
Chapter 4

THE STRUCTURE AND
ENERGY OF GRAIN
BOUNDARIES

4.1 INTRODUCTION

The majority of the book is concerned with the ways in which boundaries separating
regions of different crystallographic orientation are formed or are rearranged on
annealing either during or after deformation. In this chapter we will introduce some
aspects of the structure and properties of these boundaries and in chapter 5 we discuss
the migration and the mobility of boundaries. We will concentrate on those aspects of
grain boundaries which are most relevant to recovery, recrystallization and grain
growth and will not attempt to give a full coverage of the subject. Further information
on grain boundaries may be found in the books by Hirth and Lothe (1968), Bollmann
(1970), Gleiter and Chalmers (1972), Chadwick and Smith (1976), Balluffi (1980), Wolf
and Yip (1992), Sutton and Balluffi (1995) and Gottstein and Shvindlerman (1999).

If we consider a grain boundary such as that shown in figure 4.1, the overall geometry of
the boundary is defined by the orientation of the boundary plane AB with respect to one
of the two crystals (two degrees of freedom) and by the smallest rotation (�) required to
make the two crystals coincident (three degrees of freedom). There are thus five

macroscopic degrees of freedom which define the geometry of the boundary. In addition
to this, the boundary structure is dependent on three microscopic degrees of freedom,

which are the rigid body translations parallel and perpendicular to the boundary. The
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structure of the boundary depends also on the local displacements at the atomic level
and is influenced by external variables such as temperature and pressure, and internal
parameters such as bonding, composition and defect structure. As many of the
properties of a grain boundary are dependent on its structure, a knowledge of boundary
structure is a necessary prerequisite to understanding its behaviour. Although there has
been extensive experimental and theoretical work in this area over the past few decades,
there is still a great deal of uncertainty about the structure and properties of boundaries.
Most of this work has been carried out for static boundaries and there is even more
uncertainty over the structure, energy and properties of the migrating boundaries which
will be important during annealing. In addition, most of the experimental measurements
have been made close to the melting temperature. We must therefore recognise that our
ability to understand the phenomena of recovery, recrystallization and grain growth
may well be limited by our lack of knowledge of the boundaries themselves.

It is convenient to divide grain boundaries into those whose misorientation is greater
than a certain angle – high angle grain boundaries (HAGB), and those whose
misorientation is less than this angle – low angle grain boundaries (LAGB). The angle
at which the transition from low to high angle boundaries occurs is typically taken as
between 10� and 15� and is to some extent dependent on what properties of the boundary
are of interest. As a very general guide, low angle boundaries are those which can be
considered to be composed of arrays of dislocations and whose structure and properties
vary as a function of misorientation, whilst high angle boundaries are those whose
structure and properties are not generally dependent on the misorientation. However, as
discussed below, there are ‘special’ high angle boundaries which do have characteristic
structures and properties, and therefore a crude division of boundaries into these two
broad categories must be used with caution.

4.2 THE ORIENTATION RELATIONSHIP BETWEEN GRAINS

As discussed above, there are five macroscopic degrees of freedom needed to define a
boundary. However, it is difficult to determine the orientation of the boundary plane

Fig. 4.1. A grain boundary between two crystals misoriented by an angle � about an
axis normal to the page.
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experimentally (§A2.6.3), and in many cases, we neglect it and consider only the three
parameters which define the orientation between the two grains adjacent to a boundary.
It should however be recognised that the use of such an incomplete description of a

boundary may cause problems in the interpretation of boundary behaviour.

The relative orientation of two cubic crystals is formally described by the rotation of one
crystal which brings it into the same orientation as the other crystal. This may be
defined by the rotation matrix

R ¼

a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5 ð4:1Þ

where aij are column vectors of direction cosines between the cartesian axes. The sums of
the squares of each row and of each column are unity, the dot products between column
vectors are zero, so only three independent parameters are involved. The rotation angle
(h) is given by

2cos� þ 1 ¼ a11þ a22þ a33 ð4:2Þ

and the direction of the rotation axis [uvw] is given by

½ða32� a23Þ, ða13� a31Þ, ða21� a12Þ�: ð4:3Þ

In cubic materials, because of the symmetry, the relative orientations of two grains can
be described in 24 different ways. In the absence of any special symmetry, it is
conventional to describe the rotation by the angle/axis pair associated with the smallest

misorientation angle, and this is sometimes called the disorientation. The range of �
which can occur is therefore limited, and Mackenzie (1958) has shown that the
maximum value of � is 45� for <100>, 60� for <111>, 60.72� for <110> and a
maximum of 62.8� for <1,1,

p
2�1>. For a polycrystal containing grains of random

orientation, the distribution of � is as shown in figure 4.2, with a mean of 40�.

