
On Analyzing SSO Permissions Across Web and
Android Platforms

Fahimeh Rezaei

A THESIS

IN

THE DEPARTMENT OF

CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE

INFORMATION SYSTEMS SECURITY

AT CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

May 2025

© Fahimeh Rezaei, 2025

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Fahimeh Rezaei

Entitled: On Analyzing SSO Permissions Across Web and Android Plat-

forms

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Information Systems Security

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the Final Examining Committee:

Dr. Jeremy Clark Chair

Dr. Mohammad Mannan Supervisor

Dr. Amr Youssef Supervisor

Dr. Jeremy Clark Examiner

Dr. Arash Mohammadi Examiner

Approved by
Dr. Chun Wang, Director
Concordia Institute for Information Systems Engineering

2025
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

On Analyzing SSO Permissions Across Web and Android Platforms

Fahimeh Rezaei

Federated Single Sign-On (SSO) is a widely used authentication method that delegates

user login to Identity Providers (IdPs) such as Google and Facebook. While convenient,

SSO raises privacy and security concerns, particularly, as we observed, when permissions

vary across different platforms (web vs. mobile, even different versions of an app). Ex-

isting work on SSO logins completely lacks the exploration of such variances, and their

privacy consequences, even though many users may use a service both via web and mobile

platforms. This study examines such discrepancies at scale, alongside an analysis of dan-

gerous permissions specifically requested on websites and Android apps. We developed a

framework to automate SSO logins on both platforms, systematically measuring permis-

sion discrepancies. Our analysis, based on 661 and 318 successful logins using Google and

Facebook SSO, respectively, across both the Android app and its corresponding website for

the same service, reveals a 12.58% discrepancy in Facebook SSO permissions and a 3.48%

discrepancy in Google SSO permissions between web and Android platforms. These find-

ings, along with our analysis of top-5K Tranco websites, indicate that Android apps tend

to request more intrusive permissions, underscoring the need for incremental authorization

mechanisms to minimize unnecessary data exposure.

iii

Acknowledgments

This thesis represents not only my work but also the support, encouragement, and gen-

erosity of many people to whom I am deeply grateful.

I would like to express my heartfelt gratitude to Dr. Mohammad Mannan and Dr.

Amr Youssef for their invaluable guidance, insightful feedback, and unwavering support

throughout the research process. Their expertise and encouragement not only shaped the

direction of this work but also sustained my motivation during moments of self-doubt.

To my family, thank you for your unwavering support and belief in me. I am especially

grateful to my loving husband, whose patience, kindness, and constant encouragement have

sustained me through every stage of this journey.

My appreciation also extends to the Office of Privacy Commissioner of Canada (OPC)

for their support, which played a vital role in making this work possible.

Finally, I would like to thank the Madiba Security Research Group for their cama-

raderie, support, and meaningful discussions that contributed to the development of this

work.

To all of you—thank you for being a part of this journey. I am truly grateful.

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement and Analysis Overview 2

1.3 Contributions . 4

1.4 Ethical Consideration and Responsible Disclosure 6

1.5 Thesis Organization . 6

1.6 List of Publications . 7

2 Background 8

2.1 OAuth Overview and SSO Permission Mechanism 9

2.2 OAuth Authorization Flow and Token Types 10

2.3 Known Vulnerabilities in OAuth-Based SSO 12

2.4 IdP App Review and Authorization Models 13

2.5 Scope Design and Permission Granularity 14

2.6 Related Work . 15

2.6.1 Research Gap . 18

v

3 Methodology 20

3.1 SSO Logins on Android Apps . 20

3.2 Mapping of Android Apps and Websites 23

3.3 SSO Logins on Websites . 23

3.4 Collection and Analysis of SSO Permissions 26

4 Results 28

4.1 Prevalence of SSO Logins on Android Apps 28

4.2 Prevalence of SSO Logins on Websites . 30

4.3 Discrepancy of SSO Permissions Across Web and Android Apps 33

4.4 Privacy-Intrusive Permissions . 34

4.5 Case Studies . 37

4.6 Privacy Risks from Permission Adjustments 40

5 Concluding Remarks and Future Works 42

5.1 Key Takeaways . 42

5.2 Limitations . 43

5.3 Recommendations . 44

5.3.1 For Users . 44

5.3.2 For Developers . 45

5.3.3 For Policy Regulators and IdPs . 45

5.4 Future Work . 46

Bibliography 48

Appendix A 55

A.1 Example Cases . 55

vi

List of Figures

Figure 3.1 SSO-Scoper overview . 21

Figure 4.1 Distribution of Facebook permissions in Android apps without the

two minimal permissions of “Name and profile picture” and “Email” 30

Figure 4.2 Distribution of Google permissions in Android apps without mini-

mal permission “See your profile info”. The labels in parentheses indicate

whether the permission involves read (R) and/or write (W) access. 31

Figure 4.3 Distribution of Facebook permissions in websites without the two

minimal permissions of “Name and profile picture” and “Email” 32

Figure 4.4 Distribution of Google permissions in websites without the mini-

mal permission “See your profile info”. The labels in parentheses indicate

whether the permission involves read (R) and/or write (W) access. 33

Figure 4.5 SSO permissions discrepancies: extra permissions requested for

Facebook SSO . 35

Figure 4.6 SSO permissions discrepancies: extra permissions requested for

Google SSO . 36

Figure 5.1 Login process of the “Nations League & Women’s EURO” Android

app, requiring five clicks on buttons with uncommon keywords to reach the

login screen. This complex navigation path causes SSO-Scoper to fail in

detecting and completing the login. 43

vii

List of Tables

Table 2.1 Summary comparison for logins and platform coverage in related

measurement studies . 18

Table 3.1 Keywords for login detection in apps 22

Table 3.2 Keywords for SSO button detection 24

Table 3.3 Regular expressions used for login detection in websites 25

Table 4.1 Summary of app installation and login success 29

Table 4.2 Breakdown of successful SSO logins and permissions discrepancies

across Android apps and corresponding websites 34

Table 4.3 Privacy-intrusive permissions requested by Facebook and Google on

web and Android platforms . 34

Table 4.4 Extra permissions requested on either the mobile platform or website

for notable services . 39

viii

Chapter 1

Introduction

Federated Single Sign-On (SSO) has emerged as a widely adopted authentication strat-

egy, permitting websites to delegate the login process to established Identity Providers

(IdPs) such as Google, Facebook, and Apple. By employing SSO protocols such as OAuth

and OpenID Connect, websites allow users to access applications using their existing IdP

accounts. This approach effectively integrates the user’s account on the new platform with

their pre-existing online identity, thus removing the need for users to manage distinct cre-

dentials for each site, leading users to prefer social logins over website-specific registration

mechanisms. For example, a survey conducted by LoginRadius [48] indicates that 73.69%

of individuals aged 18-25 prefer using social logins over other login and registration meth-

ods. On the flip side, through SSO, websites, referred to as Relying Parties (RPs), can

access more comprehensive user profiles by requesting additional data from users, such as

their birthday, location, and interests.

1.1 Motivation

Privacy and security concerns of social logins have long been significant issues for

users [18]. Consequently, considerable research has been focused on analyzing such issues

1

in public SSO-supported services, and SSO protocols [51], with several frameworks [20,

26, 27, 40, 41, 53] developed to measure these issues. Specifically, Dimova et al. [17] as-

sessed the privacy implications of OAuth authentication by examining the SSO permissions

requested by various IdPs, finding that 18.53% of websites using OAuth request at least

one non-minimal permission (largely unnecessary, not requested by other IdPs). Moreover,

Morkonda et al. [37] discovered that popular RPs request varying amounts of user data

from different IdPs, with some being significantly more privacy-intrusive, a phenomenon

comparable to dark patterns in website design. In subsequent work, they introduced SP-

Eye [38], a browser extension prototype that extracts and displays permission request in-

formation from SSO login options in RPs, focusing on three major IdPs. Several past user

studies (e.g., [9, 10]) also revealed that users frequently grant permissions without fully

understanding the scope of data being shared with the RPs.

1.2 Problem Statement and Analysis Overview

Problem statement. A significant gap in previous research is the lack of privacy analysis

on SSO permissions for mobile apps, and more critically, the discrepancies (if any) in

permissions between web and mobile platforms. This is important as many users rely on

mobile apps for accessing online services, and users also switch between mobile and web

services at least for specific applications (e.g., checking notifications on the app and more

involved usage on the website). Users may assume that logging into a mobile app with

a specific IdP results in consistent data access as logging into the corresponding website;

however, existing work in SSO privacy does not shed light on such specific issue. As

SSO implementations on mobile apps also differ from those on websites [15, 30] (although

transparent to users), privacy issues need a closer look on both platforms.

2

Overview of our work. To address this gap, we develop SSO-Scoper, a framework de-

signed to automate Google and Facebook social logins on websites and Android mobile

apps. We choose Android due to its popularity compared to other mobile platforms (e.g.,

iOS), and Google and Facebook IdPs, as they are most commonly supported by web-

sites (see e.g., [8, 17, 27]. We use SSO-Scoper to automatically identify, login, and col-

lect requested permissions by RPs for a given set of website domains (top sites from the

Tranco [42] list) and downloaded apps (top apps from Google Play). After collecting the

list of permissions for top apps and websites, we perform various privacy analyses, includ-

ing: generate statistics about the permissions, especially the more sensitive ones (beyond

the minimum scopes allowed by the IdPs); and systematically compare the permissions re-

quested on web and Android platforms for the same services, and identify the discrepancies

(if any) between web vs. app.

Our seemingly straightforward approach encountered several challenges, including: the

complexities of UI automation (e.g., finding the correct login buttons) in websites (see Fig-

ure 5.1), and specifically in Android apps, due to the numerous ways that developers im-

plement UI in websites and apps; the lack of an obvious mapping between an app and its

corresponding website (if exists); Captcha challenges and other UI banners on some sites;

and the variations in SSO login implementations across IdPs. We adequately addressed

these challenges to enable our large-scale analysis. For instance, while our tool relies on

text-based searches to locate SSO-related buttons, it currently cannot identify IdP logos/im-

ages on websites or apps. To mitigate Google reCAPTCHA triggers during domain login

searches, we used proxy servers to rotate SSO-Scoper’s IP addresses. For preventative

UI banners on websites (e.g., cookie consent pop-ups and ads), we installed two browser

extensions to handle these interruptions.

3

1.3 Contributions

Our main contributions and notable findings include:

(1) We design and implement SSO-Scoper, the first such SSO permission measurement

tool for automating SSO login on websites and Android apps, using Facebook and

Google IdPs. We will open-source our tool to further future research in this area. We

use SSO-Scoper to log into 1716 and 678 apps using Google and Facebook SSO, re-

spectively (chosen from a dataset of 25K popular apps). For corresponding websites,

we successfully logged into 661 and 318 using Google and Facebook SSO, respec-

tively. To supplement this, we also logged into 733 and 265 websites from the top 5K

Tranco sites using Google and Facebook SSO, respectively. In total, we successfully

logged into 1286 and 523 websites with Google and Facebook SSO, respectively

(from a total of 6322 websites). After successful logins, we collect all the requested

permissions and perform our analysis.

(2) We observed that Android apps in general request more permissions than websites.

For Google, 1,828 permissions were requested by 1,716 apps (1.06 permissions/app)

vs. 740 permissions on 733 websites (1.01 permissions/website). For Facebook,

1,525 permissions were requested by 678 apps (2.25 permissions/app) vs. 554 per-

missions on 265 websites (2.09 permissions/website). Similarly, the number of per-

missions requested from Facebook is generally higher than those requested from

Google.1

Such a trend underlines the importance of evaluating SSO permissions for apps.

