
TEE-Receipt:
A TEE-based Non-repudiation Framework for

Web Applications

Mahmoud Hofny1⋆, Lianying Zhao2, Mohammad Mannan1, and Amr Youssef1

1 Concordia University, Montreal, Canada
mahmoud.hofny@concordia.ca

m.mannan@concordia.ca

youssef@ciise.concordia.ca
2 Carleton University, Ottawa, Canada
lianyingzhao@cunet.carleton.ca

Abstract. In web applications, transactions are vulnerable to repudi-
ation by service providers seeking to evade legal and financial respon-
sibilities. To safeguard users against such repudiation, verifiable evi-
dence is essential in establishing transaction origin and confirming re-
ceipt. This paper introduces an asymmetric non-repudiation framework
TEE-Receipt that leverages a Trusted Execution Environment (TEE)
to counter potential server transaction repudiation and collect evidence
without dependence on a third party. By considering the threat of dis-
honest server operators (often not considered in the state-of-the-art), we
protect server secrets and conduct password-based user authentication
and evidence collection all inside the TEE. This approach eliminates the
need for a user to own a certified key pair. Also, TEE-Receipt offers a
cost-effective deployment, requiring small software changes and a TEE-
capable device. A prototype of TEE-Receipt is developed using Intel
SGX as the TEE, and tested using WordPress. Performance evaluations
demonstrate that TEE-Receipt introduces trivial overhead and provides
satisfactory response time from the user’s perspective.

Keywords: Web Applications · Non-Repudiation · Digital Signature ·
TEE.

1 Introduction

The rapid growth of online applications, including online banking, e-commerce,
government services, and social media, has been remarkable in recent years be-
cause of their user-friendly nature and convenience. Unsurprisingly, conducting
online transactions also exposes the users and services to security risks. Aside
from the risk caused by traditional illegitimate actors (i.e., attackers), which has
been comprehensively studied [50, 49, 22, 23, 33, 43], there exist also cases where

⋆ On leave from Assiut University, Egypt.

2 M. Hofny et al.

legitimate participants of the online transactions can deny their involvement to
evade legal or financial responsibilities, which is known as repudiation [12, 36,
16, 20, 10, 15, 14]. Repudiation can have significant and detrimental impacts on
users across various domains, such as finance [31, 2], auctions [28], and e-voting
systems [51].

Non-repudiation protocols are crucial to safeguard users against such denials
[24], as they establish rules for collecting verifiable evidence from communicating
parties. This evidence is useful in dispute resolution as it ensures the transac-
tion’s origin and confirms its content and receipt.

However, the fact that web applications can be hosted or operated by a third
party [3, 21, 47, 26], complicates non-repudiation. What is further worse, even
within the trusted party’s organization, there could also be dishonest operators
having access to server secrets (e.g., certificate private keys) or privileged access
in the traditional threat model. For instance, a dishonest operator in a financial
institution [31] might manipulate transaction records or steal funds. Similarly,
in online auctions [28], insiders or auctioneers with privileged access may ma-
nipulate bids after the submission completion, leading to unfair advantages for
certain participants and undermining the credibility of the auction platform.
The same can also happen in e-voting systems [51]. Transactions caused by such
dishonest operators will render state-of-the-art non-repudiation protocols inef-
fective because of the threat model shift.

Our literature review has revealed a multitude of non-repudiation solutions
[30, 7, 37, 27, 52, 41, 19, 39, 6, 18], most of which utilize digital signatures as a com-
mon approach. However, each of these protocols exhibits certain drawbacks.
First, none of these solutions adequately accounts for the scenario involving a
dishonest operator on a legitimate server. Second, certain protocols rely on a
trusted third party (TTP) for evidence collection and management [7, 37, 27, 52,
41], while others employ a TTP for maintaining users’ private keys and gener-
ating signatures on their behalf [37]. Relying on a TTP introduces additional
multi-party communication overhead and elevates the risk of colluding attacks
and potential privacy violations. Another issue pertains to the security of pri-
vate keys. Certain protocols require users to manage their private keys using
local storage [7, 52, 41, 39, 6] or external devices like USB and smart cards [19].
Last, the deployment of specialized devices, such as smart cards [19] or biometric
devices [41], for all users increases the solution’s cost and complexity.

TLS-N [39] and ROZEN [6] emerged as extensions to TLS, the predomi-
nant cryptographic protocol in web technology. These extensions introduced a
non-repudiation feature, incorporating additional functionalities such as redact-
ing sensitive data from collected evidence. However, neither TLS-N nor ROZEN
addresses the protection issue of server’s secrets and users’ credentials from dis-
honest operators because they assume the server side is trusted. They provide
non-repudiation for all exchanged TLS records, including potentially unimpor-
tant data that becomes part of the non-repudiation evidence, thus requiring ad-
ditional computation. Furthermore, users are responsible for safeguarding and
handling their private keys and managing their TLS certificates.

TEE-Receipt 3

Trusted Execution Environment (TEE) technologies, like Intel SGX [9] and
ARM TrustZone [44], offer a viable solution to address the trust concerns by
serving as a substitute for a trusted third party and eliminate dishonest opera-
tors impacts with hardware support. TEEs are designed to isolate and safeguard
code and data from other software on the same machine, including the operat-
ing system and hypervisor. Additionally, many TEEs offer remote attestation,
proving authenticity and integrity to a remote party.

Guan et al. proposed an attack [18] using a TEE to break the deniability of
protocols like OTR [5]. However, applying this method in the web context does
not resolve the issue of protecting users’ credentials from dishonest operators
and requires porting the entire protocol to the TEE. Additionally, it attests to
all exchanged messages, increasing overhead.

This paper presents an asymmetric non-repudiation framework TEE-Receipt
for web-based transactions, taking advantage of a TEE on the server. TEE-
Receipt does not rely on a TTP for authentication or evidence collection and
management. Users do not have to maintain long-term certified key pairs on
multiple devices. All the user and server secrets (including user passwords) are
handled within the TEE and the evidence collection is conducted in the TEE as
well. We show that TEE-Receipt can be deployed with existing web technologies
and platforms with manageable efforts.

TEE-Receipt consists of client-side (browser extension) and server-side (run-
ning inside a TEE) components. The client component ensures the server’s au-
thenticity, verifies that it is running the correct software within a TEE, and es-
tablishes a secure communication channel with the TEE before user registration
and login. Meanwhile, the server component stores the Cipher-based Message
Authentication Code value, generated by the TEE, of the user’s password in its
database for user authentication purposes. Upon successful user login, the TEE
assigns a temporary signing key for the user. Subsequently, the client and the
TEE sign the transaction request, providing evidence of its origin and receipt.
Our contributions can be summarized as follows.

– We propose a non-repudiation framework TEE-Receipt tailored for web-
based transactions using the TEE, effectively eliminating the necessity for a
trusted third party, and also able to deal with the dishonest operator threat.

– We implement a prototype of TEE-Receipt1, comprising a client-side Chrome
browser extension and Intel SGX as the server-side TEE.

– We integrate TEE-Receipt with the popular content management platform,
WordPress, and conduct a performance evaluation and a security analysis of
the integration to assess efficiency and effectiveness in real-world scenarios.

The subsequent sections of this paper are organized as follows: Section 2
presents an overview of the fundamental concepts of non-repudiation and Intel
SGX. In Section 3, the system model and essential requirements are outlined
to establish a clear foundation for discussions. Built upon this, Section 4 pro-
vides a detailed exposition of the design intricacies of the proposed framework.

