then we evaluate the
SimHash [36] of the extracted page source from Google-
botUA and ChromeUA, and compute the hamming dis-
tance between them.5 If the hamming distance exceeds a
preset threshold (t1=20), we assume that the page is likely
to be cloaked. We set the threshold after manual verifi-
cation, where we find t1=20 gives optimal results after
removing benign differences (e.g., pages having random
session identifiers or timestamps). This threshold is also
close to Tian et al. [2] (distance between 24 and 36). We
set a second threshold t2 for pages with dynamic content.
The same value (20) appears to be adequate in this case
too. We define a static page if the following is satisfied:
|FH(C1) − FH(C2)| = 0 AND |FH(B1) − FH(B2)| = 0;
here FH represents FuzzyHash. A static page is possi-
bly cloaked if the following is satisfied:
|FH(C1) − FH(B1)| > t1 AND |FH(C2) − FH(B2)| > t1.

We also compare the semantics of a page between
GooglebotUA and ChromeUA to determine if the specific
page is cloaked. We identify the most prominent topic of
a page (i.e., topic of the page content with highest prob-
ability) using the Latent Dirichlet Allocation (LDA) al-
gorithm [19]. A topic in LDA is a set of related words
extracted from the document with probabilities of their
prominence assigned to them. If Tb and Tc are the most
prominent topics corresponding to page content from
GooglebotUA and ChromeUA, the static page previously
identified as likely to be cloaked has a high probability of
being cloaked when Tb ! = Tc. Similarly, a page with
dynamic content is cloaked if:
(|FH(C1) − FH(C2)| > t2 OR |FH(B1) − FH(B2)| > t2) AND
(|FH(C1) − FH(B1)| > t1 AND |FH(C2) − FH(B2)| > t1)
AND Tc ! = Tb.

Image dissimilarities. Using the page content at source
code level to determine cloaking may not be sufficient,

4https://pythonspot.com/nltk-stop-words/
5SimHash is a FuzzyHash that is used to identify similar documents.

The difference between two documents is measured using the hamming
distance–larger distance implies higher dissimilarity.
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and it should be complemented with the visual differ-
ences of the page (i.e., screenshots). This is because, con-
tent rendered by dynamic source code (e.g., JavaScript,
Flash) and advertisement displayed cannot be captured
from the page source. Therefore, with this method, we
follow the same procedure as for Content dissimilarities,
except that we use ImageHash as the FuzzyHash to evalu-
ate the differences of screenshots between GooglebotUA
and ChromeUA. Very small color perturbations (between
benign and malicious views) in the space of humans yield
significant changes in the binary representation [5] of a
web page screenshot.

3.4. Limitations
We exclude sites that our crawler could not reach. Also,

the number of cloaked sites we identify is a lower bound
due to the choice of our heuristics. According to our ob-
servations, some cloaked sites with dynamic content show
distinct content at different times (cf. [11]). Therefore,
our results with dynamic sites are a lower bound and is
based on content rendered at the time the request is initi-
ated from the automated crawler, where these results may
differ on each request for dynamic websites.

Both academic and commercial tools available are not
accurate in categorizing social engineering sites hosted
on squatting domains in the wild; e.g., Off-the-Hook [15]
gives false negatives for typo-squatting domains, Squat-
Phish [29] mostly detects credential phishing. However,
we observe that the Symantec SiteReview tool detects ma-
licious squatting domains at a comparatively higher ac-
curacy (42.6%). SiteReview accepts the domain URL as
input, but not the page content. For dynamic websites,
the content viewed by our crawler may not be the same as
what is analyzed by SiteReview (i.e., view of a web page
may change with time due to dynamic behavior). There-
fore, we have limited control in identifying the content
category of a site using the SiteReview tool.

4. Ground truth

Some sites hosted on squatting domains are malicious
and they may engage in social engineering attacks of var-
ious forms such as credential phishing, spear phishing,
tech scams, and social engineering ad campaigns. How-
ever, most existing tools detect only particular types of so-
cial engineering attacks. For example, SquatPhish [29] is

a machine learning model to detect phishing sites with in-
put fields (mostly credential phishing). Off-the-Hook [15]
is a client side browser extension capable of detecting
most forms of phishing pages but does not support the
detection of sites hosted on squatting domains. We find
Symentec’s SiteReview online tool is very effective in
correctly categorizing most social engineering sites com-
pared to other tools. However, it does not offer any API
to automate the malicious domain detection. Note that
SiteReview appears to use the RIPE Network Coordina-
tion Center (NCC) [37] to categorize websites.6

We hosted a web page on a Microsoft Azure cloud do-
main that closely resembles content of a malicious site,
and submitted the page to SiteReview which categorized
the site as Suspicious within 24 hours. Our web page
is not shared with anyone or have any backlinks that are
used for search engine optimizations (SEO). During this
time, we notice requests only from IP addresses assigned
to RIPE NCC every hour. A Chrome user-agent is used
by all these access requests to our page.