1We conducted a statistical analysis with a 95% confidence level. For the comparison between the average
number of permissions requested from Google (apps vs. websites), a p-value of 0.0048 was calculated. For
the average number of permissions requested from Facebook (apps vs. websites), the p-value was 0.0357.
Both p-values indicate statistically significant results. Additionally, when comparing the average number
of permissions requested from Facebook and Google using the same platform, the p-values were less than
0.0001, further confirming significant differences in both cases.

4

(3) We identified the use of 34 non-minimal Google SSO permissions (all permissions

except profile info) on 6,322 websites and 138 permissions on 1,716 apps. For Face-

book, there were 118 non-minimal permissions (beyond name, profile picture, and

email address) on 6,322 websites, and 226 permissions on 678 apps. These per-

missions are more privacy-intrusive, and in many cases, not essential for users (as

observed in our manual analysis, see Sec. 4.5).

(4) Surprisingly, for the same service offered via a website and Android app, the app

generally requests more intrusive permissions than the website (the opposite is also

true in a few cases). Considering all the apps and websites offering the same ser-

vice, for Facebook, we identified these permission discrepancies in 12.58% of the

RPs (40/318), and for Google, 3.48% (23/661) of the RPs. When a service requests

different sets of permissions on its web and mobile versions, users who access both

platforms may unintentionally grant the more intrusive permissions, even if a single

login on the more demanding platform (web or mobile) is performed. Such potential

oversharing has not been reported in past work due to their focus on websites alone.

(5) As noted in the official Google and Facebook documentations and previous stud-

ies [17], users typically have the option to deny any requested permission during

login, except for the default permissions. However, our analysis revealed that in-

jecting additional permissions (permissions that have not been reviewed previously

by the IdP) from the client side introduces a significant attack vector that malicious

RP developers could exploit to bypass the IdP’s app review process. Specifically,

our attack on Facebook’s SSO permissions was successful, prompting Facebook to

address the vulnerability and reward us with a bounty. For Google, the results were

more nuanced. While mitigation mechanisms were already in place and the behavior

aligns with the intended design, the attack surface remains partially exploitable, as

discussed in Sec. 4.6.

5

1.4 Ethical Consideration and Responsible Disclosure

Our experiments primarily involved logging into websites and Android apps. We used

test accounts with email addresses containing the keyword “test” to clearly indicate their

purpose as non-personal, experimental accounts. Throughout our automatic and manual

analyses, we strictly avoided actions that could interfere with the normal operation of the

websites or mobile apps. No malicious or heavy data requests were sent, and we limited

our interactions to essential login and permission analysis tasks, minimizing any potential

impact on the services being tested. For the 14 case study apps mentioned in Sec. 4.5, we

contacted each app’s developer, using the contact information available on their Google

Play Store page, to report our findings and inquire about the observed discrepancies. We

received responses only from Smule, Badoo, and Cupid Media. Smule’s response indi-

cated that the mandatory permissions remain the same across both platforms, while the

optional permissions differ. Badoo team stated that both the app and web versions only

require members to share their Facebook name and profile picture—although they ask for

additional non-minimal permissions. Cupid Media explained that the Android app requests

additional information, like gender and birthday, to streamline the user experience by auto-

populating profiles, while the web platform only requires basic authentication. Addition-

ally, to responsibly address the risks associated with permission adjustments in Sec. 4.6,

we disclosed our findings to both Facebook and Google. Facebook acknowledged the vul-

nerability, awarded us a bounty, and has since implemented a patch at the time of writing

this thesis.

1.5 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 provides essential background on OAuth, SSO mechanisms, and related prior

6

work. Chapters 3 and 4 detail our methodology for analyzing SSO permissions and present

the results, including observed discrepancies and an in-depth discussion of a vulnerability

in Facebook’s SSO permissions review process.

Finally, Chapter 5 summarizes the key findings, outlines limitations, and offers recom-

mendations and provides directions for future work.

1.6 List of Publications

The work presented in this thesis has been peer-reviewed and accepted for publication

in the following article [45]:

• Fahimeh Rezaei, Matteo Lupinacci, Mohammad Mannan, Amr Youssef. On An-

alyzing SSO Permissions Across Web and Android Platforms. EAI International

Conference on Security and Privacy in Communication Networks (SecureComm),

July 4 - 6, 2025, Xiangtan, China.

7

Chapter 2

Background

This chapter provides foundational knowledge of the OAuth 2.0 protocol and its appli-

cation in SSO systems, with an emphasis on permission mechanisms, security vulnerabil-

ities, and review models used by major IdPs. It begins with an overview of how OAuth

works and how permissions are managed across platforms, followed by an explanation of

the authorization flow and token types. In addition to these core concepts, we expand this

chapter with a deeper examination of the evolution of the OAuth protocol, a breakdown of

the scope structure used by IdPs, and a comparative study of authentication versus autho-

rization flows. We further elaborate on existing categories of OAuth scopes and examine

the role of consent screens and user perception challenges associated with federated logins.

Also covered are nuanced details of app registration and runtime enforcement policies,

especially in multi-platform contexts where app configurations may vary significantly.

To build a well-rounded understanding, we include technical insights into grant types,

token handling, and session security, alongside a discussion on vulnerabilities. Particu-

lar emphasis is placed on the operational practices of Google and Facebook as Identity

Providers, including how they classify, verify, and audit requested scopes. We conclude

the chapter by connecting these insights to broader research efforts and placing our work

within the context of recent studies.

8

2.1 OAuth Overview and SSO Permission Mechanism

OAuth [24] is an open standard for access delegation that enables websites or apps

to obtain limited access to user information without exposing user credentials. This stan-

dard was developed to provide a method for third-party applications to request access to

protected resources hosted by service providers like Google, Facebook, and Apple. The

access is granted by users through a consent-based mechanism, where they authorize the

third-party service to access their data without sharing their login credentials. Over time,

OAuth has become a fundamental protocol for modern web and mobile apps, enabling

secure third-party access to user resources hosted at popular services like Facebook and

Google.

During SSO login, users are typically prompted to grant specific permissions to the

requesting application, such as access to their profile information, email address, and other

personal data. These SSO permissions are often presented in a dialog box, where users can

review and modify the scope of access before proceeding. The granularity of permissions

allows users to control which aspects of their data are shared. If a user wishes to revoke or

edit these permissions after the initial login, they can do so through the IdP website, which

provides a centralized interface to manage the granted permissions, including revoking

access entirely or adjusting the permissions to limit the data shared with the application.

In the context of implementing SSO using OAuth 2.0, developers are required to reg-

ister their applications with an IdP such as Google or Facebook. This registration process

results in the issuance of a unique application identifier, known as an app ID, which is

used to identify the application during the OAuth authorization flow. Typically, develop-

ers provide information such as the application’s name, website domain, and redirect URL

during registration. Often, the application’s requirements remain consistent across web and

mobile platforms, necessitating the same set of SSO permissions for both web and mobile

users. In such cases, developers usually opt for a single app ID with uniform permissions

9

across platforms.

However, when different SSO permissions are required for web and mobile platforms,

developers have two possible strategies. The first strategy is to use a single app ID for both

platforms, adjusting the permissions in the client-side code to meet the specific needs of

each platform. Alternatively, developers may register two separate app IDs—one for the

web and one for the mobile platform—allowing for platform-specific control over settings,

SSO permissions, and security configurations, thus addressing the distinct requirements of

each platform more effectively. Regardless of the chosen strategy, IdPs recommend that

developers adopt incremental authorization when requesting SSO permissions [22, 31].

This method enhances user trust and privacy by requesting permissions only when they

are required for a specific functionality, rather than requesting all permissions upfront.

However, such incremental permission requests have yet to be widely adopted by RPs

(cf. [17]).

2.2 OAuth Authorization Flow and Token Types

OAuth 2.0 defines several authorization grant types, each designed for different client

and use-case scenarios. These grant types determine how a client obtains tokens and under

what circumstances.

• Authorization Code Grant: The most widely used grant type, especially in web and

mobile applications. It involves redirecting the user to the IdP for authentication and

authorization, after which an authorization code is returned to the client. The client

then exchanges the code for an access token. This flow is often used with PKCE

(Proof Key for Code Exchange) to enhance security for public clients.

• Implicit Grant: A simplified flow designed for browser-based or single-page appli-

cations where the token is returned directly in the redirect URI. This flow is now

10

discouraged due to security concerns, such as token leakage through browser history

or referrer headers.

• Resource Owner Password Credentials Grant: Allows the client to obtain tokens by

directly using the resource owner’s username and password. This grant type is con-

sidered insecure and is discouraged, as it bypasses the authorization server’s ability

to present consent and scopes.

• Client Credentials Grant: Used for machine-to-machine interactions where no user

is involved. The client authenticates with its own credentials and is issued a token to

access protected resources directly.

• Device Authorization Grant: Designed for input-constrained devices (like smart TVs),

this flow allows a user to authorize the device using a browser on a separate device.

It improves usability while maintaining OAuth’s security guarantees.

• Refresh Token Grant: Not a primary grant type for obtaining access tokens initially,

but used to refresh expired access tokens without requiring the user to authenticate

again.

Understanding these grant types is essential for assessing both usability and security

trade-offs in OAuth deployments. Selecting the appropriate grant type is critical in

ensuring secure and seamless SSO experiences across web and mobile platforms.

OAuth 2.0 supports several grant types, with the Authorization Code Flow (often used

in conjunction with PKCE) being the most common for web and mobile applications. This

flow allows a client application to direct the user to the IdP, which authenticates the user

and returns an authorization code. The application then exchanges this code for an ac-

cess token, and optionally a refresh token and id token.

The access token is used to access protected resources, typically with a limited life-

time. A refresh token is used to obtain a new access token once the original has expired,

11

without requiring the user to log in again. The id token is specific to OpenID Connect and

represents the identity of the user, typically encoded as a JWT.

Understanding these tokens and flows is critical when evaluating how permissions are

granted and used in OAuth-based SSO systems, particularly as vulnerabilities in token

handling have led to attacks such as session hijacking and impersonation.

2.3 Known Vulnerabilities in OAuth-Based SSO

The research on SSO systems, especially regarding automated login and social login

usage, has been extensive due to rising concerns about security and privacy issues [5, 11,

21, 26, 29, 40, 41, 44, 46, 52]. Most work, however, has primarily examined SSO imple-

mentations on websites, not mobile apps.

One of the first tools developed in this domain was SSOScan [53], which aimed to

uncover SSO-related vulnerabilities (e.g., access token misuse, user credential leakage) in

websites that used Facebook as the IdP. More recent tools such as SAAT [19] and SSO-

MONITOR [27] revealed widespread implementation flaws, including weak session man-

agement and the absence of re-authentication.

Recent work by Bisegna et al. [13] shows how adversaries can exploit CSRF vulnera-

bilities on both the Identity Provider and the Service Provider to silently bind an attacker-

controlled identity to a victim’s session. Bhattacharya et al. [12] provide a broader analysis

of OAuth 2.0 implementations, identifying persistent issues such as client impersonation,

token theft, redirect URI manipulation, and authorization code interception. Hosseyni et

al. [25] introduce audience injection attacks, demonstrating how improper validation of the

aud (audience) claim in JWT-based authentication can lead to unauthorized access, partic-

ularly in multi-tenant environments.

12

2.4 IdP App Review and Authorization Models

Major IdPs such as Google and Facebook implement app review processes designed

to regulate how third-party developers request and use sensitive user data. These review

mechanisms are meant to ensure that applications request only the permissions necessary

for their functionality and to uphold user privacy expectations.