1 Available at https://github.com/TEE-Receipt

4 M. Hofny et al.

The practical implementation aspects are covered in Section 5. Subsequently, in
Sections 6, 7, and 8, we evaluate TEE-Receipt’s deployability, assessing its align-
ment with the specified security requirements, and its performance, respectively.
To enrich the research context, Section 9 offers a review of relevant literature.
Finally, Section 10 concludes the work.

2 Background

2.1 Non-repudiation

Non-repudiation is a critical concept that determines whether a particular ac-
tion has been executed to resolve disputes among parties [30]. By preventing
individuals from denying their involvement in actions, such as denying sending
or receiving a message, non-repudiation ensures the integrity and authenticity
of the communication. The generation and collection of evidence, such as sender
and receiver signatures for a transaction, are essential aspects of non-repudiation.

When considering communication between Alice and Bob, an effective non-
repudiation protocol should include both Non-Repudiation of Origin (NRO) and
Non-Repudiation of Receipt (NRR) [30]. NRO safeguards Bob against Alice’s
denial of message origination, while NRR protects Alice from Bob’s denial of
message receipt. Additionally, Non-repudiation of conversation (NRC) [39] en-
compasses both NRO for all sent messages and NRR for all received messages
within the communication considering the ordering of messages. Therefore, NRC
fits with diverse applications, such as document submission, public data feeds,
and web archiving.

Definition 1. (Non-repudiation of origin) [30]. A non-repudiation pro-
tocol provides proof of origin if it generates evidence of origin intended for Bob,
which can be presented to a neutral party (an adjudicator), who can definitively
determine whether Alice is the sender of a specific message.

Definition 2. (Non-repudiation of receipt) [30]. A non-repudiation proto-
col guarantees non-repudiation of receipt if it creates evidence of receipt that is
intended for Alice and can be presented to an arbitrator who can determine if
Bob received the message in question or not.

Definition 3. (Non-repudiation of conversation) [39]. Non-repudiation
of conversation provides proof of the total order of messages sent and received
by a party. Intuitively, NRC specifies the conversation and the party’s role in it,
from the perspective of its system. The specified party is not able to later deny a
claim of having sent and received the message in the conversation or the order
of messages within the conversation.

2.2 Intel-SGX

Intel Software Guard Extensions (SGX) is a popular TEE available in Intel
desktop and server CPUs [9]. SGX is a set of CPU extensions that protect

TEE-Receipt 5

the execution of an application and its data from other software on the same
platform, including the operating system and hypervisor.

A user-space application can use SGX to establish a hardware-enforced TEE,
called an enclave. Importantly, data within an enclave can only be accessed from
the code of that enclave. Enclave functions can be called from outside via a prede-
fined set of Enclave Calls (ECALLs) while the enclave can call outside functions
through a set of Out Calls (OCALLs). Enclave data is stored in an encrypted
form inside the Enclave Page Cache (EPC). Note that EPC is a special region
of memory that can be accessed only by the CPU. Before enclave data leaves
the CPU (e.g. is written to RAM), it is integrity-protected and encrypted using
a CPU-only accessible key [17]. This protects the integrity and confidentiality
of the enclave’s data against privileged software and an adversary with physical
access.

During enclave initialization, the CPU measures the enclave’s code and con-
figuration generating the MRENCLAVE value. MRENCLAVE forms the enclave
identity and can be used to identify the correct enclave.

SGX comes with the feature of protected data exporting, called sealing, to
store the enclave sensitive data outside the enclave securely [1]. The enclave data
is sealed by encrypting it using a CPU-protected key that can only be accessed
by enclaves running on the same CPU with the same MRENCLAVE value. SGX
also supports monotonic counters that prevent rollback attacks on the sealed
data.

Last, SGX provides remote attestation [1] so that a remote party ascertains
that a message comes from an enclave with precise code and hardware configu-
ration. The enclave provides the remote party with a signed quote including its
MRENCLAVE and public key values. The remote party validates this quote by
calling Intel Attestation Service (IAS) and then constructs a secure encrypted
channel directly to the enclave.

3 System Model and Requirements

3.1 System Model

In web-based applications, the interaction between a user and a server is called
web transaction [42]. A simple web transaction can comprise a user request, a
web server response, and database access for read or write.

TEE-Receipt aims to enhance the security of web transactions by ensuring
the non-repudiation of the request messages sent by the user to the web server
(i.e., NRO and NRR). The core functionalities of TEE-Receipt are as follows:

– Server authentication: The server’s identity and its running code are
verified through TEE remote attestation.

– Secure channel establishment: The communication channel between the
client and the server’s TEE is secured via a secure key exchange established
via the attestation.

6 M. Hofny et al.

Server

TEE-Receipt
Add-on

TEE

Web Server

User
Web

Browser

Attestation Quote

Username & Encrypted Password

Username,
Password Encrypted Session Signing Key

Request & NRO

Response & NRR

Transaction
Request

DB

Fig. 1. The system model of TEE-Receipt framework

– User authentication: User authenticity is verified by validating the en-
crypted user credentials inside the TEE to ensure that only authorized users
can access the web application and prevent leaking user secrets to dishonest
operators. After successful authentication, the server’s TEE grants the user
a temporary signing key for transaction request integrity and authenticity.

– Non-repudiation evidence collection: Each transaction request is signed
within the server’s TEE to serve as NRR evidence, providing proof of receipt
of the transaction request by the server.

3.2 Security and Trust Assumptions

In this paper, the service provider may intend to deny its involvement in trans-
actions. It is semi-trusted where some of its functions are conducted inside a
TEE while other functions are accessible by dishonest operators. A dishonest
operator has access to and control over server operations, including accessing
databases and audit logs. This allows the dishonest operator to manipulate and
tamper with databases and audit logs to remove any evidence related to specific
transactions.

However, the adversary, a dishonest server operator, is limited by its com-
putational resources, making it unable to break well-implemented cryptographic
protocols and guess cryptographic keys. This adversary cannot penetrate or ma-
nipulate the client-side software such as the operating system and web browser.
The TEE hardware and its attestation service are trusted, and the Public Key
Infrastructure (PKI) can be relied on for correctly binding entities to public
keys used in TLS. Additionally, all potential side-channel attacks on the TEE
are mitigated using appropriate solutions.

3.3 Requirements

TEE-Receipt aims to provide non-repudiation for web-based applications, con-
sidering the potential presence of dishonest operators. To achieve this goal, TEE-
Receipt must meet certain security requirements. First, the server’s secrets must
be protected from dishonest operators. Second, user passwords must be pro-
tected from dishonest operators when exchanged with the server’s TEE in the

TEE-Receipt 7

registration and login process. Third, server identity must be verified to ensure
the linkability between the collected NRR evidence and the server’s TEE and
to avoid the user providing passwords to the wrong TEE. Finally, TEE-Receipt
must preserve the integrity of the data by detecting alteration attempts made by
any entity, including a server operator. These security requirements are essential
to ensure the effectiveness of the non-repudiation guarantee.

4 Design

TEE-Receipt consists of a client-side (i.e., browser extension) and a server-side
TEE. Fig. 1 shows the interactions between the client and server and the subse-
quent sections delve into these interactions and the complete operations in more
detail.