We use SiteReview to identify categories of 3880
cloaked and 3880 non-cloaked domains. The cloaked
domains are identified using the content dissimilarities
method in Section 5.3. Some of these cloaked and non-
cloaked domains are flagged as malicious by SiteReview.
171 cloaked and 187 non-cloaked domains were unreach-
able during our tests. The number of cloaked malicious
domains flagged by SiteReivew (1636, 44.11%) is signif-
icantly higher compared to that of non-cloaked malicious
domains (1022, 27.67%); see Table 2.

We classify (1024) active cloaked domains (as of Oct.
15, 2019) using a semi-automated process with SiteRe-
view to identify how many of them are malicious. During
this process, we reclassify sites that SiteReview failed to
classify or misclassified. This semi-automated process is
used to determine the ground truth as described below.

• We found 413 sites serving content related to so-
cial engineering attacks (SEA); 383 suspicious sites
with content that poses an elevated security or pri-
vacy risk; 23 malicious sites; 5 phishing sites; and 2
sites with potential unwanted programs. Some sites

6Bluecoat, the original developer of SiteReview (acquired by Sy-
mentec) is a member of RIPE NCC, see: https://www.ripe.net/

membership/indices/data/eu.blue-coat-systems.html
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Category Cloaked domains Non-cloaked domains
Suspicious 1550 (41.79%) 920 (24.91%)
Malicious Sources/Malnets 56 (1.51%) 71 (1.92%)
Scam/Questionable Legality 11 (0.30%) 12 (0.32%)
Phishing 13 (0.35%) 9 (0.24%)
Spam 4 (0.11%) 4 (0.11%)
Potentially Unwanted Software 1 (0.03%) 3 (0.08%)
Malicious Outbound Data/Botnets 1 (0.03%) 3 (0.08%)
Total active domains 3709 3693

Table 2: SiteReview categorization of malicious squatting domains - cloaked vs. non-cloaked

are classified into more than one of the mentioned
categories.

• SiteReview was unable to classify 361 sites, labeled
as “not yet rated (NYR)”. With manual inspection,
we observed that some NYR sites show content sim-
ilar to soical engineering attack (SEA) sites. There-
fore, for each of the NYR sites, we compute the
SimHash [36] of the page source, and then compare
the SimHash value with all SEA sites. We classify a
NYR site as SEA, if the hamming distance between
the SimHashes of the NYR and SEA sites is under
20, and the hamming distance is the lowest between
the NYR site and any one of the SEA sites. For ex-
ample, assume that the NYR site xyz shows simi-
lar content as sites in SEA categories A and B with
hamming distances of 8 and 5, respectively; then we
label xyz as of category B. With this approach, we
could correctly classify 306 NYR sites as SEA (out
of 361).

• SiteReview classified 250 sites into benign cate-
gories. With manual inspection, we found 102 false
positives in this categorization (i.e., malicious sites
classified as benign); 2 Chinese sites, 1 deceptive site
flagged by Google Safe Browsing [17], 80 sites with
iframes that include links to malicious targets, 17
sites with promotional contests (e.g., online casino),
1 shopping site and 1 site showing that the operating
system (Windows 10) is infected.

From the above mentioned observations, we found a
total of 821 malicious sites (413+306+102) in different
social engineering categories from the 1024 cloaked sites.
Therefore, the percentage of malicious sites from those

that are cloaked is 80.2%. This value may change due to
the dynamicity of the content rendered from these cloaked
sites (i.e., some sites alternatively show benign and mali-
cious content during successive requests and at different
times). We emphasize that SiteReview is only used to
validate our ground truth, and our methodology is not de-
pendent on SiteReview.

We also apply the ground truth analysis to sites hosted
on 1500 randomly selected squatting domains generated
from DNSTwist (from list category A in Table 1) and
found 74% (1110 of them are malicious. These squatting
domains contain both cloaked and uncloaked sites.

5. Dissimilarities

Sites with content discrepancies between Googlebo-
tUA and ChromeUA may be cloaked, assuming differ-
ences are due to evasion techniques adopted by adver-
saries. In this section, we delve into such differences us-
ing the domain list category A in Table 1.

5.1. Link dissimilarities
We evaluate the number of links in web pages that ap-

pear with ChromeUA, but not with GooglebotUA, and
vice-versa. We found that 21,616 distinct links appeared
in ChromeUA (1557 sites), compared to 10,355 links
in GooglebotUA (1235 sites); i.e., ChromeUA observed
over twice the number of links compared to Googlebo-
tUA.

Dynamic pages rendered from both ChromeUA and
GooglebotUA show listings of advertisements links.
These links changed on successive refreshing of the
page from the same client or with different clients (e.g.,
ChromeUA and GooglebotUA).
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5.2. Header dissimilarities

We inspect the title, description and keywords header
fields to find the sites where the header fields are different
between GooglebotUA and ChromeUA.