At Google, the app review process classifies OAuth scopes into three broad categories:

“non-sensitive”, “sensitive”, and “restricted”. Applications that request sensitive or re-

stricted scopes must undergo a review process that includes verifying the developer’s do-

main ownership, publishing a privacy policy, and justifying the requested permissions.

While these steps offer a layer of accountability, Google’s system allows applications that

pass review for one scope within a category to access others in that same category without

further evaluation. This approach, while scalable, may result in over-privileged applica-

tions and insufficient granular control over data access.

Facebook employs a similar review process, in which apps must submit for review if

they request certain extended permissions. Developers are required to provide descrip-

tions, usage scenarios, and in some cases, screencasts demonstrating the necessity of the

permissions. However, unlike Google, Facebook exposes more detailed controls in the de-

veloper console, allowing for clearer configuration of permission requests. Despite this,

both platforms rely heavily on developers’ accurate self-reporting and manual oversight

from reviewers, which can be subject to circumvention or oversight.

The primary goal of these review processes is to protect users by ensuring transparency

and minimizing the risk of excessive or malicious data access. However, the reliance on

category-based approvals and limited enforcement of runtime behavior highlights a gap be-

tween policy intent and practical enforcement. For stronger data protection, review models

should enforce fine-grained, per-scope validation and introduce automated mechanisms to

flag scope changes that deviate from what was originally approved.

13

2.5 Scope Design and Permission Granularity

In OAuth-based SSO systems, scopes are central to defining the specific resources and

operations an application can access on behalf of a user. Scopes provide a mechanism

for permission granularity, allowing users to authorize only the precise data or actions an

application requires. This helps reduce the risk of over-privileged access and aligns with

the principles of data minimization and least privilege.

Scopes are typically represented as space-delimited strings and vary in structure de-

pending on the IdP. For example, Google uses hierarchical and descriptive scope identifiers

such as https://www.googleapis.com/auth/userinfo.profile or https:

//www.googleapis.com/auth/calendar.readonly, where the structure clearly de-

fines both the API and the access level. In contrast, Facebook utilizes more concise scope

names like “email”, “user friends”, and “pages show list”, which correspond to broader

categories of personal or page-related data.

Scopes can be grouped into broad categories. For instance, Google distinguishes be-

tween “non-sensitive” scopes, which require no additional review, “sensitive” scopes, which

require a verification and app assessment, and “restricted” scopes, which demand an even

higher level of scrutiny and use-case justification. These categories help streamline the

review process but can inadvertently allow applications reviewed for one scope to access

others in the same category without further validation, thereby diluting the intention of

fine-grained control.

The design of scopes also affects user interaction during consent. Consent dialogs

aim to inform users of the permissions being requested, but the clarity of this information

depends on how well-defined and descriptive the scopes are. Abstract or overly technical

scope names can lead to confusion and may result in users unknowingly granting excessive

access. This concern is especially pronounced in mobile environments, where screen size

and interface constraints further limit how much information can be shown.

14

https://www.googleapis.com/auth/userinfo.profile
https://www.googleapis.com/auth/calendar.readonly
https://www.googleapis.com/auth/calendar.readonly

Granular scope design also influences the implementation of incremental authorization.

IdPs like Google encourage developers to request only the minimum necessary scopes at

initial login and defer additional permission requests until they are needed. This phased

approach enhances user trust and reduces initial friction, though it remains underutilized in

practice.

A well-structured and transparently managed scope system not only empowers users

to make informed decisions but also facilitates better enforcement by the IdP. It enables

runtime checks to ensure that applications do not request more access than they have been

approved for, and supports auditability in case of misuse. As such, scope granularity is a

critical component of both user experience and overall OAuth security posture.

2.6 Related Work

The research on SSO systems, especially regarding automated login and social login

usage, has been extensive due to rising concerns about security and privacy issues [5, 11, 21,

26, 29, 40, 41, 44, 46, 52]. Most work primarily however examined SSO implementations

on websites, not mobile apps. Below we discuss example studies more relevant to our

work.

One of the first tools developed in this domain was SSOScan [53], which aimed to

uncover SSO-related vulnerabilities (e.g., access token misuse, user credential leakage) in

websites that used Facebook as the IdP. Out of the 1660 sites with Facebook SSO (taken

from the top 20k websites), over 20% were found to be vulnerable. More recently, in a

similar vein, Ghasemisharif et al. [19] introduced SAAT, a tool designed to assess account

and session management practices on websites using Facebook SSO, and reveal security

issues such as the lack of implementing re-authentication by most RPs to prevent compro-

mise from hijacked IdP cookies. Jannett et al. [27] proposed SSO-MONITOR, a framework

15

aimed at continuously monitoring/archiving the security and implementation of SSO sys-

tems on websites. From 89k SSO authentication flows on the top 1M websites, the authors

found 33k violations of OAuth security best practices and 339 severe security vulnerabili-

ties (e.g., 30 usernames and passwords leaks).

In terms of SSO security analysis, Shi et al. [47] assessed SSO implementation in An-

droid apps with support for Facebook, WeChat, and Sina Weibo IdPs. Their study primarily

identified vulnerabilities stemming from incorrect SSO implementations by testing and an-

alyzing network traffic. Out of 23,936 apps, they successfully examined 550 apps and

found that 397 of them had flawed SSO implementations.

On the privacy analysis of SSO permissions, Dimova et al. [17] examined unneces-

sary data collection practices in 6211 SSO-supported websites (chosen from the CrUX top

100K websites, over 30 different IdP services). Their findings revealed that when websites

request a non-minimal scope of user data, much of the information collected is often exces-

sive (as apparent from the support of alternative SSO options like Apple that allow access

to very little user data).

To understand variations in the permissions requested by websites for different IdPs

(Google, Facebook, Apple, and LinkedIn), Morkonda et al. [35] developed OAuthScope, a

tool for semi-automated scanning and analysis of OAuth 2.0 parameters and permissions.

By checking the SSO login options on popular websites (Alexa top 500 from five countries),

they revealed that websites request different categories and amounts of personal data from

different IdP providers. Their work is focused on identifying privacy concerns, including

dark patterns in the placement and ordering of SSO login buttons, often nudging users

toward selecting IdPs that requested more permissions than others.

Apart from security or privacy issues, Ardi and Calder [8] examined the prevalence of

SSO logins on the top 10K CrUX websites using nine different IdPs, including Google and

Facebook. They found that 51% of these websites offer a login option, and about 30% of

16

the top 10K sites allow login via 3rd-party IdPs.

In terms of user studies focusing on SSO login usage, recent work by Balash et al. [9]

found that 89% of their 432 survey participants have used Google SSO at least once to

log into 3rd-party apps/services. In their second survey with 214 participants, they used a

browser extension to collect information about apps that have access to users’ Google ac-

counts, and surveyed users about their awareness and understanding of such access. Their

findings include: most participants were not concerned about third-party apps’ access to

their Google account, although a significant number of participants could not fully under-

stand what an app can do with a specific permission (e.g., “view personal info”). The

majority of the participants also reported not reviewing what services have access to their

Google account.

In a 2013 study by Bauer et al. [10], reported that participants’ understanding of the

information IdPs shared with RPs was not influenced by the content of consent dialogs

displayed by the IdPs, or how much information was being shared with RPs. Participants

were also generally unaware of RPs’ access rights (e.g., duration, frequency) to user data.

Recently, Morkonda et al. [36] conducted a 200-participant study and found that 55% of

participants preferred an SSO login option as their initial login choice, and 28% of partici-

pants decided to change their login choice after viewing the comparative IdP permissions.

In the context of SSO security, numerous studies have investigated critical vulnerabil-

ities in OAuth-based systems, particularly focusing on well-known attack vectors such as

Cross-Site Request Forgery (CSRF) and open redirect flaws [5, 11, 21, 26, 29, 40, 41, 44,

46, 52]. Bisegna et al. [13] illustrate how adversaries can exploit CSRF vulnerabilities on

both the Identity Provider and the Service Provider to silently bind an attacker-controlled

identity to a victim’s session, effectively enabling account hijacking through the SSO ac-

count linking process. Expanding on these concerns, Bhattacharya et al. [12] provide a

17

broader analysis of OAuth 2.0 implementations, identifying a range of persistent issues in-

cluding CSRF, client impersonation, token theft, inadequate redirect URI validation, and

improper handling of authorization codes. Furthermore, Hosseyni et al. [25] introduce au-

dience injection attacks, showing that attackers can exploit incorrect validation of the aud

(audience) claim in JWT-based client authentication to impersonate clients or gain unau-

thorized access, particularly in multi-tenant and federated environments. Notably, however,

prior work has not addressed the security assessment of the review process conducted by

IdPs when authorizing RPs for the permissions they request.

Ref Year Focus IdPs Platform Size # FB-Logins # G-Logins
[53] 2014 security web 17,913 1,660 -
[47] 2019 security +2 mobile 550 128 -
[35] 2021 privacy +2 web 2,500 676 688
[19] 2022 security web 100K 1,900 -
[8] 2023 SSO prevalence +7 web 10K 293 339
[17] 2023 privacy +33 web 100K 4,743 3,400
[27] 2024 security +10 web 1M 18,560 21,473
Our 2025 privacy mobile 21,163 678 1,716
work web 6,322 523 1,286

Table 2.1: Summary comparison for logins and platform coverage in related measurement
studies

2.6.1 Research Gap

As apparent from the above discussion, there is significant research in SSO security,

privacy, and usability—mostly around the use of SSO logins for websites. Surprisingly, no

privacy measurement study has been done on mobile SSO privacy issues. Consequently,

our study explores privacy-sensitive permissions requested by Android apps, as well as,

covers the use of non-minimal permissions in both websites and apps, and reveals the

discrepancies between permission requests for the same services offered via websites and

18

apps. Furthermore, we investigate the IdP app review processes and uncover a vulnerability

that allows bypassing Facebook’s app review mechanism, while also highlighting a similar

permissive behavior on Google. To the best of our knowledge, such an assessment has not

been covered in prior work.

Table 2.1 provides a summary of relevant studies closely related to our research. For

each study, the table indicates the successfully analyzed IdPs, the successfully tested dataset

size, and the final number of successful logins for Facebook and Google. Our work con-

tributes to this domain by offering a side-by-side analysis of websites and Android apps

using the two most common IdPs, Facebook and Google.

19

Chapter 3

Methodology

This chapter outlines the methodology we adopted for automating logins on apps and

websites, as well as for analyzing the requested permissions on each platform. We de-

tail the detection and login techniques utilized by SSO-Scoper along with its approach to

permission analysis; see Fig. 3.1 for an overview. The framework comprises two primary

components for automating social logins on apps and websites, along with a third compo-

nent dedicated to extracting and analyzing requested permissions.

Both Facebook and Google SSO login processes allow users to edit the permissions

shown during login, enabling them to proceed with the minimal default permissions, which

typically include only the public information of the SSO account and the user’s email ad-

dress. However, in our experiment, we assumed that users do not alter the presented per-

missions in the login pop-up and proceed with them (c.f. [9, 10]).