4.1 Initialization

As a preliminary step, the TEE initializes the necessary cryptography assets.
First, it generates a secret key, denoted as k, used in the Cipher-based Message
Authentication Code (CMAC) [13] calculation to protect the user’s password as
explained in Section 4.3. Moreover, it generates a signing key-pair (sks, pks) for
NRR generation purposes. Importantly, the generated secrets are intended for
long-term use and would reside on the server side, hence the TEE takes measures
to seal them securely beforehand. For linking TEE’s instance to a specific server,
the verification key, pks, can be embedded in both the server’s TLS certificate
(as a subject unique identifier [4]) and the TEE’s attestation quote.

4.2 Server Authentication and Secure Channel Establishment

Users first verify the legitimacy of the remote server incorporating TEE and
establish a secure communication channel with the TEE before engaging in in-
teractions with the server. After the browser completes TLS certificate verifi-
cation, the server authentication process still requires verifying the identity of
the TEE and the software running within it. The TEE’s identity can be veri-
fied using a non-interactive remote attestation protocol, as detailed in [32]. This
non-interactive approach enables users to verify the remote server, establish a
secure channel, and submit a request in a single round-trip. Server authenti-
cation and secure channel establishment operate as follows. Initially, the TEE
generates an Elliptic-Curve Diffie-Hellman (ECDH) key pair (a,A) every time it
starts up. When a user starts a session with a server, it requests the TEE quote
from the server. The TEE subsequently generates a quote containing its public
key A, a unique cryptographic representation of the running code, and pks. Af-
ter receiving the quote, the user submits it to the remote attestation server for
verification. Upon successful verification, the software identity inside the TEE
is verified by comparing the provided code representation (from the attestation
quote) with the approved TEE-RECEIPT representation.

8 M. Hofny et al.

After passing the above verifications, the user generates an ECDH key pair
(b, B) and calculates the session shared key Ks = b · A. The session key Ks to
ensure the confidentiality of the user’s credentials and session signing key, as
explained in Section 4.3.

TEE

11. KS = a·B
12. (UID, p)← DKS(cu)
13. cmac = CMAC(p | UID, k)
14. Assert(IsRegistered(UsersList,Hash(UID))== False)
15. UsersList.append(Hash(UID))

Web Server

10. Register(cu | B)

16. UID | cmac

Web Browser

5. VerifyQuote(Quote)
6. (b,B) ← GenarateKeyPair()
7. KS = b·A
8. cu = EKS(UID | p)

4. Registration Form | Quote 3. Quote

9. cu | B

18. Sucessful Registration

1. Registration Request 2. Get Quote

17. DB.Users.Add(UID|cmac)

Fig. 2. A sequence diagram of a new user registration process.

4.3 User Authentication

In traditional web applications, the server stores the output of password hashing.
Although HTTPS provides confidentiality and integrity between the browser and
the server, the password can still be exposed to a potentially dishonest server
operator and be susceptible to online/offline guessing. TEE-Receipt addresses
this concern by encrypting the user’s password and submitting it to the server
TEE, storing the password’s CMAC value instead of the hash value, and im-
plementing rate-limiting as proposed in SafeKeeper [29]. Furthermore, all the
operations of password decryption, CMAC generation and verification, and rate
limiting are conducted inside the TEE.

Fig. 2 shows the steps of the new user registration process. The user submits
his User IDentification (e.g., email) to the server TEE in encrypted form as
cu = EKs

(UID|p), using the session shared key Ks. Next, the TEE decrypts
the UID and password pair, (UID, p) = DKs

(cu). If the TEE did not find the
UID in the registered users’ list, it would compute the CMAC of the UID and
password pair using the TEE CMAC key k and append the UID’s hash to the
registered users’ list. Computing the CMAC instead of the normal hash makes it
more difficult for anyone, including the server operators, to guess the password
without the TEE CMAC key, k. Finally, the calculated CMAC value, cmac, is
stored in the database.

The authentication process involves several steps, as shown in Fig. 3. First,
the user encrypts their password using the shared session key, cp = EKs

(p), and

TEE-Receipt 9

TEE

12. Ks = a·B
13. p = DKs(cp)

14. Assert(cmac == CMAC(p|UID,k))
15. (ski,pki)← GenerateKeyPair()
16. cs = EKs(ski)

17. VrfyKysMap[UID] = pki

Web Server

11. login(cp | B | UID | cmac)

18. cs

10. cmac = DB.Users.GetCMAC(UID)

Web Browser

5. VerifyQuote(Quote)
6. (b,B) ← GenarateKeyPair()
7. KS = b·A
8. cp = EKs(p)

4. Login Form | Quote 3. Quote

9. UID | cp | B

19. cs

20. ski = DKs(cs)

1. Login Request 2. Get Quote

Fig. 3. A sequence diagram of a user authentication process.

submits their UID, encrypted password, and public key, B, to the server. The
server then retrieves the CMAC value, cmac, from the database and passes it
along with the UID, encrypted password, and B to TEE. TEE generates the
shared session key, Ks = a · B, decrypts the password, p = DKs

(cp), and com-
putes the CMAC of the provided password and UID, cmac = CMACk(p, UID).
If the computed cmac matches the stored cmac, TEE assigns a short-lived sign-
ing key pair (ski, pki) to the authenticated user. The TEE then adds the map of
UID and the verification key, pki, to the verification keys list of the currently
running session, encrypts the signing key, cs = EKs(ski), and returns the result-
ing encrypted signing key, cs, to the server for delivering it to the user. Finally,
the user gets the signing key, ski = DKs

(ski), and keeps it in memory for later
use during the running session.

Using only the password to calculate the CMAC’s value, as done in Safe-
Keeper [29], enables a dishonest server operator to compromise the user authen-
tication process. Such an operator can provide the TEE with a specific user’s
UID, a newly generated public DH key, and valid values of the password and
CMAC belonging to a different registered user under the operator’s control.
With this, the operator can bypass the CMAC validation step and acquire a
valid signing key, allowing operators to impersonate the original users and per-
form actions on their behalf. As a solution for that problem, the CMAC value
is calculated using a combination of both the password and UID, instead of just
the password. This solution forces the server to have both the password and UID
of the target user to compromise the authentication process.

10 M. Hofny et al.

Web Browser

1. sb=signski(Request)
2. Request | sb

10. st

Web Server

4. Sign(Request | sb | UID)
3. UID = Session.getUID()

9. DB.Logs.Add(UID | Request | st)

TEE

5. pki = VrfyKysMap[UID]
6. Verifypki

(sb,Request)
7. st = signsks(Request|UID)

8. st

Fig. 4. A sequence diagram of a request’s content signing process.

4.4 NRO and NRR collection

To ensure asymmetric non-repudiation for a transaction, the user and server’s
TEE sign the content of the transaction request as NRO and NRR evidence,
respectively. Thus, the NRO evidence is proof of the request’s integrity and origin
authenticity. Conversely, the NRR evidence is utilized in dispute resolution to
verify that the server TEE received the transaction request. As shown in Fig. 4,
the user first signs the content of the transaction request, sb = Sigski

(Request),
and sends the transaction request along with the signature to the server. The
server then sends the received request, signature, and the user’s UID to the TEE.
TEE uses the UID value to obtain the user’s verification key, verifies the user’s
provided signature, V erifypki(Request, sb), and signs the combination of the
request and user UID. TEE then returns its signature as NRR to the server. The
server adds a new transaction log, including the user request log text, UID, and
the TEE signature. Finally, the server forwards the NRR evidence to the user. To
preserve the order of NRR evidence, the TEE can maintain a monotonic counter
of the received requests and add this counter value to the NRR evidence. Since
the temporary signing key pair (ski, vki), is securely linked to the UID and the
UID is tied to the user’s password via CMAC calculation, as explained in Section
4.3, a dishonest operator cannot access the user’s password. This ensures that
only the user who has the correct password can initiate the relevant transaction
request.