It should be emphasised that the misorientation distribution shown in figure 4.2 will
only occur for a random grain assembly, and that a non-random distribution of
orientations (i.e. a crystallographic texture) such as is normally found after
thermomechanical processing, will alter the misorientation distribution. Examples of
this are found in strongly textured material where the large volume of similarly oriented
grains results in a large number of low/medium angle boundaries (e.g. figs. 14.3a, and
A2.1), and in materials containing large numbers of special boundaries (i.e. the
coincidence site boundaries discussed in §4.4.1) as shown in figure 11.8.

Figure 4.2 shows the distribution of misorientation angles regardless of the
misorientation axes. However, if proximity to a specific misorientation axis is specified,
the distribution may be markedly altered. For example figure 4.3 shows the distribution
of misorientation angles predicted for a randomly oriented grain assembly in which only
the axes closest to <110> are considered. The curve now shows two peaks, and as
demonstrated by Hutchinson et al. (1996), experimental observation of such peaks may

The Structure and Energy of Grain Boundaries 93



be wrongly interpreted as evidence of a predominance of boundaries with special
orientation relationships.

As discussed in appendix 2, the technique of electron backscatter diffraction (EBSD),
allows misorientation distributions of the type shown in figure 4.2, sometimes known as
Mackenzie plots, to be readily obtained. As shown in figure A2.1, such plots provide an
excellent ‘fingerprint’ of the microstructure, and are likely to become extensively used in
the future.

The angle/axis notation described above is commonly used to express misorientations.
However, there are several other ways of expressing the orientation relationship,
including Euler angles (misorientation distribution functions) and Rodrigues-Frank space.

The use of these methods for describing absolute orientations is outlined in appendix 1
and will not be further considered here.

Fig. 4.3. The distribution of misorientation angles for a randomly oriented assembly
of grains, for rotation axes closest to <110>, (after Hutchinson et al. 1996).

Fig. 4.2. The misorientation distribution for a randomly oriented assembly of grains.
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4.3 LOW ANGLE GRAIN BOUNDARIES

A low angle boundary or sub-boundary can be represented by an array of dislocations
(Burgers 1940, Read and Shockley 1950). The simplest such boundary is the
symmetrical tilt boundary, shown schematically in figure 4.4 in which the lattices on
either side of the boundary are related by a misorientation about an axis which lies in
the plane of the boundary. The boundary consists of a wall of parallel edge dislocation
aligned perpendicular to the slip plane. Such boundaries were first revealed as arrays of
etch pits on the surface of crystals, but are now more commonly observed by
transmission electron microscopy.

4.3.1 Tilt boundaries

If the spacing of the dislocations of Burgers vector b in the boundary is h, then the
crystals on either side of the boundary are misoriented by a small angle �, where

� �
b

h
: ð4:4Þ

The energy of such a boundary �s, is given (Read and Shockley 1950) as:

�s ¼ �0 �ðA� ln �Þ ð4:5Þ

where �0¼Gb/4�(1� v), A¼ 1þ ln(b/2�r0) and r0 is the radius of the dislocation core,
usually taken as between b and 5b.

According to this equation, the energy of a tilt boundary increases with increasing
misorientation (decreasing h) as shown in figure 4.5. Combining equations 4.4 and 4.5
we note that as � increases, the energy per dislocation decreases as shown in figure 4.5,
showing that a material will achieve a lower energy if the same number of dislocations
are arranged in fewer, but higher angle boundaries. As shown in figure 4.6, the theory is
in good agreement with experimental measurements for small values of �, although it is

Fig. 4.4. A symmetrical tilt boundary.
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unreasonable to use this dislocation model for large misorientations, because when �
exceeds �15�, the dislocation cores will overlap, the dislocations lose their identity and
the simple dislocation theory on which equation 4.5 is based becomes inappropriate.

It is often convenient (Read 1953) to use equation 4.5 in a form where the boundary
energy (�s) and misorientation (�) are normalised with respect to the values of these
parameters (�m and �m) when the boundary becomes a high angle boundary (i.e. ��15�).

� ¼ �m
�

�m
1� ln

�

�m

� �
ð4:6Þ

Fig. 4.5. The energy of a tilt boundary and the energy per dislocation as a function of
the crystal misorientation.