3.1 SSO Logins on Android Apps

The SSO-Scoper component for Android app automation is designed to analyze screen

elements, specifically targeting login buttons to identify available SSO options, and then

execute the login process using our SSO test accounts. The orchestration and management

20

Figure 3.1: SSO-Scoper overview

module processes a list of predefined IdPs, specifically Facebook and Google, and conducts

separate analyses for each IdP. We utilize text-based keyword searches to locate relevant

buttons within the authentication process. We first identify login or registration buttons on

the screen and then interact with these buttons to find Google/Facebook SSO options. If an

SSO button is detected, the tool initiates the login procedure. The authentication process

is divided into three distinct phases: login search, SSO search, and SSO login. Depending

on the execution of each phase, a specific set of keywords is searched within the screen

elements. In the login search method, a set of hardcoded strings (e.g., register, login; for

the full list, see Table 3.1), derived from a manual inspection of 50 random apps, is used

to identify login or signup buttons. If these buttons are found, we then search for the IdP

names (Facebook, Google) within the text of the screen elements. We also perform this

search on the app’s start page, as the manual analysis of 50 apps revealed that some apps

present SSO login options directly on their start page. During the SSO search phase, if any

21

screen element’s text attribute contains the IdP name, the corresponding button is clicked,

and the SSO login process begins, searching for our test IdP account name or email on

the screen. To ensure a successful login into an application, the IdP accounts are logged

into on the device. For Facebook, the Facebook app is installed and logged in, allowing it

to open and request permissions when logging in to other apps using Facebook SSO. For

Google, a Google account is signed in on the device, so that when logging in with Google

SSO, a dialog box displaying the Google email appears. In both cases, the tool identifies

the account name or email, and selects it to complete the login process.

Keywords

“register”, “login”, “sign up”, “signup”, “don’t
have an account? sign up”, “create an ac-
count”, “join”, “join now”, “log in”, “sign in”,
“log in to your account”, “login/signup”, “pro-
file”, “login/register”, “login or signup”, “login
or register”, “register/login”, “profile”, “user”,
“continue”, “options”

Table 3.1: Keywords for login detection in apps

After a successful login, the app data is erased from the device, and it is re-launched in a

fresh state for the analysis of the next IdP. When both IdPs are tested, the tool uninstalls the

installed app and removes its associated data from the device. The process then continues

with the installation and analysis of the next app. After the tool has finished running, a list

of successfully logged-in apps, along with the permissions granted to them, is automatically

extracted from the IdP accounts and saved. This information is subsequently used for our

analysis.

We developed this module on top of the ThirdEye framework [43] to leverage its capa-

bilities in app execution, orchestration, and UI interaction. In addition to making modifica-

tions to the existing code-base to suit our requirements, we added approximately 600 lines

of code to the UI interactor module to implement the SSO search and login processes.

22

3.2 Mapping of Android Apps and Websites

For our comparison between apps and websites SSO permissions for the same services,

it is essential to map Android apps to their corresponding websites. Each app’s Google Play

Store listing includes two URL fields: the website URL, which refers to the official domain,

and the privacy policy URL. Since some apps do not have the website field populated by

the developer, we also collect the privacy policy URLs (assuming that may lead to the

corresponding service’s website). By leveraging the Python library “tldextract” [28], we

extract the domain from the privacy policy URL and use it as the corresponding website for

the mobile app. This process of retrieving website and privacy policy URLs is automated

via the Google Play API [39]. The final output consists of websites associated with Android

apps, with the privacy policy domain used for apps without a website URL.

We manually compared the website and privacy policy domains of 100 randomly se-

lected apps. In 79 cases, both the website and privacy policy fields matched. For 12 cases,

however, the website domain differed from the privacy policy URL domain: the website

field referred to the app’s official site, while the privacy policy field either pointed to a static

landing page—common for entertainment apps—an unrelated website used solely for host-

ing legal documents, or a shortened URL such as bit.ly. For 9 apps, the website field was

left blank on the app’s Google Play Store page, with the privacy policy field containing the

app’s website.

3.3 SSO Logins on Websites

To automate social logins on websites, we utilized the “undetected chromedriver” Python

library [50], an optimized Selenium WebDriver designed to bypass detection by potential

antibot systems. This approach, previously adopted by Pham et al. [40], was complemented

by using the latest version of the Chrome browser for user interface automation.

23

bit.ly

SSO-Scoper begins by processing a list of website domains (collected from apps as

described in Sec. 3.2, augmented with Tranco top-5K sites). For each domain, a Google

search is performed using the “login” keyword to locate the login page. The first result that

matches the input domain is selected, and the tool attempts to locate the SSO login button

on this page. If the button is not found, the tool sequentially examines the second search

result and the root domain webpage. However, it does not consider any other links from

the search results, as our manual analysis of 100 websites indicated that the login page

typically appears within the first two search results.

Once a webpage is selected and opened, SSO-Scoper initiates a heuristic, text-based

search, scanning for SSO-related regex-based keywords (see Table 3.2), within all attributes

of page elements. The search prioritizes buttons first, followed by all other elements, while

disregarding those with zero height or width to limit the search space and optimize perfor-

mance. The list of keywords, priorities, and filters was developed from a manual analysis

of 100 websites. If the tool locates these clickable keywords, it proceeds to the login phase,

where it searches for the SSO account name or email address on the screen. If no SSO-

related elements are found, a third phase (login search) begins, targeting keywords related

to login or registration (see Table 3.3). Once a login button is identified, SSO-Scoper re-

sumes its search for SSO login buttons and proceeds with the login process if the related

buttons are detected.

SSO Provider Keywords

Google SSO “google”, “gmail”, “google+”

Facebook SSO “facebook”,“fb[*]?login”,
“fb[*]?sign”

Table 3.2: Keywords for SSO button detection

After each click on SSO buttons, SSO-Scoper calls a method to analyze the current

page, and determines if SSO login can be performed. The main functionality of this method

24

Keywords

‘ ‘ ˆ (Log | Sign) [\ s] ? in$ ’ ’ ,
‘ ‘ ˆ Log i n t o your accoun t$ ’ ’ ,
‘ ‘ ˆ Login (/ | or) (SignUp | R e g i s t e r) $ ’ ’ ,
‘ ‘ ˆ R e g i s t e r / Log [\ s] ? in$ ’ ’ ,
‘ ‘ ˆ s i g n [\ s] ? up$ ’ ’ ,
‘ ‘ ˆ P r o f i l e $ ’ ’ ,
‘ ‘ ˆ Don ’ t have an a c c o u n t ? s i g n up$ ’ ’ ,
‘ ‘ ˆ C r e a t e an Account$ ’ ’ ,
‘ ‘ ˆ (J o i n | R e g i s t e r) [\ s] ?Now[\ s] ? $ ’ ’

Table 3.3: Regular expressions used for login detection in websites

is to check if the IdP URLs used for SSO login initiation are contained in the actual URL

login page that has been opened in the browser. For Facebook SSO, this pattern includes

the presence of “facebook.com/login” or “facebook.com/privacy/consent” in the URL. For

Google, it includes “/v3/signin/identifier?”, “/o/oauth”, “/gsi/select?”, or “/oauth/google”.

The presence of these strings within the URL guides the tool to proceed with the login

method.

One key aspect of our approach is the use of a fixed, pre-configured Chrome profile to

facilitate the login process and address issues such as non-English websites and preventa-

tive pop-ups. In this profile, both Facebook and Google accounts are logged in, along with

the installation of two Chrome extensions to further simplify the interaction with websites.

The first extension, “Accept All Cookies” [1], is a Google Chrome extension that automati-

cally accepts cookie consent on various forms of notifications or pop-ups, minimizing user

interaction with the website. The second extension, “AdGuard Adblocker” [2], is employed

to block advertisement pop-ups on web pages.

To address the issue of non-English languages on some websites, the Chrome profile

25

is configured to automatically translate all content into English. This ensures that, imme-

diately after a page loads, it is translated, allowing the tool to accurately identify login

and SSO-related buttons. Based on a manual analysis of 20 non-English websites, we ob-

served that the translation process typically completes in under 2 seconds. As a result,

SSO-Scoper is programmed to pause for 3 seconds before processing the webpage. Addi-

tionally, the tool detects and avoids social media pages and links that might be mistakenly

identified as SSO login links during analysis.

A primary challenge we encountered during this stage was frequently triggering Google’s

reCAPTCHA when searching for website login pages. To enhance the human-like behavior

of our automation and reduce Captcha triggers, we implemented pauses between actions

and used Selenium’s Python module, “Action Chains” [4], to simulate mouse movements.

Additionally, we set up four dedicated proxy servers for our experiment and configured

Selenium WebDriver to rotate the proxy IP after analyzing every 20 domains.

Finally, a list of successfully logged-in websites’ SSO names and their granted SSO

permissions is automatically extracted from the IdP accounts and saved. This informa-

tion is subsequently used to compare the SSO permissions requested on the corresponding

websites.

3.4 Collection and Analysis of SSO Permissions

Facebook imposes a rate limit on viewing app permissions, locking the account tem-

porarily if a certain threshold is reached. To avoid such issues, we extract all app permis-

sions from our test Facebook and Google accounts after completing the login process for all

apps and websites (i.e., not after each app/site testing). Each app appears in the Facebook

and Google dashboards under its configured app SSO name (configured SSO name by the

app’s developer).

26

To map SSO names across the web and Android platforms and compare SSO permis-

sions for each app and its corresponding website, we employed two approaches: app ID

comparison and fuzzy string matching using Levenshtein distance.

For Facebook, each app is assigned a unique app ID—a numeric string included in

the query string of the URL displaying permissions. Because this app ID is unique and

consistent for each service, we used it to compare app SSO permissions across two different

profiles, one associated with the web experiment and the other with the mobile experiment.

For Google, since the app IDs are not accessible through the Google dashboard, we em-

ployed the “fuzzywuzzy” [16] Python library, which uses Levenshtein distance to measure

the differences between sequences of app SSO names. To ensure the accuracy of the final

mapping, we manually verified the mapped SSO names across both platforms.

27

Chapter 4

Results

In this chapter, we present our findings on the prevalence of SSO logins in Android apps

and websites, followed by an analysis of SSO permissions and their discrepancies across

the two platforms. Note that our experiments were conducted from December 2023 to

September 2024. For testing apps, we utilized Pixel 4 and Pixel 6 Android devices running

rooted Android 12 images, alongside a desktop running Ubuntu 22.04 to orchestrate the

execution of the target apps.

4.1 Prevalence of SSO Logins on Android Apps

We began by collecting a dataset of 25K popular Android package names from vari-

ous sources, including Androidrank [3], AndroZoo [6], and the Google Play Store. During

analysis, 3,837 apps failed to install on our devices due to various reasons, such as incom-

patible versions or geographic region restrictions. Of the remaining apps, SSO-Scoper suc-

cessfully logged into 678 apps (3.20%) using Facebook as the IdP and 1716 apps (8.11%)

using the Google IdP; see Table 4.1.

The remaining apps either did not support login via Facebook or Google SSO, or their

login processes were too complex for us to navigate. This complexity often stemmed from

28

lengthy login flows with non-standard keywords for login-related buttons, or the presence

of advertisements during app startup or before the login process.

We manually installed and evaluated 50 apps to assess the efficiency of SSO-Scoper.

Out of these apps, 8 supported login with Facebook SSO, and 11 supported Google SSO.

SSO-Scoper successfully logged into 5 apps using Facebook SSO and 7 using Google SSO.

For the remaining apps, SSO-Scoper failed to log in due to the challenges mentioned.

Total Android apps 25,000

Successfully installed and analyzed 21,163/25,000 (84.65%)

Successful login with Facebook 678/21,163 (3.20%)

Successful login with Google 1,716/21,163 (8.11%)

Table 4.1: Summary of app installation and login success

In terms of permissions distribution, as expected, most apps (except a few games) re-

quest the default minimal permissions. For Facebook SSO, 99.71% of the apps requested

“Name and profile picture” and 91.89% requested “Email address”, and for Google SSO,

98.86% of the apps requested “See your profile info”. Other commonly requested permis-

sions include: “Birthday”, “Gender”, and “Photos” (for Facebook); and “Create, edit, and

delete your Google Play Games activity”, “See and download your exact date of birth”, and

“See, create, and delete its own configuration data in your Google Drive” for Google. See

Figures 4.1 and 4.2.