4.5 Sensitive Data Exclusion

To address the issue of sensitive data contained within the collected NRO and
NRR evidence, it is crucial to consider mechanisms that exclude such data from
the generated evidence. This sensitive data may include personally identifiable
information such as social security numbers, birth dates, place of birth, and
financial information like bank account details, credit card numbers, and tax-
related information. Therefore, it becomes necessary to develop a mechanism

TEE-Receipt 11

that allows for the exclusion of sensitive data while generating the NRO and
NRC evidence.

Both TLS-N [39] and ROZEN [6] have recognized the sensitive data issue
and provided the client and server with the capability to redact sensitive data
during the generation of non-repudiation evidence. However, the method used
in these protocols is complex and lacks flexibility. It involves dividing the TLS
records into smaller chunks to exclude sensitive data selectively. This approach
introduces challenges, especially when dealing with small-sized sensitive data, as
it requires increasing the number of chunks. Consequently, this leads to a higher
processing overhead, which can impact the overall efficiency of the system.

TEE-Receipt can be extended to offer a simpler and more flexible approach
to exclude sensitive data fields. Initially, the sensitive data field can be identified
and marked as such, for example, by adding a class attribute. The client then
generates and sends two signatures to the TEE. The first signature encompasses
all the fields of the request and is used by the TEE to validate the integrity of
the request’s content. The second signature, on the other hand, includes only
the non-sensitive data fields and is used as NRO evidence. This approach pro-
vides a straightforward and elastic solution for excluding sensitive data from
the generated evidence, ensuring privacy and security in the non-repudiation
process.

5 Implementation

In this section, we introduce the implemented prototype that demonstrates the
functionality of TEE-Receipt. The prototype includes a client-side implementa-
tion of the framework as a Google Chrome extension and a server-side imple-
mentation as an SGX enclave running on the server machine. It’s worth noting
that any TEE vendor (not necessarily providing attestation-based key deriva-
tion) that offers isolated execution, sealed storage, and remote attestation can
be used for server-side implementation. However, we use Intel SGX due to its
popularity and ease of use [29]. The following sections discuss more details of
the client and server sides.

5.1 Server-side SGX Enclave

The server-side SGX enclave provides its functions through 5 ECALLs: ini-
tialize, quote, register, login, and sign. The Initialize ECALL function config-
ures the enclave’s initial state by setting the necessary cryptographic keys. The
Quote ECALL generates an enclave quote. The Register ECALL and Login
ECALL handle user registration and authentication, respectively. Finally, the
Sign ECALL verifies the user’s NRO evidence and generates the server-side
NRR evidence.

Initialize ECALL The Initialize ECALL function is responsible for configuring
the starting state of the enclave. It sets the values of the CMAC key k, signing

12 M. Hofny et al.

key pair (sks, pks), and session ECDH key pair (a,A). For the first run, Initialize
ECALL generates random values for k, the (sks, pks) pair, and the (a,A) pair.
It then seals k and sks. In subsequent runs, when k and the (skS , pkS) pair are
initialized, Initialize ECALL sets k and sks from the sealed inputs and generates
the (a,A) pair only. In terms of required memory, the value of k is stored in a
16-byte array structure, while the values of a and skS are stored in 32-byte array
structures. The values of A and pks are stored in two array structures, each with
a length of 32 bytes.

Quote ECALL The quote ECALL generates an enclave quote that serves as
proof of the authenticity of the server and enclave code during remote attesta-
tion. This quote is signed by the enclave and includes the public ECDH session
key, A, and MRENCLAVE.

Register ECALL The register ECALL generates the CMAC value for a newly
registered user. It accepts the user’s encrypted UID and password pair and public
ECDH key B as inputs and returns the UID and calculated CMAC. The public
key is stored in 64 array structures while the resulting CMAC is stored in a
16-byte array structure. The encrypted pair of UID and password is stored in a
byte array with a variable length. The Advanced Encryption Standards (AES)
[38] algorithm with the counter mode is used in password decryption and the
Rijndael [40] algorithm is used to compute the CMAC value for the combination
of the user UID and password.

Login ECALL The login ECALL performs password-based user authenti-
cation. It accepts the user’s encrypted password, public ECDH key B, UID,
and the stored CMAC value (from the server database) as inputs. The login
ECALL returns a temporary signing key, in an encrypted form, used for the
user’s NRO generation purposes. Like the register ECALL, the login ECALL
utilizes the AES algorithm with counter mode and the Rijndael algorithm for
encryption/decryption and CMAC operations, respectively.

Sign ECALL The sign ECALL is responsible for verifying the user’s NRO
evidence and generating the server-side NRR evidence. It takes the user request,
signature, and session UID as inputs and outputs the enclave signature and
the user session verification key. The Elliptic Curve Digital Signature Algorithm
(ECDSA) [25] is used for both verifying the user’s signature and generating the
enclave signature.

5.2 Client Side Chrome Extension

The Chrome extension of the client side contains two elements: a background
script and a content script [8]. The background script is responsible for server

TEE-Receipt 13

authentication and secure channel establishment, temporary signing key decryp-
tion, and backing up collected NRR evidence in a cloud storage service. On the
other hand, the content script is injected into every webpage to perform the op-
erations of password encryption and NRO evidence generation. Further details
on the main functions of the extension will be explained in the following sections.

Server Authentication and Secure Channel Establishment The back-
ground script validates the enclave quote and identity for server authentication.
First, it extracts the enclave quote from the headers of the server HTTP response
and checks the validity of that quote using the IAS service API. After success-
ful quote verification, it compares the provided enclave MRENCLAVE with the
approved value of the TEE-Receipt enclave. Once the server is authenticated,
the background script generates a new ECDH key pair (b, B) and calculates the
shared session key, KAB , between the user and the server enclave. At the end,
the background script sends the session key, KAB , and the user public key, B,
to the content script for later use, such as password encryption.

Password Encryption The content script of the extension handles password
encryption for web pages that prompt the user to enter their password, such
as registration and login pages. All password fields are encrypted by the shared
session key, KAB , using the AES algorithm with counter mode. Eventually, the
encrypted password and user public key are represented in hexadecimal string
format and submitted to the server.

NRO Evidence Generation Once the user has successfully authenticated and
obtained the encrypted session signing key, cs, the background script decrypts
that key using AES with counter mode. Afterward, the signing key, ski, is passed
to the content script. When the user issues a new transaction request, the content
script signs the request’s content with ski, generating NRO evidence, using the
ECDSA algorithm before submission.

6 Deployment

This section first discusses the requirements of TEE-Receipt to be integrated
with real systems. Then, it presents more details about TEE-Receipt integration
with WordPress.

