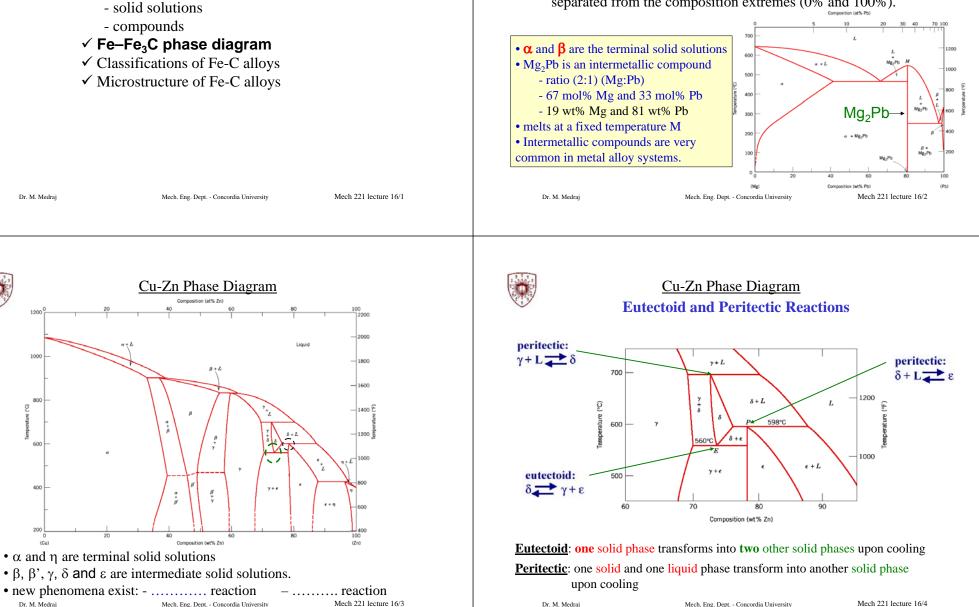


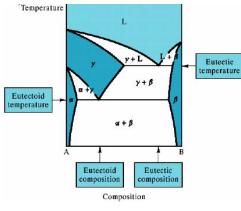
Outline


 \checkmark Phase diagram with intermediate phases

• Eutectic systems that we have

Phase Diagrams with Intermediate Phases

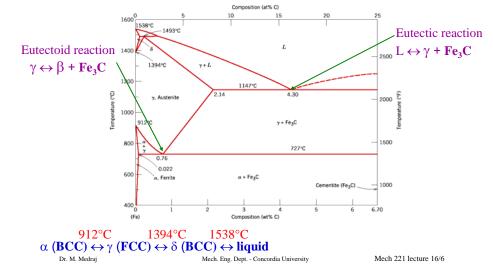
• Eutectic systems that we have studied so far have only two solid phases (α and β) that exist near the ends of phase diagrams. These phases are called solid solutions.


• Some binary alloy systems have solid solution phases (*see next slide*). In phase diagrams, these phases are separated from the composition extremes (0% and 100%).

Eutectoid Reactions

The **eutectoid** (*eutectic-like* in Greek) reaction is similar to the eutectic reaction but occurs from one solid phase to two new solid phases.

The above phase diagram contains both an eutectic reaction and (its solid-state analog) an eutectoid reaction


Dr. M. Medraj

Mech. Eng. Dept. - Concordia University Mech 221 lecture 16/5

The Iron–Iron Carbide (Fe–Fe₃C) Phase Diagram

In their simplest form, steels are alloys of Iron (Fe) and Carbon (C). The Fe-C phase diagram is a fairly complex one, but we will only consider the part up to around 7% carbon of the diagram.

<u>Phases in Fe–Fe₃C Phase Diagram</u>

α -ferrite - solid solution of C in Fe

- Stable form of iron at room temperature.
- The maximum solubility of C is 0.022 wt% (interstitial solubility)
- Soft and relatively easy to deform

γ -austenite - solid solution of C in Fe

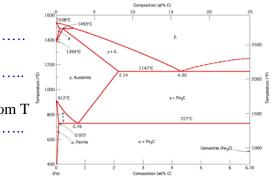
- The maximum solubility of C is 2.14 wt % at 1147°C.
- Interstitial lattice positions are much larger than ferrite (higher C%)
- Is not stable below the eutectic temperature (727 °C) unless cooled rapidly (*Chapter 10*).