Fig. 4.6. The measured (symbols) and calculated (solid line) energy of low angle tilt
boundaries as a function of misorientation, for various metals, (after Read 1953).
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Although the Read-Shockley relationship is widely used, there have been very few
experimental measurements of the energy of low angle boundaries. However, detailed
measurements of triple junction geometry and crystallography in polycrystalline
aluminium foils, accompanied by statistical analysis have recently been used to
determine boundary energies by Yang et al. (2001). The results show good agreement
with the Read–Shockley relationship (equation 4.6). These authors also found a small
dependence of the energy of low angle boundaries on the misorientation axis as shown
in figure 4.7, with axes close to <100> having the highest energy and those close to
<111> the lowest.

4.3.2 Other low angle boundaries

In the more general case, dislocations of two or more Burgers vectors react to form
two-dimensional networks whose character depends on the types of dislocation
involved. For example a twist boundary, which is a boundary separating crystals
related by a misorientation about an axis lying perpendicular to the boundary plane,
may be formed by two sets of screw dislocations. If the Burgers vectors of the two sets
of dislocations are orthogonal then the dislocations do not react strongly and the
boundary consists of a square network of dislocations (fig. 4.8a,c). However, if the
Burgers vectors are such that the two sets of dislocations react to form dislocations of
a third Burgers vector as shown in figure 4.8b,d then a hexagonal network may be
formed. If h is the spacing of the dislocations in the network the misorientation (�) is
given approximately by equation 4.4. The exact shape of the dislocation network will
depend on the angle that the boundary plane makes with the crystals. Further details
of the reactions involved in forming low angle grain boundaries may be found in
textbooks on dislocation theory (e.g. Friedel 1964, Hirth and Lothe 1982, Hull and
Bacon 2001).

Fig. 4.7. The variation of the energy of low angle grain boundaries with misorientation
axis, (after Yang et al. 2001).
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4.4 HIGH ANGLE GRAIN BOUNDARIES

Although the structure of low angle grain boundaries is reasonably well understood,
much less is known about the structure of high angle grain boundaries. Early theories
suggested that the grain boundary consisted of a thin ‘amorphous layer’ (§1.2.1), but it is
now known that these boundaries consist of regions of good and bad matching between
the two grains. The concept of the coincidence site lattice (CSL) (Kronberg and Wilson
1949), and extensive computer modelling, together with atomic resolution microscopy
have in recent years considerably advanced the subject.

4.4.1 The coincidence site lattice

Consider two interpenetrating crystal lattices and translate them so as to bring a lattice
point of each into coincidence, as in figure 4.9. If other points in the two lattices coincide

Fig. 4.8. The formation of low angle twist boundaries from dislocation arrays.
(a) A square network formed from screw dislocations of orthogonal Burgers

vector, (b) A hexagonal network formed by screw dislocations with 120� Burgers
vectors, (c) TEM micrograph of a square twist boundary in copper, (Humphreys
and Martin 1968), (d) TEM micrograph of a hexagonal twist boundary in copper,

(Humphreys and Martin 1968).
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(the solid circles in fig. 4.9), then these points form the coincident site lattice.
The reciprocal of the ratio of CSL sites to lattice sites is denoted by �. For example
in figure 4.9, � is seen to be 5. In the general case where there is no simple
orientation relationship between the grains, � is large and the boundary, which has
no special properties, is often referred to as a random boundary. However,
for certain orientation relationships for which there is a good fit between the grains,
� is small and this may confer some special properties on the boundary. Good examples
of this are the coherent twin (�3) boundary shown in figure 4.10, low angle grain
boundaries (�1), and the high mobility �7 boundaries in fcc materials which are
discussed in §5.3.2.

Table 4.1

Rotation axes and angles for coincidence site lattices of �<31.

� ��min Axis Frequency %

1 0 Any 2.28

3 60 <111> 1.76

5 36.87 <100> 1.23

7 38.21 <111> 0.99

9 38.94 <110> 1.02

11 50.48 <110> 0.75

13a 22.62 <100> 0.29

13b 27.80 <111> 0.39

15 48.19 <210> 0.94

17a 28.07 <100> 0.20

17b 61.93 <221> 0.39

19a 26.53 <110> 0.33

19b 46.83 <111> 0.22

21a 21.79 <111> 0.19

21b 44.40 <211> 0.57

23 40.45 <311> 0.50

25a 16.25 <100> 0.11

25b 51.68 <331> 0.44

27a 31.58 <110> 0.20

27b 35.42 <210> 0.39

29a 43.61 <100> 0.09

29b 46.39 <221> 0.35

Data from Mykura 1980. Column 4, lists the frequencies of the occurrence of the boundaries

predicted for a random grain assemble (Pan and Adams 1994), using the Brandon criterion.
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The concept of Grain Boundary Engineering, in which the properties of the material are
improved by processing the material so as to maximise the number of CSL or ‘special’
boundaries has been developed in recent years (Watanabe 1984), and is discussed in
more detail in §11.3.2.3.