6.1 Requirements

The integration with the framework’s TEE enclave and access to its ECALLs, as
detailed in Table 1, requires specific modifications to the user registration, user
login, and form processing logic of the current system. In addition, it requires a
modification for forwarding the enclave attestation quote to the user. For user
registration, the Register ECALL replaces the used password hashing method.

14 M. Hofny et al.

Similarly, the Login ECALL replaces both the password hashing and verification
steps in the login logic. Additionally, the signing key, assigned by the enclave,
should be returned to the client as an HTTP response header. The form pro-
cessing logic requires calling the Sign ECALL, adding the transaction log to the
database, and returning the NRR evidence to the user in the response message.
Last, the attestation quote should be returned by calling the Quote ECALL. Al-
though these adjustments entail some development effort, they remain relatively
minor compared with the alternative of constructing an entirely new system.

Table 1. The enclave APIs list.

API Description

Initialize(sealed sks: unsigned byte*,
sealed k: unsigned byte*): void

Initializes the TEE secrets, sks and k.

Quote(): unsigned byte[1300] Generates the TEE attestation quote.

Register(cp:unsigned byte*, B: unsigned
byte[64]): unsigned byte[8], unsigned
byte[64]

Assigns the UID and calculates the CMAC
value of a new user.

Login(cp:unsigned byte*, B: unsigned
byte[64], UID: unsigned byte[8], cmac: un-
signed byte[64]): unsigned byte[32])

Checks user credentials and generates a
session signing key pair.

Sign(Request: unsigned byte*, ST : un-
signed byte[64], UID: unsigned byte[64],
PKi: unsigned byte[64]&): unsigned
byte[64]

Verifies the client’s signature and generates
the TEE’s signature.

6.2 Integration with Wordpress

WordPress [46] stands as a PHP-based content management system renowned
for its ability to facilitate the creation of static web pages through a user-friendly,
code-free interface, employing a drag-and-drop paradigm, primarily tailored for
blogs. However, WordPress extends its functionality to accommodate dynamic
page creation and form generation using plugins such as WPForms [48] and
Forminator [11]. Normally, non-admin users cannot set their password. However,
the ”Theme My Login” plugin [35] enables users to set their passwords.

To utilize the functionality of TEE-Receipt in WordPress, we developed a
relayer and a PHP module to interact with the enclave APIs. The relayer is an
ASP.NET application serving as an intermediary interface for the enclave APIs.
It furnishes a set of APIs mirroring the enclave’s APIs. These APIs can be ac-
cessed via URLs without low-level socket coding. In parallel, the framework’s
PHP module interfaces with the relayer, facilitating the incorporation of en-
clave functionality into other PHP scripts. Furthermore, we applied the required
modifications to integrate with the enclave APIs, as illustrated in Table 2. The
total Lines of Code (LoC) affected by the modifications is 26 which is negligible
compared to WordPress’s 350k LoCs source code [45].

TEE-Receipt 15

Table 2. Modifications to WordPress source code.

Purpose Details Function File Directory LoC

1 Forward the enclave
attestation quote to
the client.

AddingWordpress action and defin-
ing a function that calls the enclave
Qoute ECALL and returns the out-
put as HTTP response header.

NA functions.php /wordpress/
wp-content/
themes/
twentytwen-
tyone

8

2 Calculate the CMAC
and UID for a new
user

Calling the Register ECALL using
the TEE-Receipt php module in-
stead of calling the HashPassword
function of the PasswordHash mod-
ule.

wp hash
password

pluggable.php /wordpress/
wp-includes/

3

3 Calculate and match
the CMAC of a user
password.

Calling the login ECALL using the
TEE-REceipt php module instead
of calling the HashPassword func-
tion of the PasswordHash module
and matching the password.

wp check
password

pluggable.php /wordpress/
wp-includes/

7

4 Verify the browser
signature and gen-
erate the NRR evi-
dence.

Concatenating all form fields, call-
ing the Sign ECALL, and forward-
ing the NRR evidence to the client.

process class-
process.php

/wordpress/
wp-content/
plugins/
wpforms-lite/
includes/

8

Total LoC 26

7 Security Analysis

This section evaluates the effectiveness of TEE-Receipt in meeting the require-
ments stated in Section 3.3.

7.1 Server Secrets Protection

The server secrets, including CMAC and signing keys, are initialized and man-
aged within a TEE. Additionally, sealed copies of these secrets are exported to
server storage. As a result, adversaries can only obtain these secrets by breaking
the TEE’s protection, such as by conducting side-channel attacks or breaking
the encryption of the sealed copies. Assuming that all side-channel attacks of
SGX are mitigated and the adversary cannot break the well-implemented cryp-
tography used in secret sealing, the adversary has no advantage in obtaining
server secrets.

7.2 Server Authentication

Before sending sensitive information, including passwords, users verify the au-
thenticity of the server and the code running within a TEE. To bypass authen-
tication, an adversary must break the enclave quote and identity verification.
There are two possible directions the adversary thinks in. The first direction is
generating a custom enclave impersonating the genuine enclave. Even though this
trial passes the quote verification, it does not pass the enclave identity check. The
second direction is forging a valid enclave quote with the same MRENCLAVE
as the genuine enclave. This trial is also infeasible as the quote containing the

16 M. Hofny et al.

MRENCLAVE is authenticated via the hardware-secured key of the TEE. Given
the formidable level of complexity involved in attempting to guess the TEE’s
signing key, and the inherent incapacity of adversaries to execute side-channel
attacks for key retrieval, any endeavor to replicate the MRENCLAVE and the
associated legitimate enclave signature remains implausible.

7.3 Password Protection

Assuming attack-free clients, TEE-Receipt protects users’ passwords against dis-
honest operators by ensuring the confidentiality of the password when exchanged
between the user and the TEE and eliminating online and offline attacks against
the stored password hash.

Password Confidentiality The potential disclosure of the user’s password
hinges on the adversary’s capacity to execute specific attacks. First, the adver-
sary must orchestrate a Man-in-the-Middle (MITM) attack by impersonating
the server’s TEE. However, the impersonation of the server’s TEE is infeasible,
necessitating the presentation of a valid quote with a specific identity, MREN-
CLAVE —an endeavor rendered implausible as expounded earlier. Second, the
adversary would need to successfully guess one of the session keys, encompassing
the private keys of both the server’s TEE and the client, alongside the session
shared key. Yet, this undertaking also proves unattainable. Given the adversary’s
inability to either convincingly impersonate the server’s TEE or procure a session
key, the confidentiality of the transmitted data, including the password, remains
safeguarded throughout its transmission and processing within the server. Con-
sequently, attackers are prevented from gaining any advantage in acquiring the
user’s password.

Offline Guessing Attacks Offline guessing attacks are mitigated by employ-
ing the CMAC computation for password verification, thereby rendering offline
attacks significantly more challenging, even in the case of weak passwords. An
adversary attempting such an attack must contend with the requirement of si-
multaneously guessing both the password and the CMAC key. While the pass-
word’s vulnerability to being easily guessed is acknowledged, the same cannot be
said for the CMAC key, as its cryptographic strength precludes feasible guess-
ing. In addition, it is not feasible to get the CMAC key from the sealed copy, as
discussed above in Section 7.1.