Header # diff # only with
GooglebotUA

# only with
ChromeUA

Title 2644 2190 3388
Description 3530 4839 1375
Keywords 265 716 408

Table 3: Header dissimilarities—the last two columns show the number
of the specific header type that exists only from one user-agent (empty
in the other)

Apart for the title header field, description/keywords
fields in headers had significant discrepancies with
GooglebotUA. Upon manual inspection, we observed that
the dissimilarities in title & description header fields were
benign as they mostly contained the domain name or con-
tent that relate to sale of the domain. According to Ta-
ble 3, 716 sites had the keywords header field injected
only with GooglebotUA (e.g., health, wellness, surgery)
and its use may had an impact in improving the rank of
those websites. Many keywords added to HTTP head-
ers were sent to the crawler to perform semantic cloak-
ing [18].

5.3. Content dissimilarities

We compare pages rendered between ChromeUA and
GooglebotUA using syntactical and semantic heuristics as
defined in Section 3.3.5. Sites that show benign content
(e.g., website under construction) are excluded. While
cloaking is prevalent in static pages, we also observed
cloaking in pages with dynamic content. In the case of the
latter, a significant number of sites showed cloaking be-
haviors at random when they were requested repeatedly.

With our automated process, we found 2183 (2.2%)
sites with static content and 83 (0.08%) sites rendering
dynamic content were cloaked by examining the page
source/content using heuristics; see Table 6. Out of them,
1763 (1.8%) and 42 (0.04%) sites serving static and dy-
namic content were redirected to other URLs respectively.
The top 5 target URLs where these sites were redirected
(for both static and dynamic sites) were plt2t.com (27),
yourbigprofit1.com (24), www.bate.tv (10), yvxi.

Failure # Content
dissimi-
larity

# Image
dissimi-
larity

HTTP 404 Not Found 398 0
HTTP 403 Forbidden 349 302
“Coming soon” 244 64
HTTP 500 Server Error 14 0

Table 4: Failures from GooglebotUA

com (8) and www.netradioplayer.com (7). Out of
these target domains, plt2t.com redirected to another
website that showed “your computer was locked” scam
message occasionally, with the aim of getting the victim
to call a fake tech support number.

Most cloaked sites (361) from the squatting domain list
category A in Table 1 had a content length difference of
1-10 KB between ChromeUA and GooglebotUA, com-
pared to 121 cloaked domains that had a content length
difference greater than 10 KB. Although this implies that
in most cloaked sites, the content length difference be-
tween ChromeUA and GooglebotUA is minimal, the dif-
ference in presented content may be significant due to the
use of dynamic rendering technologies (e.g., AngularJS,
Puppeteer).

Phishing sites often adopt HTTPS to give a false sense
of security to the victim users (see e.g., [11]). In Table 5,
we compare cloaked vs. non-cloaked sites served via
HTTP and HTTPS (using combo-squatting domains, cat-
egory C in Table 1); cloaking is less apparent in HTTPS
sites, where majority of the certificates (55) are issued by
the free certificate provider Let’s Encrypt.

We observed the following major content differences
between ChromeUA and GooglebotUA:

• Out of 100,000 squatting domains in list category A
of Table 1, 2337 sites appeared to be dynamic only
from GooglebotUA, and 2183 from ChromeUA. No
overlap in domains was observed between Google-
botUA amd ChromeUA. We were unable to differ-
entiate the content of these sites between Google-
botUA and ChromeUA, as when checked manually,
the most probable topic of the page content as de-
termined by Latent Dirichlet Allocation (LDA) algo-
rithm [19] differed drastically on each request due to
dynamic nature of the sites. Among these sites, there
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With content dissimilarities With image dissimilarities
Protocol Content type Cloaked sites Redirects Cloaked sites Redirects
HTTP static 192 166 142 118

dynamic 21 7 22 7
HTTPS static 52 36 37 27

dynamic 3 2 1 1

Table 5: Combo-squatting domains served via HTTP/HTTPS

were also sites displaying dynamically populated
links within iframe elements from ChromeUA, while
such iframes appeared to be empty from Googlebo-
tUA. These links related to various areas of busi-
nesses (e.g., Car Insurance, Credit Cards).

• The failures with content dissimilarities in Ta-
ble 4 were observed from GooglebotUA, while with
ChromeUA a different view of the content was dis-
played. For examples, the websites that showed
“Coming soon” page content from GooglebotUA,
showed the actual page content when requested
from ChromeUA. Malicious sites also returned er-
ror codes when they detected the visitor was not a
potential victim [11] (e.g., a search engine crawler).

Figures 2 to 4 are examples of instances where cloaking
was used for phishing/malware purposes.

5.4. Image dissimilarities
We also determine cloaking by comparing the differ-

ences of screenshots of web pages between ChromeUA
and GooglebotUA using image dissimilarity techniques.
The number of sites with static content subjected to cloak-
ing was 1710 (1.7%), while those with dynamic content
was 784 (0.8%). We observed 960 (1%) and 490 (0.5%)
of these sites with static and dynamic content, respec-
tively, were redirected to other websites. In contrast to
content dissimilarity method, with image dissimilarity, we
found more cloaked sites that were also dynamic.