δ -ferrite solid solution of C in Fe

- The same structure as α -ferrite
- Stable only at high T, above 1394 °C
- Also has low solubility for carbon (BCC)

Fe₃C (iron carbide or cementite)

• This intermetallic compound is metastable, it remains as a compound indefinitely at room T, but decomposes (very slowly, within several years) into α -Fe and C (graphite) at 650 - 700 °C


Fe-C liquid solution

Mech 221 lecture 16/7

Classifications of Fe-C alloys

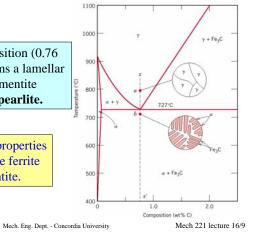
- < 0.008 wt% Carbon $\rightarrow \dots$
 - α -ferrite at room T
- $0.008 2.14 \text{ wt\% } \text{C} \rightarrow \dots$
 - usually < 1 wt %
 - α -ferrite + Fe₃C at room T
- $2.14 6.7 \text{ wt\% C} \rightarrow \dots$
 - usually < 4.5 wt %

> <u>Magnetic properties</u>: α -ferrite is magnetic (below 768 °C), austenite is non-magnetic.

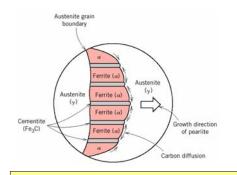
Mechanical properties: Cementite is very hard and brittle thus it can strengthen steels.

> Mechanical properties also depend on _____, that is, how ferrite and cementite are mixed.

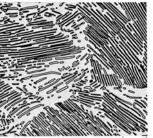
Development of Microstructure in Iron - Carbon alloys


• Microstructure depends on composition (carbon content) and heat treatment.

• In the discussion below we consider slow cooling in which equilibrium is maintained.


Eutectoid steel

When alloy of eutectoid composition (0.76 wt % C) is cooled slowly it forms a lamellar or layered structure of α and cementite (Fe₃C). This structure is called **pearlite.**


Mechanically, pearlite has properties intermediate to soft, ductile ferrite and hard, brittle cementite.

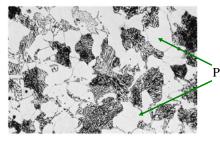
Development of Microstructure in Iron - Carbon alloys

The layers of alternating phases in pearlite are formed for the same reason as layered structure of eutectic phases: redistribution C atoms between ferrite (0.022 wt%) and cementite (6.7 wt%) by atomic diffusion.

the dark areas are Fe_3C layers, the light phase is α -ferrite

Dr. M. Medraj

```
Mech 221 lecture 16/10
```

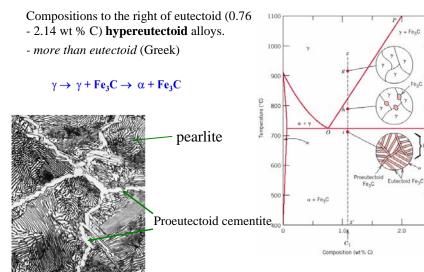


Dr. M. Medrai

Microstructure of hypoeutectoid steel

Compositions to the left of eutectoid (0.022-0.76 wt % C) **hypoeutectoid** alloys

- *less than eutectoid* (Greek)

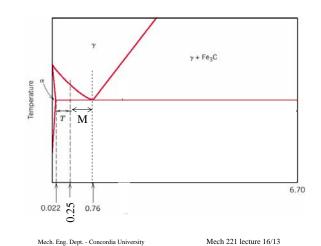
Hypoeutectoid alloys contain proeutectoid ferrite (*formed above the eutectoid temperature*) plus the eutectoid pearlite that contain eutectoid ferrite and cementite.



bid (0.022-'S ectoid lite that ite. Proeutectoid α 400° 100° $100^$

Microstructure of hypereutectoid steel

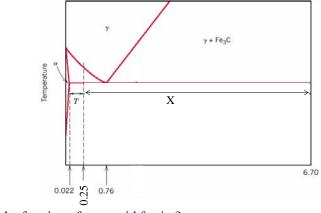
Mech. Eng. Dept. - Concordia University


Dr. M. Medraj

Dr. M. Medraj

Example 1

Compute the mass fractions of proeutectoid ferrite and pearlite that form in an Fe – C alloy containing 0.25 wt% C, at a temperature just below the eutectoid.



Dr. M. Medraj

Example 2

Compute the mass fractions of total ferrite and cementite that form in an Fe - C alloy containing 0.25 wt% C at a temperature just below the eutectoid.

Mech. Eng. Dept. - Concordia University

Mech 221 lecture 16/14

Finally,	determine t	he fraction	of eutectore	d ferrite?

-	. 1	*
2	3M	12
25		81
12		an/
1	1.4.4	47

Dr. M. Medraj

Next topic: Ceramic Materials

Mech 221 lecture 16/15