Online Guessing Attacks In online guessing attacks, an adversary directly
guesses the password and tests it against the operational TEE enclave. In such
cases, the adversary is not required to guess the CMAC key and is solely fo-
cused on the password. Consequently, the proposed framework introduces a rate-
limiting mechanism [29] designed to elongate the time intervals between succes-
sive authentication attempts, effectively heightening the complexity of password

TEE-Receipt 17

guessing for malicious actors. As an illustration, assuming an average password
length of 20 bits and an established maximum authentication rate of 144 at-
tempts per day, an attacker would, on average, need approximately 10 years to
successfully guess the password [29].

7.4 User Authentication

Users are authenticated within the server’s TEE based on their passwords. For
an adversary to successfully impersonate a user, they first need to acquire the
user’s password. Assuming that the client side is free of malware, strong pass-
words are used, and thorough measures are taken to protect the confidentiality
and strength of passwords against both offline and online attacks. This greatly
reduces the chance of an adversary bypassing the user authentication process.

7.5 Integrity

The framework ensures the integrity of transaction requests by necessitating user
signatures before transmission to the server. Moreover, the user’s signing key is
securely assigned by the TEE and transmitted to the user in encrypted form.
To manipulate the content of a user’s request, an adversary must first obtain
the corresponding signing key. Under the conditions that the client side remains
devoid of malware and that the adversary’s ability to impersonate the client or
the TEE of the server is negated, the adversary is left with two potential avenues
to breach request integrity: either guessing the signing key or a session key.
However, both of these avenues remain unfeasible for the adversary to exploit.
Consequently, any attempt to modify the user’s transaction request becomes
unattainable for the adversary.

7.6 Non-repudiation

Considering only potential repudiations from the service provider, there are 2
possible repudiations: 1) a service provider denies receiving a legitimate trans-
action from an authorized user and 2) a service provider denies an illegitimate
transaction conducted by a dishonest operator on behalf of a user. There are
two scenarios for repudiation of type 2. In the first scenario, a dishonest server
operator conducts an illegitimate transaction with a log record. In the other sce-
nario, it may conduct an illegitimate transaction without a log record. The latter
scenario is considered an illegitimate transaction without any verification. Given
that, the dishonest operator cannot generate a valid signature for an illegitimate
transaction without either getting the TEE signing key or impersonating a user
and it is infeasible to either get the TEE signing key or impersonate a user,
as discussed in Sections 4.3 and 7. Then, the repudiations of type 1 and type
2 scenario 2 are resolved by verifying the TEE’s NRR evidence using the user
request and UID and the server’s TEE verification key, pks. TEE-Receipt offers
a strong NRR due to the secure protection of the server signing key within the

18 M. Hofny et al.

TEE, as described in Section 7.1. Note that the NRR is deemed strong because
of the strong threat model including dishonest operators, while the standard
NRO offered by TEE-Receipt is based on the common Dolev-Yao threat model,
e.g., not including insider threats.

8 Performance Evaluation

This section presents the performance measurement of TEE-Receipt involving
the average processing rates and the latency overhead from the user perspective.

During the conducted experimental test, both the client and server compo-
nents were deployed within the confines of the same local network. The hardware
setup utilized an Intel Core i7-10700 2.90GHz CPU with 16GB of RAM on the
Windows 10 operating system. Furthermore, the specific version of the Intel SGX
Software Development Kit (SDK) employed for this test was version 2.14.1.

8.1 Processing Rate

The average processing rate, i.e., the number of operations performed per second,
provides valuable insights into the system’s capacity to handle growing workloads
and accommodate the increase of users. It is calculated for the enclave Regis-
ter, Login, and Sign ECALLs. The average processing rates of Register, Login,
and Sign ECALLs are 2.6k, 1.5k, and 1.2k operations per second, respectively.
It is worth mentioning that the average processing rate is computed over 1M
iterations for each ECALL of the three ECALLS. Moreover, the Sign ECALL is
evaluated with a request size of 32 bytes.

8.2 Latency

Considering user experience, it is crucial to consider the latency overhead intro-
duced by the TEE-Receipt extensions on both the client and server sides when
integrated into real systems. This section presents the latency overhead of TEE-
Receipt integrated with WordPress for each of Enclave’s quote verification, user
registration, login, and form submission.

The Enclave’s quote verification process through the Intel Attestation Service
(IAS) takes 140 ms on average. This delay does not negatively impact the user’s
browsing experience since the verification process runs concurrently with page
loading and runs when a user registers and logs in.

Table 3 presents the average processing overhead of TEE-Receipt for user reg-
istration, user login, and form submission on WordPress. The user registration
overhead includes password encryption on the client side and TEE-Receipt’s reg-
istration ECALL on the server side. Similarly, the user login overhead comprises
password encryption on the client side and the utilization of TEE-Receipt’s login
ECALL. The form submission overhead involves NRO evidence generation on
the client side and NRR evidence generation via the TEE-Receipt Sign ECALL
on the server side. TEE-Receipt adds 5 ms, 10 ms, and 17 to 27 ms overheads

TEE-Receipt 19

to the user registration, login, and form submission (with 0.1k to 2k Bytes con-
tent) processes, respectively. Practically, this overhead is small compared to the
average response time for web applications [34]. In conclusion, TEE-Receipt op-
erations do not adversely impact the user experience.

Table 3. The average processing overhead in ms of TEE-Receipt utilized in WordPress
over 500K iterations.

Password Length/ Content Size Average Overhead (ms)

User Registration 12 Bytes Password 5ms

User Login 12 Bytes Password 10ms

Form Submission 0.1k to 2K Bytes Content 17 to 27 ms

Table 4. Related Work Comparison.

Work Trustworthiness Evidence Type Sensitive
Data Exclu-
sion

TTP Communications Hardware

TEE-Receipt Server is semi-trusted NRO and strong NRR No No TTP 2 messages per a
transaction

A TEE for the server

Coffey [7] Sender and receiver not
trusted while TTP is trusted

NRO and NRR No Inline TTP 11 messages per a
transaction

None

Resondry [37] Sender and receiver not
trusted while TTP is trusted

NRO and NRR No Inline TTP 6 messages per a
transaction

None

Schiavone [41] Server is trusted NRO and NRR No Online TTP 2 messages to open
and renew a session
and 2 messages per a
transaction

A biometric reader
for each user

Hiltgen [19] Server is trusted NRO and NRR No No TTP 4 messages per a
transaction

A smart card and
reader for each user

TLS-N [39] Server is trusted NRC Yes No TTP 2 messages per a
transaction

None

ROZEN [6] Server is trusted NRC Yes No TTP 2 messages per a
transaction

None

Guann [18] Server is semi-trusted (web
context)

NRC No No TTP 2 messages per a
transaction

TEE for a server
(web context)

9 Related Work

Various works [30, 7, 37, 27, 52, 41, 19, 39, 6] have been presented to establish re-
liable and efficient non-repudiation protocols. Some of these protocols [7, 37, 27,
52, 41] rely on TTP to ensure non-repudiation, while others do not [19, 39, 6, 18].
The TTP-based protocols can be categorized into two groups based on how the
TTP is involved in the communication. The first group employs inline TTPs
in which the TTP is involved in each transaction between sender and recipient
parties. An early example of this group is Coffey’s fair non-repudiation protocol
based on inline TTP [7], where a non-repudiation server (NRS) serves as the in-
line TTP. The NRS receives a sender’s message and signature as proof of origin,
then forwards a commitment of the message to the recipient, along with a signed

20 M. Hofny et al.

acknowledgment. The sender’s message and the recipient’s acknowledgment in-
clude a trusted timestamp obtained from a time-stamping authority (TSA) to
prevent replays. Similarly, subsequent works, such as the fair non-repudiation
framework for web-based transactions using inline TTP presented by [37], have
expanded upon these concepts. However, the client does not have to hold a pri-
vate key where both key maintaining and cryptography operations including
digital signature are delegated to the inline TTP.