Page content alone is insufficient to detect cloaking due
to technologies used in websites (e.g., Flash) that render
dynamic content. Visual identity of a benign website can
be shared by a malicious website with undetectable per-
turbations to humans, although their binary representa-
tions are completely distinct [5]. In addition, advertise-
ments on web pages can be more tailored to a specific

client, and may be hidden from GooglebotUA. The fail-
ures as identified from image dissimilarity technique in
Table 4 were only observed from GooglebotUA. Although
with image dissimilarity technique, the detection of cloak-
ing was better, the text extracted from screenshots using
the Tesseract [33] OCR library was sometimes inaccurate.
For example, Tesseract reads “Coming soon” as “Coming
scan”. Despite our manual efforts to minimize the impact
of these inaccuracies, the inaccuracies of Tesseract may
have affected the accuracy of the results in Table 4.

Cloaking of domains served via HTTPS giving a false
sense of security to users were a fraction when compared
to those domains using HTTP; static content (37, 26%),
dynamic content (1, 5%). There were 38 (0.04%) cloaked
sites running on combo-squatting domains with valid TLS
certificates as shown in Table 5.

5.5. Comparison of results of cloaking detection tech-
niques

The dissimilarities techniques we use to identify
cloaked sites focus on different structural elements of a
web page. The results of content and image dissimilar-
ities converge to some extent as they are applied on the
syntactical and visual perspectives of the page content.

With link dissimilarities technique, we observed links
are more prevalent with ChromeUA as opposed to
GooglebotUA (for both static and dynamic content). The
links shown in web pages hosted on domains were 209%
and 140% for static and dynamic pages from ChromeUA
compared to GooglebotUA. However, the links appeared
in dynamic content were 6x and 9x when compared to
static content with ChomeUA and GooglebotUA, respec-
tively. This may mean that phishing/malware domains
suppress links from GooglebotUA to avoid detection.

We also observed keywords in headers from Google-
botUA that were not seen from ChromeUA. These key-
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(a) ChromeUA (b) GooglebotUA

Figure 2: Cloaking differences for site: 000wwebhostapp

(a) ChromeUA (b) GooglebotUA

Figure 3: Cloaking differences for site: homdedepot.com

(a) ChromeUA (b) GooglebotUA

Figure 4: Cloaking differences for site: bodybuildinh.com
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words that were exclusive to GooglebotUA may influ-
ence the search engine ranking algorithms for correspond-
ing sites. With header similarities technique, the key-
word header fields related to specific categories of content
appeared only with GooglebotUA. Therefore, these key-
word header fields may possibly have been leveraged to
manipulate the rankings of websites.

With content and image dissimilarities methods, we
find cloaked websites from both static and dynamic web-
sites with potential malicious content. With both content
and image dissimilarity methods, we found a very small
fraction (3880, 3.9%) of domains participate in cloak-
ing. There were 880 cloaked sites that overlap between
content and image dissimilarities. Out of 3880 sites 127
(3.3%) were flagged by VirusTotal. However, according
to our ground truth (see Section 4), 80% of the cloaked
sites were malicious. The low detection rate of malicious
sites by VirusTotal highlights that blacklists are not effec-
tive in identifying a large proportion of social engineer-
ing sites. With image dissimilarities, a larger number of
cloaked sites were found with dynamic content compared
to content dissimilarities. Conversely, a large number of
cloaked websites were identified using content dissimi-
larities with static content compared to image dissimilar-
ities. Identifying dynamic content is more effective by
analyzing the screenshots of web pages, as dynamic con-
tent may not be captured from the page source. Some of
the cloaked sites that are dynamic, rendered different con-
tent on each refresh of the page. In some sites, benign
and cloaked content were rendered alternatively when the
page is refreshed multiple times. Since the dynamicity of
sites depends on the time accessed, our results are a lower
bound.

Manually inspecting 100 cloaked sites (from list cate-
gory A in Table 1), we found 22 (22%) of them had dif-
ferences in content. Few examples of differences in site
content between ChromeUA and GooglebotUA are shown
in Figures 2 (deceptive prize notice), 3 (technical support
scam), 4 (prompting to install a malicious browser exten-
sion). The browser extension in Figure 4 (ByteFence Se-
cure Browsing7) is a known malicious browser extension
detected by reputable antivirus engines due to suspicious
data collection habits and browser redirects. Most of these

7https://botcrawl.com/bytefence-secure-browsing/

sites served content that changed between subsequent re-
quests and at times alternated between malicious and non-
malicious content.

6. Discussion

We discuss below observations from our analysis in
Section 5.