To compare Facebook vs. Google SSO permissions requested by the same apps, we

identified 424 apps with successful SSO logins using both IdPs. In 55 apps (12.97%),

Facebook permissions were more privacy-intrusive than Google permissions; and in 8

apps (1.89%), Google permissions were more privacy-intrusive than Facebook. In one app

(“Fotka”), both Facebook and Google requested different non-minimal permissions (Face-

book SSO requested for “Name and profile picture”, “Gender”, “Email address”, “Birth-

day”, “Current city”, and “Hometown”, while Google SSO requested “See your profile

29

info” and “View Google Photo Library”). Note that for Google SSO results, in some cases,

we used the exact permission names as appear in a user’s Google account dashboard.

Figure 4.1: Distribution of Facebook permissions in Android apps without the two minimal
permissions of “Name and profile picture” and “Email”

4.2 Prevalence of SSO Logins on Websites

We perform our tests on two sets of websites: domains that are collected from our

Android apps (to compare between apps with websites), and Tranco top-5K websites (for

general websites).

We extracted 1724 unique websites corresponding to the tested apps with successful

IdP logins. In total, SSO-Scoper successfully logged into 318 websites using Facebook

SSO and 661 websites using Google SSO, which corresponds to 46.90% and 38.52% suc-

cessful login rates for Facebook and Google, respectively. To validate our results, we man-

ually checked 100 randomly selected URLs for Facebook SSO and 100 URLs for Google

SSO. Surprisingly, for Facebook, only 58 of these URLs offered Facebook SSO as a login

method, while 22 were static websites with no login capability, often serving as simple

30

Figure 4.2: Distribution of Google permissions in Android apps without minimal permis-
sion “See your profile info”. The labels in parentheses indicate whether the permission
involves read (R) and/or write (W) access.

landing pages for mobile apps, especially common in the entertainment and gaming cat-

egories. Therefore, the true success rate of our tool is estimated at 75.86% (44/58) for

Facebook SSO. In contrast, for Google SSO, 30 websites were static pages with no lo-

gin option. Of the remaining URLs, 56 websites supported Google SSO, and SSO-Scoper

successfully logged into 48 of them, achieving a success rate of 85.71%.

From the Tranco top 5K websites, 1,170 domains (23.4%) did not have login pages (as

from our search results). Among the remaining websites, it successfully logged into 733

using Google SSO and 265 websites using Facebook.

To assess the success rate, we randomly selected 100 websites from the top 3K Tranco

domains where SSO-Scoper did not complete the login process. Of these 100 domains, the

tool failed on 10 sites: 4 required Captcha or a confirmation button before login, and 6 used

extensive customization with non-standard button names.

Overall, we assessed a total of 6,322 websites, including the top 5K Tranco sites and the

31

websites corresponding to the Android apps. See Figures 4.3 and 4.4 for the distribution

of permissions. Top 3 common permissions for Facebook are “Birthday”, “Gender”, and

“Current City”; note that the “Current City” permission takes precedence over the “Photos”

permission, which ranks higher for Android apps. For Google, the top three most common

website permissions differ significantly from those on Android: “See and download your

exact date of birth”, “See and download your contacts”, and “See your age group”.

To compare Facebook vs. Google SSO permissions requested by the same websites, we

identified 254 websites with successful SSO logins using both IdPs. In 23 sites (9.05%),

Facebook permissions were more privacy-intrusive than Google permissions. In one case

(0.39%), Google permissions were more privacy-intrusive than Facebook. On two web-

sites, both Facebook and Google requested different non-minimal permissions.

Figure 4.3: Distribution of Facebook permissions in websites without the two minimal
permissions of “Name and profile picture” and “Email”

32

Figure 4.4: Distribution of Google permissions in websites without the minimal permis-
sion “See your profile info”. The labels in parentheses indicate whether the permission
involves read (R) and/or write (W) access.

4.3 Discrepancy of SSO Permissions Across Web and An-

droid Apps

For Facebook SSO, we identified 40 services with different permissions between the

web and Android platforms. Among these, TikTok was the only service where the Android

app’s app ID differed from that of the website. 20 additional permissions were requested

exclusively by the websites, while 38 extra permissions were requested solely by the apps.

For Google SSO, we found permissions discrepancies in 23 cases. Among these, 22 ad-

ditional permissions were requested exclusively by the Android apps, while 14 extra per-

missions were requested only by the websites. The statistics of apps with permission dis-

crepancies are shown in Table 4.2. Based on these findings, the Android platform typically

requests more permissions than the web platform (see Fig. 4.5 and Fig. 4.6), underscoring

the varying privacy practices across different SSO implementations.

33

Facebook Google

Successful login on
apps

678 1716

Successful login on
the apps’ websites

318/678 (46.90%) 661/1716 (38.52%)

Different permissions 40/318 (12.58%) 23/661 (3.48%)

Table 4.2: Breakdown of successful SSO logins and permissions discrepancies across An-
droid apps and corresponding websites

Android App Website Example App/Website (#DL)

Fa
ce

bo
ok Photos 32 14 Tinder (100M+)

Friends list 30 11 StarMaker (100M+)
Page likes 3 1 Sociable (1M+)
Publish videos to timeline 0 1 Manycam.com

G
oo

gl
e

Gmail Emails (full access) 5 0 Yahoo Mail (100M+)
Google Calendar (full access) 5 2 TypeApp mail (1M+)
Google Calendar (read access) 2 2 Lich Van Nien 2024 (5M+)
Contacts (full access) 2 0 Microsoft Outlook Lite (10M+)
Contacts (read access) 2 4 Truecaller (1B+)
Youtube Account (full access) 1 0 AutoGuard Dash Cam (1M+)
Youtube Account (read access) 2 0 AmpMe (10M+)
Google Fit Physical Activity (write access) 1 0 Yoga Club (100K+)
Google Drive (read access) 1 0 Microsoft Outlook Lite (10M+)
Google Photos (read access) 1 1 Fotka (1M+)
Google Classroom Information (read access) 1 1 ThingLink (100K+)
Personal Phone numbers (read access) 1 2 Class101.net
Street Addresses (read access) 0 1 Dbl.id

Table 4.3: Privacy-intrusive permissions requested by Facebook and Google on web and
Android platforms

4.4 Privacy-Intrusive Permissions

Throughout this study, we encountered several revealing and potentially dangerous per-

missions requested during login by websites and mobile apps using Facebook and Google

social login options. These permissions extend beyond basic profile access, posing signif-

icant privacy risks by requesting access to more sensitive data. While some services may

require these permissions for specific functionalities, IdPs like Google and Facebook rec-

ommend developers adopt incremental authorization [31, 22]. This approach ensures that

permissions are requested only when the user activates the related feature (e.g., importing

34

Manycam.com
Class101.net
Dbl.id

Figure 4.5: SSO permissions discrepancies: extra permissions requested for Facebook
SSO

Facebook photos into the app), reducing unnecessary access to sensitive information for

features users may choose not to use; see Table 4.3.

In the case of Facebook, the following less common but highly intrusive permissions

were observed in our experiments: Photos, Friends list, Page likes (Allows the RP to view

a list of all Facebook Pages a user has liked, potentially disclosing personal interests, affili-

ations, and political views), Publish videos to timeline (Grants the RP the ability to publish

live videos to a user’s timeline, group, event, or Page)

For Google, we identified the following permissions that grant extensive access to per-

sonal information: Gmail Emails (full access), Google Calendar (full access), Google Cal-

endar (read access), Contacts (full access), Contacts (read access), Youtube Account (full

access), Youtube Account (read access), Google Fit Physical Activity (write access) which

access individual activities like walking, running, number of calories burned, step count or

any workout activity that other apps have added to Google Fit. It also accesses information

about physical habits that may be sensitive and could be used to make assumptions about

35

Figure 4.6: SSO permissions discrepancies: extra permissions requested for Google SSO

users’ fitness. Google Drive (read access), Google Photos (read access), Google Classroom

Information (read access), which includes access to users’ Google classes and the list of

students (rosters), Personal Phone numbers (read access), Street Addresses (read access).

36

4.5 Case Studies

Here we discuss the results of our manual analysis of 14 RPs (out of 60 unique cases

with discrepancies, see Sec. 4.3), where there are significant permission differences be-

tween an app and its corresponding website. We provide a summary of the discrepancies

in Table 4.4; for details of these services, see appendix A.1.

We found only minor differences in functionality (not in core features) between the

web and Android versions of these services. This raises questions about the necessity of

the extra permissions requested, as these differences do not seem to justify the additional

data access.

Furthermore, our review of the privacy policies for these fourteen services revealed

only in six cases, the extra permissions are mentioned in the privacy policy page, while

eight of them provided only broad descriptions of data collection, such as basic permissions

for email and name, without disclosing the additional permissions requested on the more

intrusive platform. For example, the ZEPETO app requests access to the “Friends list”

only on its mobile version, yet this is not mentioned in its privacy policy. Additionally,

while all the services investigated had a single privacy policy covering all versions of their

service, none specified platform-specific permissions for web and app versions. This lack

of transparency leaves users unaware of the permissions requested on different versions of

the app, raising concerns about the justification for such requests.

With the exception of two cases (Cupid Media and ManyCam), the other apps provide

an Apple SSO option for login on their websites or iOS versions. As Apple’s documen-

tation states [7], Apple only shares the user’s name and/or email with RPs. Therefore,

offering Apple SSO indicates that the service can operate with minimal SSO permissions.

We further compared SSO login options with manual registration by creating user ac-

counts on both the web and Android versions of each service. With the exception of the

Sociable app, which only offers SSO options for login and registration, for 9/14 services,

37

the SSO login option was found to be more intrusive than manual registration. In 2 cases,

both options had comparable privacy levels. Only for Cupid Media, manual registration

required more information (country and city on the app) than Google SSO login (no Face-

book SSO support).

Table 4.4 provides a summary for all services. The permissions listed in the “Extra

Permissions” column are those that were requested exclusively on either the website or the

Android app, with the corresponding platform not requiring the same permissions. Note

that we disclosed our observations to all the developers of these apps as mentioned in the

Introduction.

38

Application #DL SSO Type Platform Extra Permissions

TikTok 1B+ mobile Email, Age range, Friends list
Smule 100M+ mobile Email, Age range, Friends list
Badoo 100M+ web Birthday, Gender
Zepeto 100M+ mobile Email, Friends list
iHeart 50M+ mobile Birthday, Gender
adidas 50M+ web Birthday, Gender, Age range
Chess 50M+ web Friends list
Tagged 50M+ mobile Photos

web Contacts (read access)
Desygner 5M+ web Photos
Sociable 1M+ mobile Email, Birthday, Gender,

Friends list, Page likes, Photos
mobile Birthday, Gender

ManyCam 1M+ web Email, Publish video to timeline
AsianDating
BrazilCupid
HongKongCupid

1M+ mobile Birthday, Gender

WellnessLiving
Achieve

100K+ web Gender, Timeline link

mobile Birthday, Google Calendar (full ac-
cess)

web Secondary Google Calendars (full ac-
cess),
Google Calendar (read access)

InmatePhotos100K+ web Google Photos

Table 4.4: Extra permissions requested on either the mobile platform or website for notable
services

39

4.6 Privacy Risks from Permission Adjustments

In both Google and Facebook IdPs, users have the right to deny any permissions be-

yond the default (which includes only basic profile information) during login, or afterward

through the IdP’s dashboard. Dimova et al. [17] also explored the removal of non-minimal

permissions as a way to reduce privacy exposure (most websites were found to function

properly without the extra permissions). While this option is available to users, we exam-

ine a potential abuse of it—to forcibly increase SSO permissions by modifying the OAuth

flow from the client side by a malicious RP. For testing purposes, we selected certain web-

sites that use Google and Facebook SSO and attempted to inject extra permissions into

the OAuth scopes transferred in the requests. Importantly, these tests were conducted on

existing websites rather than personal test applications, and all findings were responsibly

disclosed to the respective IdPs. As documented [23, 32], both Google and Facebook re-

quire developers to undergo a review process when requesting non-minimal permissions to

ensure the necessity and non-malicious intent of the developers. However, we found that

this review process can be bypassed in Facebook’s case, allowing a malicious developer to

request more permissions than those allowed in the review process.