Although inline TTP-based protocols offer robust non-repudiation consider-
ing untrustworthy sender and receiver, they can experience delays due to the
extra communication overhead resulting from the three-way transmission be-
tween sender, TTP, and recipient parties. Furtheremore, the risk of potential
privacy violation. To address this, Schiavone proposed a non-repudiation proto-
col based on an online TTP [41] in which the TTP is involved once in a session.
The non-repudiation evidence is generated only when the session is initiated or
extended. Unfortunately, this solution does not provide non-repudiation for each
request. Consequently, a dishonest operator can pass illegitimate requests as it
comes from authorized user during the session.

To eliminate the need for a TTP and its associated overhead, authors of
[19] proposed a non-repudiation system for online banking using a JavaCard. A
secure JavaApplet integrates with the browser, allowing the JavaCard to sign
user-initiated transaction requests. The bank server responds with an encrypted,
signed transaction, and user approval on the reader finalizes the process. This
ensures robust non-repudiation in online banking. However, this solution assumes
that the server is trusted and does not address the issue of dishonest operators.

Moreover, TLS-N [39] and ROZEN [6] were introduced as extensions to the
TLS protocol to provide non-repudiation capabilities. These extensions enable
non-repudiation of conversation and offer the flexibility to exclude sensitive data
from the generated NRC evidence. However, both TLS-N and ROZEN assume
that the server is trusted and do not address the protection issue of the server’s
secrets and users’ credentials from dishonest operators. They rely on PKI for
client and server authentication, necessitating clients to maintain their long-
term private keys. Moreover, the NRC evidence generation for all exchanged
messages between the client and server results in more computation overhead
and requires substantial storage to back up this evidence.

Using TEE, the authors of [18] presented an attack on deniable commu-
nications [5]. The proposed attack enables parties to generate non-repudiable
transcripts of the communications using the remote attestation feature of TEE.
In this attack, the TEE attests to all messages exchanged between parties to
enable a third-party verifier to validate these transcripts. It is more suitable for
peer-to-peer messaging applications. However, in web applications, the attack
method does not address the protection issue of users’ credentials from dishon-
est operators since the data store is still exposed to operator access. Additionally,
it requires the full messaging protocol to run inside the TEE.

In summary, our TEE-based TEE-Receipt represents a suitable solution for
web-based transactions compared to the mentioned protocols because it achieves

TEE-Receipt 21

non-repudiation without dependence on a TTP with a small communication
overhead, just two messages per transaction, as Table 4 shows. It addresses the
potential presence of dishonest operators on a legitimate server and eliminates
the need for long-term certified key pairs for users. Additionally, it can be ex-
tended to sensitive data exclusion from the collected evidence without complex
computation, and system usability is not impacted.

10 Conclusion

The proposed framework, TEE-Receipt, leveraging a Trusted Execution Envi-
ronment (TEE), effectively protects users from potential server repudiations. It
ensures the exchange of Non-Repudiation of Origin (NRO) and Non-Repudiation
of Receipt (NRR) evidence upon completion of a transaction without relying on
a TTP, with a threat model shift considering dishonest operators on the server. It
eliminates the need for long-term certified key pairs for users. Sensitive data can
be excluded easily from the collected evidence without complex computation.
Additionally, it introduces small changes to the system and maintains usability.
Performance evaluations indicate that the framework does not adversely impact
system latency, and from the user’s perspective, the response time remains satis-
factory. Overall, the proposed TEE-based framework offers a secure and efficient
solution to address non-repudiation requirements in web-based transactions, en-
hancing the security and trustworthiness of the system.

References

1. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for cpu
based attestation and sealing. In: Proceedings of the 2nd international workshop
on hardware and architectural support for security and privacy. vol. 13. ACM New
York, NY, USA (2013)

2. Barboza, D.: Online brokers fined millions in fraud case (2003),
http://www.nytimes.com/2003/01/15/business/online-brokers-finedmillions-
in-fraud-case.html

3. Bluehost: Web hosting (2024), https://www.bluehost.com/hosting/shared
4. Boeyen, S., Santesson, S., Polk, T., Housley, R., Farrell, S., Cooper, D.: In-

ternet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile. RFC 5280 (May 2008). https://doi.org/10.17487/RFC5280,
https://www.rfc-editor.org/info/rfc5280

5. Borisov, N., Goldberg, I., Brewer, E.: Off-the-record communication, or, why
not to use pgp. In: Proceedings of the 2004 ACM Workshop on Privacy in
the Electronic Society. p. 77–84. WPES ’04, Association for Computing Ma-
chinery, New York, NY, USA (2004). https://doi.org/10.1145/1029179.1029200,
https://doi.org/10.1145/1029179.1029200

6. Capkun, S., Ozturk, E., Tsudik, G., Wüst, K.: Rosen: Robust and selective non-
repudiation (for tls). In: Proceedings of the 2021 on Cloud Computing Security
Workshop. pp. 97–109 (2021)

7. Coffey, T., Saidha, P.: Non-repudiation with mandatory proof of receipt. ACM
SIGCOMM Computer Communication Review 26(1), 6–17 (1996)

22 M. Hofny et al.

8. Corporation, G.: Chrome extension development: Get started (2022),
https://developer.chrome.com/docs/extensions/mv3/getstarted/

9. Corporation, I.: Intel software guard extensions (intel sgx) (2022),
https://www.intel.com/content/www/us/en/developer/tools/software-guard-
extensions/overview.html

10. for Cyber Security, C.C.: Security considerations when de-
veloping and managing your website (itsap.60.005) (2021),
https://www.cyber.gc.ca/en/guidance/security-considerations-when-developing-
and-managing-your-website-itsap60005

11. DEV, W.: Forminator (2023), https://wordpress.org/plugins/forminator/
12. Dietrich, C., Krombholz, K., Borgolte, K., Fiebig, T.: Investigating system opera-

tors’ perspective on security misconfigurations. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1272–1289
(2018)

13. Dworkin, M.J.: Sp 800-38b. recommendation for block cipher modes of operation:
The cmac mode for authentication (2005)

14. Fortinet: 7 common web security threats for an enterprise (2023),
https://www.fortinet.com/resources/cyberglossary/web-security-threats

15. Fortinet: What is an insider threat? (2023),
https://www.fortinet.com/resources/cyberglossary/insider-threats

16. Greitzer, F.L.: Insider threats: It’s the human, stupid! In: Proceedings of the North-
west Cybersecurity Symposium. pp. 1–8 (2019)

17. Gueron, S.: Memory encryption for general-purpose processors. IEEE Security &
Privacy 14(6), 54–62 (2016)

18. Gunn, L., Parra, R.V., Asokan, N.: Circumventing cryptographic deniability with
remote attestation. In: Privacy Enhancing Technologies Symposium. pp. 350–369.
De Gruyter (2019)

19. Hiltgen, A., Kramp, T., Weigold, T.: Secure internet banking authentication. IEEE
security & privacy 4(2), 21–29 (2006)