6.1. Dynamicity in squatting sites
We found few squatting domains (644. 0.6%) showed

dynamicity in rendered content that changed between two
consecutive requests with ChromeUA. Since, dynamic
sites can serve different content only after multiple re-
quests or change between static/dynamic content alterna-
tively, our results are a lower bound. Therefore, detection
of dynamic sites with cloaked content is difficult com-
pared to that of static sites. There were 83 cloaked sites
identified using content dissimilarities in Section 5.3 out
of the 644 dynamic sites. These cloaked dynamic sites
changed between consecutive requests to show various
forms of malicious content (e.g., technical support/lottery
scams, malicious browser extensions).

6.2. Malicious squatting domains generated from DNST-
wist

DNSTwist [12] uses fuzzy hashes,8 to identify mali-
cious sites, by comparing the fuzzy hashes between web
page content of a seed domain and the corresponding
typo-squatting domain. For a 100% match, the typo-
squatting web page content is similar to content hosted on
the corresponding seed domain (includes situations where
typo-squatting domain redirects to seed domain). When
the comparison returns a match of 0, the web page of the
typo-squatting domain is most likely malicious. Out of
119,476 typo-squatting domains generated from DNST-
wist, 76,178 (63.76%) returned a match of 0. We ran-
domly selected 500 typo-squatting domains from list cat-
egory A in Table 1, and found 187 malicious domains
(37.4%) using SiteReview. Therefore, a significant pro-
portion of DNSTwist generated typo-squatting domains
are indeed malicious.

8ssdeep: https://ssdeep-project.github.io/ssdeep/

index.html.
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6.3. Relevance of seed domains

We find that the number of seed domains of cloaked
squatting domains with a single permutation (345, 0.3%)
is considerably high compared to those with multiple per-
mutations. There were only 229 seed domains with 2-
7 permutations of cloaked squatting domains. The 7
seed domains in Figure 5 generated 8-13 permutations of
squatting domains. The categories of services offered by
these seed domains include government (service.gov.
uk), gaming (epicgames.com), search engine (google.
com.ph), health (health.com) and news sites (cnbc.
com). We also show the number of seed domains of the
generated cloaked squatting domains as a comparison in
Table 6. With both content and image dissimilarities, we
find the proportion of squatting domains to seed domains
is higher with static content (1.89%-2.18%) compared to
that of dynamic content (1.08%-1.42%).

Figure 5: Top 7 seed domains of the corresponding cloaked domains
with 8-13 permutations.

6.4. Detection of cloaked sites by blacklists

To study evasion of blacklists by cloaked squatting do-
mains, we randomly selected 5000 squatting domains that
are cloaked from domain list category A in Table 1, and
ran them daily through VirusTotal between May 2, 2019
– June 5, 2019. At the end of this period (June 5, 2019),
92 (1.84%) were flagged by VirusTotal; phishing: 40,
malicious: 41, malware: 22. Since our ground truth
showed 80% of squatting domains were malicious (see
Section 4), it appears that most phishing/malware squat-
ting domains are not blacklisted. After approximately 3
months from the time of this experiment (on Aug. 26,
2019), we observed that URLs blacklisted by VirusTotal

have not changed significantly (87, down from 92). Fur-
ther, on Sep. 4, 2019, we applied our methodology de-
scribed in Section 3 to 2268 cloaked domains previously
identified, and found 1038 (45.78%) of them were still
showing cloaked content. These cloaked domains may
contain malicious content although they were not flagged
by blacklists. The remaining domains (1230) were either
recycled or showed exceptions described in Section 3.3.3.
Therefore, it appears that the rate at which these cloaked
sites were detected by blacklists is extremely slow.

Typo-squatting domains hosting malicious content may
get recycled more frequently. This behavior may cause
delays in blocking new websites or slow reactions to do-
main take-downs that host malicious content [38]. We
found 2256 out of 100,000 squatting domains (cloaked
and uncloaked) as malicious in Apr. 2019. However, 2048
of these domains remained active as of Nov. 15, 2019, and
out of those domains, 67 of them were no longer flagged
by VirusTotal. These websites showed benign content that
is different from when it was previously flagged by Virus-
Total.

6.5. Variations of cloaking in different device types

A significant proportion of web traffic comes from mo-
bile devices and mobile users are more vulnerable to
phishing attacks [11]. We identified cloaked websites
using the heuristics defined in Section 3.3.5 for 25,000
sites (category B in Table 1) hosted on squatting domains
from both desktop and mobile browsers (Chrome); see
Table 7. Cloaked sites with static content in mobile envi-
ronment are more apparent compared to desktop environ-
ment. Similarly, redirections of sites hosted on squatting
domains to target URLs are comparatively high in mobile
environments. A significant number of cloaked sites over-
lap between desktop and mobile browsers as identified
by content (326) and image (119) dissimilarity methods.
The differences of the overlapping sites between desktop
and mobile environments were mostly related to its lay-
out. Tian et al. [2] found more phishing pages with mobile
web browsers compared to desktop environment, and we
observed a similar pattern for cloaked sites. The number
of target URLs of redirections blacklisted by VirusTotal
was low with mobile browsers compared to that of desk-
tops. Oest et al. [11] observe mobile browsers (includ-
ing Chrome) failed to show blacklist warnings between