Further details of the geometry of CSL boundaries and extensive tables of CSL
relationships may be found in Brandon et al. (1964), Grimmer et al. (1974), Mykura
(1980) and Warrington (1980). Table 4.1 shows the relationship between � and the
angle/axis rotation for boundaries up to and including �29.

4.4.2 The structure of high angle boundaries

The atomic structure at the grain boundary is determined by relaxation of the atoms,
which is dependent on the nature of the atomic bonding forces, and there has been

Fig. 4.9. A coincident site lattice (�5) formed from two simple cubic lattices rotated by
36.9o about an <001> axis. Filled circles denote sites common to both lattices.

Fig. 4.10. A coherent twin (�3) boundary.
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extensive computer simulation of these structures (e.g. Gleiter 1971, Weins 1972, Vitek
et al. 1980, Balluffi 1982, Wolf and Merkle 1992). It is predicted that a high degree of
atomic-level coherency is maintained across the boundary and that regular, well defined
structural units are formed. In the boundary of figure 4.11, the repeating structural units
are shaded.

The CSL is a geometric relationship and any deviation from the exact coincidence
relationship discussed above will destroy the CSL. However, even in this situation the
boundary structure can be maintained by introducing grain boundary dislocations which
can locally accommodate the mismatch in much the same way as dislocations preserve
the lattice in low angle (�1) grain boundaries. The Burgers vector of the boundary
dislocations can be much smaller than a lattice vector. It is also predicted (King and
Smith 1980) that some grain boundary dislocations are associated with steps in the
boundary. These boundary defects are of importance in the mobility of boundaries and
are discussed further in §5.4.1.3.

The structure of grain boundaries has been extensively investigated by high resolution
electron microscopy and other techniques (e.g. Gronski 1980, Pond 1980, Sass and
Bristowe 1980, Krakow and Smith 1987, Seidman 1992, Wolf and Merkle 1992). The
experimental observations have broadly confirmed the computer calculations and show
that although the CSL is generally lost during the atomic relaxation at the boundaries,
the periodicity of the boundary structure is retained by a network of grain boundary
dislocations.

A CSL boundary which deviates from the exact relationship by an angle �� but in
which the structure is maintained by an array of grain boundary dislocations may still
possess the special properties appropriate to the CSL boundary, and it is therefore
useful to define ��. As �� increases, the spacing of the boundary dislocations decreases
(equation 4.4) and the limiting value of �� will be reached when the dislocation cores
overlap. The angular deviation limit will be related to the periodicity of the boundary,
and is often taken as the Brandon criterion (Brandon 1966).

�� � 15��1=2 ð4:7Þ

Fig. 4.11. The repeating structural units in a special grain boundary, (after
Gleiter 1971).
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Observations of discrete grain boundary dislocations and measurements of the
properties of special boundaries (see e.g. Palumbo and Aust 1992, Randle 1996)
suggest that this criterion is too lax and that a better limit is

�� � 15��5=6: ð4:8Þ

4.4.3 The energy of high angle boundaries

On the basis of the structural models outlined above, it might be expected that the
energy of the boundary would be a minimum for an exact coincidence relationship
and that it would increase as the orientation deviated from this, due to the energy of
the network of accommodating boundary dislocations. However, the correlation
between the geometry and the energy of a boundary is more complicated than this

Fig. 4.12. The computed (a) and (c) and measured (b) and (d) energies at 650�C for
symmetrical <100> and <110> tilt boundaries in aluminium, (Hasson

and Goux 1971).
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(Goodhew 1980) as is illustrated by figure 4.12 which shows a comparison of the
measured and calculated energies of symmetrical tilt boundaries in aluminium. It can
be seen that low energy cusps are found only for the �3 (coherent twin) and �11
boundaries and that the predicted cusps for �5 and �9 are not detected. However,
more recent measurements of boundary energies in high purity metals (e.g. Miura et
al. 1990, Palumbo and Aust 1990) have found evidence for more low energy special
boundaries than were found in earlier work.