We noticed that by injecting extra permissions in the “params[steps]” parameter within

Facebook SSO requests, a developer can forcibly request additional permissions beyond

those initially approved during the Facebook review process. This means a developer could

release an app with minimal permissions or less intrusive permissions to avoid or facilitate

Facebook’s review process, but later request additional permissions from users to gain ac-

cess to their resources. Importantly, the consent screen still displays all requested permis-

sions to the user, regardless of the initial approval. We responsibly reported this finding

to Facebook as a lack of permission validation on Facebook’s side—i.e., not checking the

requested permissions against the reviewed permissions. Facebook confirmed the vulnera-

bility and addressed it accordingly, awarding us a bounty in recognition of our responsible

40

disclosure.

In contrast, Google categorizes its SSO scopes into three broad levels: non-sensitive,

sensitive, and restricted. The review process is conducted based on these categories. If an

application is granted access to non-sensitive scopes (e.g., gender), it can access all scopes

within this category (e.g., birthday, street address, and classroom rosters). Similarly, ap-

plications validated for sensitive scopes (e.g., contacts) can access any other scopes in the

sensitive or non-sensitive categories. For restricted scopes, such as those related to Gmail

or Google Drive, access implicitly includes all lower-tier categories. However, Google’s

documentation does not explain this categorization, nor did they provide clarification when

directly queried. Therefore, we observed that developers can verify their application for a

specific non-sensitive scope, such as a user’s birthday, and later request additional permis-

sions within the same category, such as the user’s street address.

Additionally, attempts to inject a sensitive scope into the OAuth flow on a service con-

figured for non-sensitive scopes result in a non-preventative error message. This error

message reveals the developer’s Gmail address, submitted as contact information during

the SSO setup. In contrast, attempts to inject a restricted scope result in a stricter response,

with Google blocking the OAuth flow entirely and preventing the user from proceeding.

These variations in behavior suggest that Google has implemented some safeguards to

handle unforeseen permission requests, potentially mitigating associated risks to a certain

extent. We responsibly disclosed our findings to Google, and their response confirmed that

these behaviors are intentional.

41

Chapter 5

Concluding Remarks and Future Works

This study analyzes discrepancies in permissions requested by Google and Facebook

SSO across Android and web platforms. As part of this work, we developed SSO-Scoper,

an automated framework for SSO logins, enabling a systematic comparison of permis-

sions between platforms and identifying more privacy-intrusive requests. In this chapter,

we delve into the key findings on SSO permissions and outline the limitations. Addition-

ally, we provide an overview of future research directions to guide and inspire subsequent

researchers.

5.1 Key Takeaways

Our findings show that SSO permissions differ significantly: Facebook SSO generally

requests more intrusive permissions than Google SSO, and Android apps demand more per-

missions than web apps. Specifically, we observed a 12.58% discrepancy in Facebook SSO

and a 3.48% discrepancy in Google SSO permissions between web and Android platforms.

We also uncovered potential risks, including permission validation gaps in Facebook and

inconsistent behaviors in Google’s review process that could allow permissions to bypass

checks. These findings highlight the need for incremental authorization, where permissions

42

are requested only when necessary, to enhance user privacy.

5.2 Limitations

Our framework has several limitations. For Android applications, the tool relies on text-

based detection, which prevents it from identifying login buttons represented as images or

those with keywords located outside of labels. Additionally, the presence of advertisements

or complex navigation paths—with buttons embedded within other menus that are not im-

mediately accessible—can hinder accurate detection. Figure 5.1 shows an example of an

Android app where the navigation path to the login is too complex for SSO-Scoper to detect

effectively.

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4 (e) Step 5 (f) Step 6

Figure 5.1: Login process of the “Nations League & Women’s EURO” Android app, re-
quiring five clicks on buttons with uncommon keywords to reach the login screen. This
complex navigation path causes SSO-Scoper to fail in detecting and completing the login.

For website SSO login, the tool successfully identifies text-based buttons but misses

image-based buttons and those located in drop-down lists. While some websites may lack

relevant keywords in their element attributes, we incorporated regex-based keywords to

enhance the flexibility of our SSO detection.

Manual testing of 100 websites revealed that only two were protected by CAPTCHA,

which the SSO-Scoper framework cannot bypass, resulting in login failures for these sites.

However, to address Google reCAPTCHA triggers during the initial search, we set up four

43

proxy servers and configured SSO-Scoper to rotate the proxy IP every five domains. This

approach significantly reduced the number of Captchas encountered, though in rare cases

where a Captcha still appeared, we manually resolved it for the tool.

In SSO Permissions Analysis, we assumed users proceed with default permissions dur-

ing login, which may not reflect all real-world scenarios. Our analysis captured only the

permissions requested immediately upon login, without tracking additional requests post-

login.

Finally, SSO-Scoper has restricted support for IdPs, focusing only on the two most

common ones, Google and Facebook, due to their prevalence in prior studies [8, 17, 27].

5.3 Recommendations

Given the discrepancies in SSO permission practices across platforms and the potential

for privacy-invasive behavior, we present targeted recommendations for users, developers,

and policy regulators to enhance transparency, accountability, and user data protection in

OAuth-based SSO systems.

5.3.1 For Users

1. Review Permissions Carefully: Users should actively review the permissions re-

quested during SSO login, especially when using Android apps, which this study

shows often request more intrusive permissions than their web counterparts.

2. Manage Permissions Post-Login: Users are encouraged to periodically review and

revoke permissions via their IdP dashboards (e.g., Facebook and Google settings),

particularly for services no longer in use.

3. Prefer Incremental Authorization: When given the option, users should approve only

essential permissions at login and grant additional access only when required for

44

specific features.

5.3.2 For Developers

1. Adopt Incremental Authorization: Developers should follow the best practices rec-

ommended by IdPs such as Facebook and Google by requesting only essential per-

missions during initial login and prompting for additional permissions only when

needed.

2. Ensure Consistency Across Platforms: Services offering both web and mobile apps

should align their SSO permissions across platforms, unless functional differences

clearly justify platform-specific data access.

3. Avoid Unjustified Data Collection: Developers should refrain from requesting per-

missions unrelated to core functionality. This includes permissions such as “Photos”,

“Page likes”, or “Contacts” unless strictly necessary.

4. Ensure Transparency in Privacy Policies: Privacy policies should clearly list all per-

missions requested during SSO login, distinguishing between those used on web and

mobile platforms.

5.3.3 For Policy Regulators and IdPs

1. Strengthen App Review Processes: Identity Providers should implement and en-

force more robust mechanisms for validating permission requests, ensuring devel-

opers cannot bypass prior reviews via client-side manipulation. The review process

should be granular and scope-specific, rather than relying on broad category-based

approvals. As demonstrated in this study, platforms like Google allow developers

validated for one permission within a category (e.g., “non-sensitive”) to access other

permissions in that group without further review. This approach increases the risk

45

of over-privileged data access and limits users’ control. A fine-grained, per-scope

review model would better protect user data by explicitly authorizing only the per-

missions necessary for declared functionalities.

2. Audit and Monitor SSO Integrations: Regulators and IdPs should continuously mon-

itor and audit OAuth applications to detect and act upon discrepancies between ap-

proved and requested permissions.

3. Mandate Platform-Specific Disclosure: Privacy regulations should require that ser-

vices explicitly disclose differences in SSO permissions across platforms in their

privacy documentation.

4. Promote Standardized Consent Interfaces: Encourage the adoption of clear, user-

friendly consent dialogs that facilitate informed choices, particularly regarding op-

tional and sensitive permissions.

5.4 Future Work

According to the findings and limitations in this thesis, there are some potential future

works:

• Expanding SSO IdP Coverage: The current framework supports the two most com-

mon IdPs; however, incorporating additional IdPs such as Twitter—known for its

flexible SSO permission model and large user base—could significantly broaden the

scope of the analysis and enhance the generalizability of the findings.

• Improving SSO Button Detection: The current implementation of SSO-Scoper re-

lies on text-based detection, which may overlook login buttons that are represented

solely by logos. Enhancing the tool with image-based SSO button recognition could

increase the login success rate and expand service coverage.

46

• Incorporating Static Analysis: While this study focused on dynamic detection of SSO

permissions through live login sessions, integrating static analysis of app or website

source code presents a promising direction. This approach could improve both cov-

erage and accuracy, especially in cases where dynamic login flows are hard to trigger.

Moreover, static analysis would allow the detection of all potentially requested per-

missions, not just those exposed during user interaction.

• Adding CAPTCHA Support: The detection rate of SSO-Scoper could be further im-

proved by incorporating CAPTCHA-solving capabilities. Either through the devel-

opment of a dedicated CAPTCHA solver module or by leveraging existing solutions,

this addition would increase the tool’s ability to navigate to login pages and complete

login flows across more services.

• Cross-Device SSO Flow Consistency: Investigating how SSO behavior differs not

only across platforms (web vs. mobile) but also across devices (e.g., Android vs.

iOS) and browsers could uncover inconsistencies and guide developers and IdPs to-

ward more unified user experiences and permission policies.

47

Bibliography

[1] Accept all cookies, 2024. Version 1.0.3. Available at https://chromewebstore.g

oogle.com/detail/accept-all-cookies/ofpnikijgfhlmmjlpkfaifhhdon

chhoi.

[2] Adguard adblocker, 2024. Version 4.4.22. Available at https://chromewebstore

.google.com/detail/adguard-adblocker/bgnkhhnnamicmpeenaelnjfhikg

bkllg.

[3] Adnroidrank, 2024. Available at https://www.androidrank.org/.

[4] Selenium 4.25.0 documentation, 2024. Available at https://www.selenium.dev

/selenium/docs/api/py/webdriver/selenium.webdriver.common.action

_chains.html.

[5] T. Al Rahat, Y. Feng, and Y. Tian. Oauthlint: An empirical study on oauth bugs in an-

droid applications. In 2019 34th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 293–304. IEEE, 2019.

[6] M. Alecci, P. J. R. Jiménez, K. Allix, T. F. Bissyandé, and J. Klein. Androzoo: A

retrospective with a glimpse into the future. In Proceedings of the 21st International

Conference on Mining Software Repositories, pages 389–393, 2024.