15



With content dissimilarities With image dissimilarities
Type of
domain

Nature of
content

Cloaked
sites

Redirects Target URLs
flagged by
VirusTotal

Cloaked
sites

Redirects Target URLs
flagged by
VirusTotal

Squatting static 2183 1763 27 1710 960 6
dynamic 83 42 0 784 490 3

Seed static 1153 1012 20 985 693 6
dynamic 77 38 0 552 382 3

Table 6: Projecting results of cloaked squatting domains to corresponding seed domains (i.e., squatting domain vs. seed)

With content dissimilarities With image dissimilarities
Device Content

type
Cloaked
sites

Redirects Target URLs
flagged by
VirusTotal

Cloaked
sites

Redirects Target URLs
flagged by
VirusTotal

Desktop static 607 498 7 484 289 3
dynamic 20 9 0 230 135 1

Mobile static 797 689 2 660 364 1
dynamic 44 30 0 206 174 0

Table 7: Variation in cloaking between device types

With content dissimilarities With image dissimilarities
Type Nature of

content
Cloaked sites Redirects Cloaked sites Redirects

Referrer static 9 5 4 3
dynamic 3 2 18 15

User-agent static 99 80 59 36
dynamic 4 1 46 31

Table 8: Variation between user-agent vs. referrer cloaking

mid-2017 and late-2018. Although they claim that fol-
lowing their disclosure the protection level is comparable
between mobile and desktop browsers, we noticed sites
flagged by VirusTotal for mobile browsers were less than
that of desktops.

6.6. User-agent vs. referrer cloaking
We compare websites identified as cloaked between

user-agent and referrer cloaking. For both types of cloak-
ing, we use the same sites in domain list category D in Ta-
ble 1 that are hosted on typo-squatting/combo-squatting
domains. As with our previous experiments, user-
agent cloaking is measured between GooglebotUA and
ChromeUA. For referrer cloaking, we use ChromeUA, but

to mimic clicks initiated through search engine results, we
set the referrer header to http://www.google.com/. As
shown in Table 8, for sites with static content, cloaked
sites identified from user-agent cloaking were 11x-16x
higher than that of referrer cloaking (from both content
and image dissimilarities methods in Section 3.3.5).

7. Conclusions and Future Direction

Cloaked malicious sites deliver phishing, malware and
social engineering content to victimize users. We found
22% of cloaked domains show malicious content (tech-
nical support scams, lottery scams, malicious browser
extensions, malicious links), with significant differences

16



between ChromeUA and GooglebotUA. In addition, we
also found cloaking behaviors in a considerable number
of squatting domains hosting dynamic content at irregular
time intervals. This type of cloaking in dynamic sites is
harder to detect, and may go unnoticed by the detection
algorithms. Some squatting domains redirect a website
through multiple intermediary domains to its final desti-
nation. [22]. We found 1.8% (1805 domains in list cate-
gory A in Table 1) cloaked squatting domains engaged in
redirections with content dissimilarities.

We used DNSTwist to generate typo-squatting do-
mains. The domain generation algorithms used in DNST-
wist are highly successful in generating malicious do-
mains. According to SiteReview along with our heuris-
tics, 74% of these typo-squatting domains were mali-
cious. Although, some of these malicious domains are
short-lived, the attackers may cause harm to users during
the domain life time due to slow reaction to blocking such
domains.

In past studies, URLs used for crawling mostly in-
clude crafted websites or those belonging to specific ma-
licious categories (phishing, social engineering ad cam-
paigns). In contrast, the squatting domains we used host
potential malicious content mimicking a variety of pop-
ular sites. The URLs of cloaked malicious websites we
found may eventually get flagged by various blacklisting
entities (e.g., VirusTotal). We observed more squatting
domains and dynamically generated links identified from
iframe elements are getting flagged as phishing or mali-
cious by VirusTotal over time. The cloaked sites black-
listed by VirusTotal is a fraction (3.3%), which implies
that a larger number of cloaked sites go undetected. Our
ground truth showed that nearly 80% of the cloaked sites
were malicious, which means nearly 77% of the mali-
cious squatting domains were not detected by VirusTo-
tal. Therefore, the undetected portion of cloaked mali-
cious sites is significant. Our detection rate of cloaked
malicious sites is significantly higher compared to past
studies [11, 6].

According to Oest et al. [11], cloaking delays and slows
down blacklisting. We found 46% of cloaked squatting
domains with potential malicious content (from a sample
of 2268 domains in list category A in Table 1), continue
to cloak content even after 3 months, reaffirming that the
techniques used by blacklisting entities are not effective
for cloaked sites.

Majority of Internet traffic is originated from mobile
users, and mobile browsers are prone to phishing at-
tacks [9]. However, anti-phishing protection in mobile
browsers trail behind that of desktop browsers. We ob-
served cloaking of websites (with static content) that are
potentially malicious in mobile browser (Chrome) is com-
paratively higher to desktop browser (Chrome). Band-
width restrictions imposed by carriers in mobile devices is
a barrier to desktop-level blacklist protection [9]. There-
fore, at least over a Wi-Fi connection, the full blacklist
should be checked by mobile browsers.