20. Homoliak, I., Toffalini, F., Guarnizo, J., Elovici, Y., Ochoa, M.: Insight into insiders
and it: A survey of insider threat taxonomies, analysis, modeling, and countermea-
sures. ACM Computing Surveys (CSUR) 52(2), 1–40 (2019)

21. Hostinger: Web hosting (2024), https://www.hostinger.com/web-hosting
22. Jahanshahi, R., Azad, B.A., Nikiforakis, N., Egele, M.: Minimalist:

Semi-automated debloating of PHP web applications through static
analysis. In: 32nd USENIX Security Symposium (USENIX Security
23). pp. 5557–5573. USENIX Association, Anaheim, CA (Aug 2023),
https://www.usenix.org/conference/usenixsecurity23/presentation/jahanshahi

23. Jang, D., Jhala, R., Lerner, S., Shacham, H.: An empirical study of
privacy-violating information flows in javascript web applications. In: Pro-
ceedings of the 17th ACM Conference on Computer and Communica-
tions Security. p. 270–283. CCS ’10, Association for Computing Machin-
ery, New York, NY, USA (2010). https://doi.org/10.1145/1866307.1866339,
https://doi.org/10.1145/1866307.1866339

24. Jesus, V.: Towards an accountable web of personal informa-
tion: The web-of-receipts. IEEE Access 8, 25383–25394 (2020).
https://doi.org/10.1109/ACCESS.2020.2970270

25. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ecdsa). International journal of information security 1, 36–63 (2001)

26. Jotform: Jotform official website (2024), https://www.jotform.com/

TEE-Receipt 23

27. Kamel, M., Boudaoud, K., Resondry, S., Riveill, M.: A low-energy consuming and
user-centric security management architecture adapted to mobile environments.
In: 12th IFIP/IEEE International Symposium on Integrated Network Management
(IM 2011) and Workshops. pp. 722–725. IEEE (2011)

28. Kammueller, F., Kerber, M., Probst, C.W.: Towards formal analysis of insider
threats for auctions. In: Proceedings of the 8th ACM CCS International Workshop
on Managing Insider Security Threats. pp. 23–34 (2016)

29. Krawiecka, K., Kurnikov, A., Paverd, A., Mannan, M., Asokan, N.: Safekeeper:
Protecting web passwords using trusted execution environments. In: Proceedings
of the 2018 World Wide Web Conference. pp. 349–358 (2018)

30. Kremer, S., Markowitch, O., Zhou, J.: An intensive survey of fair non-repudiation
protocols. Computer communications 25(17), 1606–1621 (2002)

31. Kul, G., Upadhyaya, S.: A preliminary cyber ontology for insider threats in the
financial sector. In: Proceedings of the 7th ACM CCS International Workshop on
Managing Insider Security Threats. pp. 75–78 (2015)

32. Kurnikov, A., Paverd, A., Mannan, M., Asokan, N.: Keys in the clouds: auditable
multi-device access to cryptographic credentials. In: Proceedings of the 13th Inter-
national Conference on Availability, Reliability and Security. pp. 1–10 (2018)

33. Lekies, S., Kotowicz, K., Groß, S., Vela Nava, E.A., Johns, M.: Code-reuse at-
tacks for the web: Breaking cross-site scripting mitigations via script gadgets.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security. p. 1709–1723. CCS ’17, Association for Computing Ma-
chinery, New York, NY, USA (2017). https://doi.org/10.1145/3133956.3134091,
https://doi.org/10.1145/3133956.3134091

34. LittleData: What is the average server response time? (2023),
https://lp.littledata.io/average/server-response-time

35. Login, T.M.: Theme my login (2023), https://wordpress.org/plugins/theme-my-
login/

36. Naderi-Afooshteh, A., Kwon, Y., Nguyen-Tuong, A., Razmjoo-Qalaei, A., Zamiri-
Gourabi, M.R., Davidson, J.W.: Malmax: Multi-aspect execution for automated
dynamic web server malware analysis. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. pp. 1849–1866 (2019)

37. Resondry, S., Boudaoud, K., Kamel, M., Bertrand, Y., Riveill, M.: An alternative
version of https to provide non-repudiation security property. In: 2014 International
Wireless Communications and Mobile Computing Conference (IWCMC). pp. 536–
541. IEEE (2014)

38. Rijmen, V., Daemen, J.: Advanced encryption standard. Proceedings of federal
information processing standards publications, national institute of standards and
technology 19, 22 (2001)

39. Ritzdorf, H., Wüst, K., Gervais, A., Felley, G., Capkun, S.: Tls-n: Non-repudiation
over tls enabling-ubiquitous content signing for disintermediation. Cryptology
ePrint Archive (2017)

40. Sanchez-Avila, C., Sanchez-Reillol, R.: The rijndael block cipher (aes proposal): a
comparison with des. In: Proceedings IEEE 35th Annual 2001 international carna-
han conference on security technology (Cat. No. 01CH37186). pp. 229–234. IEEE
(2001)

41. Schiavone, E., Ceccarelli, A., Bondavalli, A.: Continuous biometric verification for
non-repudiation of remote services. In: Proceedings of the 12th International Con-
ference on Availability, Reliability and Security. pp. 1–10 (2017)

42. Schuldt, H.: Web Transactions, pp. 3523–3524. Springer US, Boston, MA (2009).
https://doi.org/10.1007/978-0-387-39940-9 731

24 M. Hofny et al.

43. Shan, S., Bhagoji, A.N., Zheng, H., Zhao, B.Y.: Patch-based defenses against web
fingerprinting attacks. In: Proceedings of the 14th ACM Workshop on Artificial
Intelligence and Security. p. 97–109. AISec ’21, Association for Computing Ma-
chinery, New York, NY, USA (2021). https://doi.org/10.1145/3474369.3486875,
https://doi.org/10.1145/3474369.3486875

44. Technologies, A.: Trustzone for cortex-a (2022),
https://www.arm.com/technologies/trustzone-for-cortex-a

45. Wordpress: Projects (2023), https://wordpressfoundation.org
46. WordPress: Wordpress official website (2023), https://wordpress.org
47. WordPress: Hosting (2024), https://wordpress.org/hosting/
48. WPForms: Wpforms plugin page (2023), https://wordpress.org/plugins/wpforms-

lite/
49. Yang, Z., Allen, J., Landen, M., Perdisci, R., Lee, W.: TRIDENT:

Towards detecting and mitigating web-based social engineering at-
tacks. In: 32nd USENIX Security Symposium (USENIX Security
23). pp. 6701–6718. USENIX Association, Anaheim, CA (Aug 2023),
https://www.usenix.org/conference/usenixsecurity23/presentation/yang-zheng

50. Yao, M., Fuller, J., Kasturi, R.P., Agarwal, S., Sikder, A.K., Saltafor-
maggio, B.: Hiding in plain sight: An empirical study of web application
abuse in malware. In: 32nd USENIX Security Symposium (USENIX Secu-
rity 23). pp. 6115–6132. USENIX Association, Anaheim, CA (Aug 2023),
https://www.usenix.org/conference/usenixsecurity23/presentation/yao-mingxuan

51. Yasinsac, A.: Insider threats to voting systems. In: Proceedings of the 2010 Work-
shop on Governance of Technology, Information and Policies. pp. 1–8 (2010)

52. Zhang, N., Shi, Q.: Achieving non-repudiation of receipt. The Computer Journal
39(10), 844–853 (1996)