The experimental measurements of boundary energy have been reviewed by Palumbo
and Aust (1992). It is suggested that the lack of low energy cusps may in some
cases be due to an insensitivity in the measurement technique and in other cases
be due to small amounts of impurity. There is evidence that the energy and
presumably the structure of high angle boundaries is affected by impurity
segregation. Measurements of boundary energy in Ag–Au and Cu–Pb (Gleiter
1970a, Sauter et al. 1977) suggest that with increasing segregation, the energy of
special grain boundaries tends towards that of random boundaries as shown
schematically in figure 4.13, and more recent experiments (Palumbo and Aust 1992)
have confirmed this trend.

Sutton and Balluffi (1987) concluded from a survey of the experimental measurements
that there is no simple relationship between the energy of a boundary and the overall
geometry of the boundary as defined by the macroscopic degrees of freedom, and that
parameters such as a low value of � were not necessarily indicative of a low energy. It
is likely that the boundary energy is determined primarily by the microscopic structure
of the boundary and that atomic bonding plays an important role. Computer
simulations (Smith et al. 1980, Wolf and Merkle 1992) suggest that the local
volume expansion or free volume associated with a boundary is important, and the
latter authors predict a linear relationship between boundary energy and volume
expansion.

Some caution is however needed in interpreting the experimental measurements of
boundary energy and applying these to the annealing processes considered later in this

Fig. 4.13. Schematic diagram showing the changes in the energy versus misorientation
relationship due to solute atoms, with and without segregation at the boundaries,

(Sauter et al. 1977).
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book, because such measurements are normally made at very high homologous
temperatures in order for equilibrium to be achieved. There is evidence both
from experiments (Gleiter and Chalmers 1972, Goodhew 1980, Shvindlerman and
Straumal 1985, Rabkin et al. 1991, Sutton and Balluffi 1995, Gottstein and
Shvindlerman 1999), and molecular dynamic simulations (Wolf 2001) that some special
boundaries may exhibit a phase transition at very high temperatures, and that this may
involve either a transformation to a different ordered structure or to a liquid-like
structure. Such transitions will have significant effects on the boundary energies and on
other properties such as diffusion and mobility, as is further discussed in §5.3.1.

It is to be expected that the structure and hence the energy of a special boundary will be
dependent on the actual plane of the boundary, as demonstrated by Lojkowski et al.
(1988). As shown in table 4.2, the energy of the �3 coherent twin boundary is much
smaller than that of the non-coherent boundary.

4.5 THE TOPOLOGY OF BOUNDARIES AND GRAINS

In addition to the structure and properties of individual grain boundaries we need to be
aware of the arrangements of boundaries within a material. As boundaries are non-
equilibrium defects, a single-phase material is in its most thermodynamically stable state
when all boundaries are removed. This is not often achieved and much of this book is
devoted to a discussion of the processes by which high and low angle boundaries are
eliminated or rearranged into metastable configurations. In this section we consider the
nature of these metastable arrangements of boundaries.

Table 4.2

Measured grain boundary energies (mJm
�2
) (Data from Murr 1975).

Material High angle grain
boundary energy

Coherent twin
boundary energy

Incoherent twin
boundary energy

Ag 375 8 126

Al 324 75 —

Au 378 15 —

Cu 625 24 498

Cu–30 wt% Zn 595 14 —

Fe (�) 756 — —

Fe–3 wt% Si 617 — —

Stainless steel (304) 835 19 209

Ni 866 43 —

Sn 164 — —

Zn 340 — —
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C.S. Smith set out the topological requirements of space-filling and the role of boundary
tensions in his classic paper of 1952 and these have been reviewed by Atkinson (1988).
In both 2-D and 3-D, the microstructure consists of vertices joined by edges or sides

which surround faces as shown schematically in figure 4.14. In the 3-D case, the faces
surround cells or grains. The cells, faces, edges and vertices of any cellular structure obey
the conservation law of equation 4.9, known as Euler’s equation, provided that the face
or cell at infinity is not counted.

F� Eþ V ¼ 1 ð2-D planeÞ

�Cþ F� Eþ V ¼ 1 ð3-D Euclidean spaceÞ
ð4:9Þ

where C is the number of cells, E edges, F faces and V vertices.