Since some major search engine crawlers are also
owned by companies who develop browsers (e.g., Google,
Microsoft), these companies can complement their ex-
isting detection techniques by comparing the views of a
web page between a browser and crawler infrastructure,
to tackle website cloaking. Some solutions in this aspect
are already proposed in past studies [6]. Another coun-
termeasure is to have domain registrars add extra checks
in their fraud detection systems to detect domains that are
permutations of popular trademarks having a higher en-
tropy. This will facilitate registrars to request more infor-
mation, if a domain registered is suspicious in carrying
out malicious activities under the disguise of cloaking. A
similar practice can be be adopted by certificate authori-
ties prior to issuing certificates for suspicious domains.

Cloaking may differ based on the geolocation [11] of
the user or the language of web content. Also, cloak-
ing behaviors may be different for various search en-
gine crawlers (e.g., Bingbot, Yahoo, Baidu, Yandex) and
browsers (e.g., Edge, Internet Explorer, Firefox). We
leave such studies as future work.
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Appendix A. Types of cloaking

Domain name squatting is a technique where domains
are registered with typographical errors resembling web-
sites of popular brands and trademarks [2]. This leads
to abusing the good name of the original brand to attract
more traffic than usual for illicit purposes. Squatting do-
main names are structured by tweaking the names of the
original domains (e.g., using encoded Internationalized
domain names [39] which are visually similar compared
to the original domain). Because of these characteristics
in squatting domain names, they are a powerful means in
aiding social engineering attacks. Therefore, in addition
to showing deceptive page content, social engineering at-
tacks are more successful if these sites are hosted on typo
squatting domains [2].

The adversaries who host phishing and malware ser-
vices want to hide their activities from the search engine
crawler [6]. Adversaries use Search Engine Optimization
(SEO) techniques when showing fake content to search
engine crawlers compared to browser clients, in order to
increase the ranking of their illicit sites [40]. Adversaries
can also pay advertising networks to show benign adver-
tisements to crawlers, while users view deceptive adver-
tisements that lead to scams and malware [6].

In order to cloak content, the adversary’s web server
needs to distinguish the type of client (i.e., crawler vs.

browser) based on an identifier [41], and the choice of the
identifier depends on the cloaking technique as described
below.

1. In user-agent cloaking, the type of client of an in-
coming request is identified by inspecting the user-
agent string. If the user-agent belongs to a crawler,
benign content is shown, otherwise malicious con-
tent is displayed.

2. With IP cloaking, the user is identified using the
client IP address of the incoming request. If the IP
address of incoming request is within a well known
range of public IP addresses of a search engine
crawler, benign content is rendered. Otherwise, the
IP address most likely belongs to a user/enterprise,
in which case malicious content is displayed.

3. Repeat cloaking is used to victimize a user on the
first visit to the website. In this case, the state of
the user is saved at client side (e.g., cookie) or server
side (e.g., client IP) to determine a new user visit.

4. Referrer cloaking uses the Referrer field of the re-
quest header to determine if the user clicked through
a search engine query result, in which case, the user
can be redirected to a scam web page. In Referrer
cloaking, adversary’s objective is to target search en-
gine users.

In practice, different types of cloaking are combined and
used together.

Appendix B. Issues during crawling

In this section, we explain the errors, disallowing of
requests by web servers and failures encountered during
crawling of websites. The data shown in this section are
based on squatting domain list category A in Table 1.
Errors during crawling. We crawled 100,000 sites
hosted on squatting domains by imitating the ChromeUA
and GooglebotUA user-agents. Out of them, 9712 (9.7%)
and 9899 (9.9%) requests encountered errors during
crawling from ChromeUA and GooglebotUA. Requests
initiated from GooglebotUA had a slightly higher number
of errors. Table B.9 shows the top 5 errors. Most errors
were due to timeouts; ChromeUA (4423, 4.54%), Google-
botUA (4502, 4.5%). We set a 30 seconds timeout for
each request made from the crawler, as it is a reasonable
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Error ChromeUA GooglebotUA
Navigation Timeout Exceeded: 30000ms exceeded 4423 4502
ERR NAME NOT RESOLVED 1640 1594
Execution context was destroyed, most likely because of a navigation 893 584
ERR CONNECTION REFUSED 820 608
ERR CERT COMMON NAME INVALID 343 341