48

https://chromewebstore.google.com/detail/accept-all-cookies/ofpnikijgfhlmmjlpkfaifhhdonchhoi
https://chromewebstore.google.com/detail/accept-all-cookies/ofpnikijgfhlmmjlpkfaifhhdonchhoi
https://chromewebstore.google.com/detail/accept-all-cookies/ofpnikijgfhlmmjlpkfaifhhdonchhoi
https://chromewebstore.google.com/detail/adguard-adblocker/bgnkhhnnamicmpeenaelnjfhikgbkllg
https://chromewebstore.google.com/detail/adguard-adblocker/bgnkhhnnamicmpeenaelnjfhikgbkllg
https://chromewebstore.google.com/detail/adguard-adblocker/bgnkhhnnamicmpeenaelnjfhikgbkllg
https://www.androidrank.org/
https://www.selenium.dev/selenium/docs/api/py/webdriver/selenium.webdriver.common.action_chains.html
https://www.selenium.dev/selenium/docs/api/py/webdriver/selenium.webdriver.common.action_chains.html
https://www.selenium.dev/selenium/docs/api/py/webdriver/selenium.webdriver.common.action_chains.html

[7] Apple. Request an authorization to the sign in with apple server, 2024. Available at

https://developer.apple.com/documentation/sign_in_with_apple/req

uest_an_authorization_to_the_sign_in_with_apple_server.

[8] C. Ardi and M. Calder. The prevalence of single sign-on on the web: towards the next

generation of web content measurement. In Proceedings of the 2023 ACM on Internet

Measurement Conference, pages 124–130, 2023.

[9] D. G. Balash, X. Wu, M. Grant, I. Reyes, and A. J. Aviv. Security and privacy percep-

tions of third-party application access for google accounts. In 31st USENIX security

symposium (USENIX Security 22), pages 3397–3414, 2022.

[10] L. Bauer, C. Bravo-Lillo, E. Fragkaki, and W. Melicher. A comparison of users’

perceptions of and willingness to use google, facebook, and google+ single-sign-on

functionality. In Proceedings of the 2013 ACM workshop on Digital identity manage-

ment, pages 25–36, 2013.

[11] M. Benolli, S. A. Mirheidari, E. Arshad, and B. Crispo. The full gamut of an attack:

An empirical analysis of oauth csrf in the wild. In Detection of Intrusions and Mal-

ware, and Vulnerability Assessment: 18th International Conference, DIMVA 2021,

Virtual Event, July 14–16, 2021, Proceedings 18, pages 21–41. Springer, 2021.

[12] S. Bhattacharya, M. Najana, A. Khanna, and P. Chintale. Securing the Gatekeeper:

Addressing Vulnerabilities in OAuth Implementations for Enhanced Web Security.

International Journal of Global Innovations and Solutions (IJGIS), apr 25 2024.

https://ijgis.pubpub.org/pub/jkavqi25.

[13] A. Bisegna, M. Bitussi, R. Carbone, L. Compagna, S. Ranise, and A. Sudhodanan.

Csrfing the sso waves: Security testing of sso-based account linking process. In 2024

49

https://developer.apple.com/documentation/sign_in_with_apple/request_an_authorization_to_the_sign_in_with_apple_server
https://developer.apple.com/documentation/sign_in_with_apple/request_an_authorization_to_the_sign_in_with_apple_server

IEEE 9th European Symposium on Security and Privacy (EuroS&P), pages 139–154,

2024.

[14] L. Ceci. Most popular dating apps worldwide in june 2024, by number of monthly

downloads, 2024. Available at https://www.statista.com/statistics/1200

234/most-popular-dating-apps-worldwide-by-number-of-downloads/.

[15] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague. Oauth demystified for

mobile application developers. In Proceedings of the 2014 ACM SIGSAC conference

on computer and communications security, pages 892–903, 2014.

[16] A. Cohen. Fuzzywuzzy, 2020. Available at https://pypi.org/project/fuzzy

wuzzy/.

[17] Y. Dimova, T. Van Goethem, and W. Joosen. Everybody’s looking for ssomething: A

large-scale evaluation on the privacy of oauth authentication on the web. Proceedings

on Privacy Enhancing Technologies, 2023.

[18] R. Gafni and D. Nissim. To social login or not login? exploring factors affecting

the decision. Issues in Informing Science and Information Technology, 11(1):57–72,

2014.

[19] M. Ghasemisharif, C. Kanich, and J. Polakis. Towards automated auditing for ac-

count and session management flaws in single sign-on deployments. In 2022 IEEE

Symposium on Security and Privacy (SP), pages 1774–1790. IEEE, 2022.

[20] M. Ghasemisharif, A. Ramesh, S. Checkoway, C. Kanich, and J. Polakis. O single

sign-off, where art thou? an empirical analysis of single sign-on account hijacking

and session management on the web. In 27th USENIX Security Symposium (USENIX

Security 18), pages 1475–1492, 2018.

50

https://www.statista.com/statistics/1200234/most-popular-dating-apps-worldwide-by-number-of-downloads/
https://www.statista.com/statistics/1200234/most-popular-dating-apps-worldwide-by-number-of-downloads/
https://pypi.org/project/fuzzywuzzy/
https://pypi.org/project/fuzzywuzzy/

[21] B. D. Göçer and Ş. Bahtiyar. An authorization framework with oauth for fintech

servers. In 2019 4th International Conference on Computer Science and Engineering

(UBMK), pages 536–541. IEEE, 2019.

[22] Google. Incremental authorization, 2024. Available at https://developers.goo

gle.com/identity/protocols/oauth2/web-server#incrementalAuth.

[23] Google. Oauth app verification, 2024. Available at https://support.google.c

om/cloud/answer/13463073.

[24] D. Hardt. The oauth 2.0 authorization framework, 2012. Available at https://data

tracker.ietf.org/doc/html/rfc6749.

[25] P. Hosseyni, R. Kuesters, and T. Würtele. Audience injection attacks: A new class of

attacks on web-based authorization and authentication standards. Cryptology ePrint

Archive, 2025.

[26] L. Jannett, V. Mladenov, C. Mainka, and J. Schwenk. Distinct: identity theft using

in-browser communications in dual-window single sign-on. In Proceedings of the

2022 ACM SIGSAC Conference on Computer and Communications Security, pages

1553–1567, 2022.

[27] Jannett, Louis and Westers, Maximilian and Wich, Tobias and Mainka, Christian and

Mayer, Andreas and Mladenov, Vladislav. SoK: SSO-Monitor - The current state and

future research directions in single sign-on security measurements. In 2024 IEEE 9th

European Symposium on Security and Privacy (EuroS&P), 2024.

[28] John.Kurkowski. Tldextract, 2024. Available at https://pypi.org/project/tld

extract/.

51

https://developers.google.com/identity/protocols/oauth2/web-server#incrementalAuth
https://developers.google.com/identity/protocols/oauth2/web-server#incrementalAuth
https://support.google.com/cloud/answer/13463073
https://support.google.com/cloud/answer/13463073
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://pypi.org/project/tldextract/
https://pypi.org/project/tldextract/

[29] W. Li, C. J. Mitchell, and T. Chen. Oauthguard: Protecting user security and privacy

with oauth 2.0 and openid connect. In Proceedings of the 5th ACM workshop on

security standardisation research workshop, pages 35–44, 2019.

[30] X. Liu, J. Liu, W. Wang, and S. Zhu. Android single sign-on security: Issues, taxon-

omy and directions. Future Generation Computer Systems, 89:402–420, 2018.

[31] Meta. Facebook login best practices, 2024. Available at https://developers.f

acebook.com/docs/facebook-login/best-practices.

[32] Meta. Permissions / login review, 2024. Available at https://developers.faceb

ook.com/docs/facebook-login/guides/permissions/review/.

[33] Meta. Permissions reference for meta technologies apis, 2024. Available at https:

//developers.facebook.com/docs/permissions.

[34] Meta. Permissions with facebook login, 2024. Available at https://developers

.facebook.com/docs/facebook-login/guides/permissions/.

[35] S. G. Morkonda, S. Chiasson, and P. C. van Oorschot. Empirical analysis and pri-

vacy implications in oauth-based single sign-on systems. In Proceedings of the 20th

Workshop on Workshop on Privacy in the Electronic Society, pages 195–208, 2021.

[36] S. G. Morkonda, S. Chiasson, and P. C. van Oorschot. Influences of displaying

permission-related information on web single sign-on login decisions. Computers

& Security, 139:103666, 2024.

[37] S. G. Morkonda, P. C. van Oorschot, and S. Chiasson. Exploring privacy implications

in oauth deployments. arXiv preprint arXiv:2103.02579, 2021.

52

https://developers.facebook.com/docs/facebook-login/best-practices
https://developers.facebook.com/docs/facebook-login/best-practices
https://developers.facebook.com/docs/facebook-login/guides/permissions/review/
https://developers.facebook.com/docs/facebook-login/guides/permissions/review/
https://developers.facebook.com/docs/permissions
https://developers.facebook.com/docs/permissions
https://developers.facebook.com/docs/facebook-login/guides/permissions/
https://developers.facebook.com/docs/facebook-login/guides/permissions/

[38] S. Morkonda Gnanasekaran, S. Chiasson, and P. Van Oorschot. “sign in with... pri-

vacy”: Timely disclosure of privacy differences among web sso login options. ACM

Transactions on Privacy and Security, 2025.

[39] F. Olano. google-play-api, 2024. Available at https://github.com/facundool

ano/google-play-api.

[40] T.-H. Pham, Q.-H. Vo, H. Dao, and K. Fukuda. Ssologin: A framework for automated

web privacy measurement with sso logins. In Proceedings of the 18th Asian Internet

Engineering Conference, pages 69–77, 2023.

[41] P. Philippaerts, D. Preuveneers, and W. Joosen. Oauch: Exploring security compli-

ance in the oauth 2.0 ecosystem. In Proceedings of the 25th International Symposium

on Research in Attacks, Intrusions and Defenses, pages 460–481, 2022.

[42] V. L. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and W. Joosen.

Tranco: A research-oriented top sites ranking hardened against manipulation. arXiv

preprint arXiv:1806.01156, 2018.

[43] S. Pourali, N. Samarasinghe, and M. Mannan. Hidden in plain sight: exploring en-

crypted channels in android apps. In Proceedings of the 2022 ACM SIGSAC Confer-

ence on Computer and Communications Security, pages 2445–2458, 2022.

[44] T. A. Rahat, Y. Feng, and Y. Tian. Cerberus: Query-driven scalable vulnerability

detection in oauth service provider implementations. In Proceedings of the 2022 ACM

SIGSAC Conference on Computer and Communications Security, pages 2459–2473,

2022.

[45] F. Rezaei, M. Lupinacci, M. Mannan, and A. Youssef. On analyzing sso permis-

sions across web and android platforms. In International Conference on Security and

Privacy in Communication Systems, 2025.

53

https://github.com/facundoolano/google-play-api
https://github.com/facundoolano/google-play-api

[46] Y. Sadqi, Y. Belfaik, and S. Safi. Web oauth-based sso systems security. In Pro-

ceedings of the 3rd International Conference on Networking, Information Systems &

Security, pages 1–7, 2020.

[47] S. Shi, X. Wang, and W. C. Lau. Mossot: An automated blackbox tester for single

sign-on vulnerabilities in mobile applications. In Proceedings of the 2019 ACM Asia

Conference on Computer and Communications Security, pages 269–282, 2019.

[48] R. Soni. Loginradius releases consumer identity trend report 2022, key login methods

highlighted, 2022. Available at https://www.loginradius.com/blog/identit

y/loginradius-consumer-identity-trend-report-2022/.

[49] B. Team. Most popular apps, 2024. Available at https://backlinko.com/most

-popular-apps.

[50] UltrafunkAmsterdam. undetected chromedriver, 2024. Available at https://pypi

.org/project/undetected-chromedriver/.