Table B.9: Top 5 errors encountered during crawling

time interval within which a web page can load. Setting a
higher timeout value not only reduces our ability to crawl
a larger number of URLs within a reasonable time period,
but also increase the chance of crashing the crawler. If the
timeout is increased from 30 to 60 seconds, we were able
to successfully crawl more sites, although adhoc crash-
ing of the crawling automation is experienced. However,
in this case, the timeout errors observed was lower than
having a 30 seconds timeout; ChromeUA (3418), Google-
botUA (3745). ERR NAME NOT RESOLVED are DNS
related errors that are most likely to be caused by issues
related to client browser issues or firewall settings [42];
ChromeUA (1640, 1.6%), GooglebotUA (1594, 1.6%).
To validate this aspect, we crawled sites that resulted
in ERR NAME NOT RESOLVED errors from a sepa-
rate residential machine located in the same city, and
found a significant proportion of them didn’t show this er-
ror; ChromeUA (316, 0.3%), GooglebotUA (380, 0.4%).
Some of these sites even didn’t return an error from
the new location; ChromeUA (219, 0.2%), Googlebo-
tUA (263, 0.3%). ERR CONNECTION REFUSED er-
rors are usually caused by DNS, proxy server or browser
cache issues. Some sites threw errors due to loos-
ing of its execution context. This can happen when
a web page looses its execution context while navi-
gating from the crawler. Therefore, running a call-
back relevant for a specific context that is not appli-
cable during the current navigation can throw an error.
ERR CERT COMMON NAME INVALID errors signal
a problem with the SSL/TLS connection where the client
cannot verify the certificate.
Failures based on user-agent. Web hosting providers of-
ten block clients with unusual traffic. We observed 152
(0.2%) sites were blocked from GooglebotUA by the web

hosting provider. In order to block requests from bots
(e.g., GooglebotUA), web hosting services use different
techniques to identify them [43]. For example, honeypots
consisting of links that are only visible to bots are used
to attract crawlers, to detect and have them blocked [43].
Different types of content observed in these blocked sites
are in Table B.11. Content of some of these sites are in
Chinese (e.g., http://diirk.com). Also, during our
crawling, we noticed some sites did not accept requests
initiated from automated crawlers. These failures depend
on the user-agent of the request. We show these fail-
ures in Table B.10. Some sites showed “Too many re-
quests” failures when requesting a site from both Google-
botUA and ChromeUA. This behavior was consistent be-
tween ChromeUA (2640, 2.6%) and GooglebotUA (2448,
2.4%). This failure was also observed from a real browser
when the site was requested repeatedly. We found “404
- File or directory not found” errors were more than six
times higher with GooglebotUA (472, 0.5%) compared
to ChromeUA (72, 0.07%). The robots.txt file which is
in the root directory of a website can be configured to
prevent automated crawlers from requesting the site [43].
However, some of these sites may not want to block pop-
ular search engine crawlers such as Google, as other-
wise it will impact their site ranking. We found 19,040
(19%) websites were disallowed according to the rules
in robots.txt which is significant. Our crawler is able to
scrape the content of these websites. From these sites,
4722 (4.7%) showed benign content, and the rest of them
mostly contained a listing of links and phishing/malware
related content. Out of the sites that are disallowed
from robots.txt, a smaller fraction showed “Too many re-
quests” failures; ChromeUA (1583, 1.5%) and Googlebo-
tUA (1460, 1.4%).
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Failure ChromeUA GooglebotUA
Too many requests 2640 2448
Page cannot be displayed. Please contact your service provider for more
details

1368 1369

404 - File or directory not found 72 472

Table B.10: Failures while crawling

Page content No. of sites Example site
Sorry, you have been blocked. You are unable to access [DOMAIN]
Why have I been blocked? This website is using a security service to
protect itself from online attacks. ....

136 http://dawng.com

Your request has an illegal parameter and has been blocked by the web-
master settings!... (Chinese translation)

12 http://diirk.com

..Access to this page has been denied.. An action you just performed
triggered a security alert and blocked your access to this page. This
could be because you submitted a SQL command, a certain word or
phrase, or invalid data. ...

4 https://support.

bed-booking.com

Table B.11: Sites blocked from GooglebotUA

Figure C.6: Cloaking by type of squatting domain.

Appendix C. Relevance of type of squatting domains
for cloaking

Most cloaked sites are hosted on combo-squatting do-
mains as shown in Figure C.6. This may mean that
combo-squatting domains are more effective in cloaking
phishing and malware site content. Kintis et al. [21] find
most combo-squatting domains are not remediated for a
long period of time (sometimes up to 1000 days). There-
fore, many occurrences of abuse happen before they are
detected by blacklists.
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Appendix D. Relevance of cloaking by other factors

The top 10 countries hosting the largest number of
squatting domains with cloaked content were United
States (1508), Germany (145), Netherlands (53), Aus-
tralia (53), Seychelles (41), Canada (34), Switzerland
(26), Japan (17), France (16) and British Virgin Islands
(15). Therefore, most of these cloaked sites were hosted

in the United States and Germany. Tian et al. [2] observed
a similar pattern where most phishing sites are spread
in these countries. The top 5 registrars of squatting do-
mains hosting cloaked content were GoDaddy (477), Sea
Wasp (225), Xinnet Technology Corporation (115), Tu-
cows, Inc. (84), Enom, Inc. (82). GoDaddy had registered
the most number of cloaked domains.
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