[51] K. Wang, G. Bai, N. Dong, and J. S. Dong. A framework for formal analysis of

privacy on sso protocols. In Security and Privacy in Communication Networks: 13th

International Conference, SecureComm 2017, Niagara Falls, ON, Canada, October

22–25, 2017, Proceedings 13, pages 763–777. Springer, 2018.

[52] H. Wei, B. Hassanshahi, G. Bai, P. Krishnan, and K. Vorobyov. Moscan: A model-

based vulnerability scanner for web single sign-on services. In Proceedings of the

30th ACM SIGSOFT International Symposium on Software Testing and Analysis,

pages 678–681, 2021.

[53] Y. Zhou and D. Evans. Ssoscan: automated testing of web applications for single

sign-on vulnerabilities. In 23rd USENIX Security Symposium (USENIX Security 14),

pages 495–510, 2014.

54

https://www.loginradius.com/blog/identity/loginradius-consumer-identity-trend-report-2022/
https://www.loginradius.com/blog/identity/loginradius-consumer-identity-trend-report-2022/
https://backlinko.com/most-popular-apps
https://backlinko.com/most-popular-apps
https://pypi.org/project/undetected-chromedriver/
https://pypi.org/project/undetected-chromedriver/

Appendix A

A.1 Example Cases

Below we provide details of the RPs with significant discrepancies in SSO permissions

between their apps and websites.

TikTok. This app is the third most popular social media app worldwide [49] with over

1 billion downloads from the Google Play Store, employs different Facebook app IDs for

handling its mobile and web applications separately. During our experiments, we observed

that while TikTok only requests the “Name and profile picture” permission on its web-

site, it requests three additional permissions—“Email address”, “Age range”, and “Friends

list”—on its Android app. The “Friends list” permission pertains to the user’s list of friends

who also use TikTok. When logging in with Google SSO, the app requests only the mini-

mal permission “See your profile info” on both the web and Android platforms.

Smule: Karaoke Songs & Videos. Smule is a popular entertainment app with over 100

million downloads, supporting both Facebook and Google SSO on its mobile and web plat-

forms. Our analysis revealed discrepancies in the permissions requested between the web

and Android platforms when using Facebook SSO. On Android, Smule requests access to

three additional data fields: “Email address”, “Age range”, and “Friends list”, whereas on

the web platform, it only requests the “Name and profile picture” permission. Addition-

ally, when using Google SSO, the app requests only the minimal permission, “See your

55

profile info”. We reached out to the Smule support team regarding the discrepancies in

permissions. Their response indicated that the mandatory permissions remain the same

across both platforms, while the optional permissions differ. They clarified that it is up to

the user’s discretion to grant additional permissions, as they are not mandatory. According

to Facebook’s specifications [34], the only mandatory permission is the “Name and profile

picture” field, allowing users to deny any additional permissions by modifying them during

the login process. However, since these extra permissions are still presented as default re-

quirements during login, our experiment did not account for users deliberately modifying

permissions.

Badoo Dating App: Meet & Date. Badoo is recognized as the fourth most popular dating

app worldwide, according to Statista’s 2024 report [14]. Unlike most apps, Badoo requests

more permissions when users log in using Facebook SSO on a web browser. The additional

permissions include the user’s “Birthday” and “Gender” from their Facebook profile, while

this information is not required on the Android app or during the Google SSO login pro-

cess. When using Google SSO, the app only requests the minimal permission, “See your

profile info”. In response to our inquiry about the differing permissions across the two

platforms, they replied, stating that “both the app and web versions only require members

to share their Facebook name and profile picture. Members can then optionally choose to

share their email address, gender, and birthday from Facebook if they wish.” However,

their response did not justify the current permissions, and they did not address our follow-

up question regarding the reason behind the existing difference.

ZEPETO: Avatar, Connect & Live. ZEPETO is a virtual role-playing game that allows

users to create digital avatars, boasting over 100 million downloads on the Google Play

Store. While the app requests only the “Name and profile picture” permission when log-

ging into the web version via Facebook SSO, the Android version requires two additional

permissions: “Email address” and “Friends list”. The functionality review revealed that

56

user registration can only be completed through the mobile app, forcing users to grant the

extra permissions regardless of their necessity, as the additional permissions appear unnec-

essary for the app’s functionality.

iHeart: Music, Radio, Podcasts. iHeart is a well-known music, radio, and podcast app

with over 50 million downloads from the Google Play Store. This app requests minimal

permissions from users on its web platform during Google SSO login. However, when us-

ing the Android app or logging in with a Facebook account, the app consistently requests

access to the user’s “Birthday” and “Gender”, regardless of the platform.

adidas: Shop Shoes & Clothing. Adidas is a renowned shopping brand that offers web

and mobile apps for online shopping, with over 50 million downloads. When using Google

SSO to log in to this app, both the web and Android app platforms require only minimal

mandatory permissions, while the permissions for “Age Group” and “Exact Date of Birth”

are presented as optional, allowing the user to choose whether to grant them. In contrast,

when using Facebook SSO on the web platform, the same permissions—“Age Group” and

“Birthday”—along with the user’s “Gender”, are requested as mandatory, whereas these

permissions are not requested on the Android app.

Chess - Play and Learn. Chess is a free, unlimited chess game with over 50 million down-

loads. This gaming app requests access to its users’ list of friends who also use the app,

only when a user logs in with their Facebook account on a web browser. In contrast, when

using the mobile app or logging in with Google SSO, the app requests only the minimal

permissions.

Tagged - Meet, Chat & Dating. Tagged is a dating app with over 50 million users. On the

Android app of this service, the “Photos” permission is requested, granting read access to

the photos a user has uploaded to Facebook [33], which may include personal and sensitive

images. In contrast, logging in with Google SSO on the web results in an additional per-

mission, “See and download your contacts”, which provides read access to all of the user’s

57

Google contacts. Google specifies that this permission allows the app to view and make a

copy of the user’s Google Contacts, which may include names, phone numbers, addresses,

and other information about the user’s acquaintances.

Desygner: Graphic Design Maker. Desygner is a business marketing app with over 5 mil-

lion downloads from the Google Play Store. While the app requests minimal permissions

when logging in with Google SSO, it requests access to the user’s Facebook photos when

the user chooses to log in with Facebook on a web browser. This permission (“Photos”) is

not required when the user uses the same SSO option to log in on an Android device. Re-

garding functionality, both the app and website offer similar functionality, allowing users

to upload or import photos from Facebook. However, the web version requests the “Pho-

tos” permission during login but requires re-authentication later to access photos, while the

Android app requests the permission only when the user navigates to the Gallery to upload

images.

Sociable - Social Games & Chat. Sociable is a social gaming app with over 1 million

downloads. This app exhibits several discrepancies in its requested permissions across

web and mobile platforms, as well as between Facebook and Google SSOs. Overall, the

app requests more permissions on its Android app compared to its website version. When

using Facebook SSO, the app requests sensitive additional permissions, such as access to

the user’s photos posted on Facebook (“Photos”) and a list of all Facebook Pages the user

has liked (“Page likes”), among other permissions; see Table 4.4. In contrast, when using

Google SSO, the app requests access to the user’s birth date and gender exclusively on the

Android platform.

After reviewing the functionality of Sociable, we found that full registration and core

features like gaming are only available on the mobile app, with the website encouraging

users to install the app for the complete experience. Despite extensive permission requests

via Facebook and Google SSO, these permissions were not visibly utilized in either version.

58

ManyCam - Easy live streaming. ManyCam is a virtual camera and live streaming

software with over 1 million downloads on the Google Play Store. This app requests mini-

mal permissions when logging in with Google SSO on both Android and web platforms, as

well as during Facebook login on the Android app. However, when using Facebook SSO

on the web, it requests permission to publish live videos to the user’s timeline, group, event,

or page (“Email address”, “Publish video to your timeline on your behalf”). The ManyCam

mobile app enables video streaming to Facebook, requesting permissions “Publish video to

your timeline on your behalf”, “Create and manage content on your Page”, “Read content

posted on the Page”, and “Show a list of the Pages you manage”. only when the user de-

cides to initiate a stream. In contrast, the website serves as an administrative panel with no

recording capabilities, making the permission to publish videos to the Facebook timeline

excessive and unnecessary on the web platform.

AsianDating: Asian Dating, BrazilCupid: Brazilian Dating, and HongKongCu-

pid Hong Kong Dating These three popular region-based dating apps are owned by “Cu-

pid Media” and share the same theme and configurations. When logging in with Google

SSO on the Android app, these apps require permissions for the user’s birthday and gen-

der, whereas these permissions are not requested on the web platform. In response to our

inquiry, the vendor explained that the Android app requests additional information, like

gender and birthday, to streamline the user experience by auto-populating profiles, while

the web platform only requires basic authentication. However, despite this explanation,

both the website and the Android app ask users for this information directly, rendering the

granted permissions unnecessary.

WellnessLiving Achieve. WellnessLiving is a software solution designed for art and

sports studios, supporting both Google and Facebook SSO login on its web and mobile

platforms. This app requests different permissions depending on the platform. When log-

ging in with Facebook SSO, the Android app requests only “Name and profile picture”

59

and “Email address”. However, on the web browser, it additionally requests the “gen-

der” and a “Timeline link” to access the user’s profile link. When a user chooses to log

in using Google SSO, the app requests more extensive permissions on the Android plat-

form, including access to the user’s birthday (“Exact Date of Birth”) and full access to all

of their Google calendars (“Google Calendar, see, edit, share, and permanently delete all

the calendars you can access using Google Calendar”). This permission allows the app to

make changes to the user’s calendars, as well as any calendar they can access via Google

Calendar, including creating, changing, or deleting calendars, updating individual calendar

events, modifying settings such as who can view the events, and altering who the calendar

is shared with. This is a sensitive permission, as a user’s calendar may contain personal

contacts and private appointments. In contrast, when logging in with Google SSO on the

WellnessLiving website, the service requests the following permissions: “Make secondary

Google calendars, and see, create, change, and delete events on them” and “See the list

of Google calendars you’re subscribed to”. Although Google OAuth scopes do not pro-

vide a detailed explanation for this permission, the general description suggests that the

app requests full access to all of the user’s calendars. Functionality testing revealed that

logging into the app was not possible due to restricted access for specific accounts, though

we successfully logged in on the website. However, the requirement to complete medical

information forms prevented a full review of the features, leaving our functionality assess-

ment incomplete and inconclusive.

Inmate Photos: Photos to Jail Inmate Photos is an app designed for delivering photos

and pictures to inmates. While this app requests access to users’ photos during both Google

and Facebook SSO login, it notably does not request this permission when logging in with

Facebook SSO on the Android app.

60

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement and Analysis Overview
	Contributions
	Ethical Consideration and Responsible Disclosure
	Thesis Organization
	List of Publications

	Background
	OAuth Overview and SSO Permission Mechanism
	OAuth Authorization Flow and Token Types
	Known Vulnerabilities in OAuth-Based SSO
	IdP App Review and Authorization Models
	Scope Design and Permission Granularity
	Related Work
	Research Gap

	Methodology
	SSO Logins on Android Apps
	Mapping of Android Apps and Websites
	SSO Logins on Websites
	Collection and Analysis of SSO Permissions

	Results
	Prevalence of SSO Logins on Android Apps
	Prevalence of SSO Logins on Websites
	Discrepancy of SSO Permissions Across Web and Android Apps
	Privacy-Intrusive Permissions
	Case Studies
	Privacy Risks from Permission Adjustments

	Concluding Remarks and Future Works
	Key Takeaways
	Limitations
	Recommendations
	For Users
	For Developers
	For Policy Regulators and IdPs

	Future Work

	Bibliography
	Appendix
	Example Cases