The number of edges joined to a given vertex is its coordination number z. For
topologically stable structures, z¼ 3 in 2-D and z¼ 4 in 3-D. Thus in 2-D, a 4-rayed
vertex such as that shown at A in figure 4.14 will be unstable and will decompose to
two 3-rayed vertices such as B and C.

4.5.1 Two-dimensional microstructures

In a two-dimensional microstructure, the material will be divided into grains or
subgrains separated by boundaries and, if boundaries are mobile, a local mechanical
equilibrium will be established at the vertices of grains. Consider the three grains 1, 2
and 3 shown in figure 4.15. The boundaries have specific energies �12, �13, and �23, and
at equilibrium these energies are equivalent to boundary tensions per unit length. For
the three boundaries of figure 4.15 the stable condition is

�12
sin�3

¼
�13

sin�2
¼

�23
sin �1

ð4:10Þ

Fig. 4.14. A 2-D section of a grain structure. The 4-rayed vertex at A will tend to
decompose into two 3-rayed vertices such as B and C.
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If all boundaries have the same energy, then equation 4.10 shows that the three grains
will meet at angles of 120�. In this situation an array of equal sized hexagonal grains
would be stable. Whatever the actual arrangement of the grains in a two-dimensional
microstructure, it follows from equation 4.9 that if z¼ 3, the mean number of sides per
grain or cell is 6.

4.5.2 Three-dimensional microstructures

It has been shown (Smith 1952) that there is no three-dimensional plane-faced
polyhedron which, when repeated, can simultaneously completely fill space and balance
the boundary tensions. Truncated octahedra stacked in a bcc arrangement as shown in
figure 4.16 come close, filling the space but not having the correct angles to balance the
boundary forces. The Kelvin tetrakaidecahedron, figure 4.17, which has doubly curved
boundary surfaces satisfies both conditions.

Polycrystalline materials are usually examined on a random planar section and therefore
sectioning effects will mean that the angles measured on the microstructure will not
necessarily be the true boundary angles. However, in microstructures of well annealed
single-phase materials, the sectioned grains often approximate to hexagons, and it
has been shown (Smith 1948) that the distribution of measured angles is Gaussian,
peaking at the true angle. Figure 4.18 shows some measurements for high angle grain

Fig. 4.15. The forces at a boundary triple point.

Fig. 4.16. Body centred cubic packing of truncated octahedra, (after Smith 1952).
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boundaries in annealed �-brass. It may be seen that the data peak at 120� which is the
equilibrium angle.

If, as is usually the case, the boundary energies are not equal, the regular geometric
structures discussed above will not be stable. An example of this is the microstructure of
recrystallized �-brass, shown in figure 7.36, which contains both normal or ‘random’
high angle boundaries and low energy �3 coherent twins. The lower energy of the twin
boundaries is apparent from the angles, little larger than 90� which they make with the
random high angle boundaries at A. This should be compared with the angles at the
triple point B involving only high energy boundaries. For similar reasons, low angle
grain boundaries whose energies are strongly dependent on misorientation (fig. 4.6) are
rarely arranged at 120� to each other as seen in the recovered microstructure shown in
figure 6.21.

The instability resulting from the interaction between the space-filling requirements and
the boundary tensions, provides the driving pressure for the growth of subgrains and
grains which are discussed in later chapters.

Fig. 4.18. The frequency of grain boundary angles for high energy boundaries in
�-brass, (after Smith 1948).

Fig. 4.17. The Kelvin tetrakaidecahedron.
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4.5.3 Grain boundary facets

The example of �3 twin boundaries discussed above and shown in figure 7.36, is an
extreme example of grain boundaries developing facets. Faceting of grain boundaries
has long been known to occur in many metals (see e.g. Sutton and Balluffi 1995,
Gottstein and Shvindlerman 1999). In order for a boundary to be facetted
spontaneously, the decrease in the total boundary energy must overcome the increase
in the total boundary area. Faceting is therefore only likely to occur under conditions
when the boundary energy depends strongly on the boundary plane, and the most
common situation is for low energy CSL boundaries. It is found that the faceting
behaviour of a particular boundary may be strongly dependent on the impurity level
(Ference and Balluffi 1988), and on the temperature (Hsieh and Balluffi 1989). Figure
4.19 shows the effect of boundary inclination angle on the relative energies of
asymmetric �11 {110] boundaries in copper (Goukon et al. 2000) and this has been
found to correlate well with the faceting behaviour. Faceting of the boundaries of
recrystallizing grains is also sometimes observed (§5.3.2.2), and an example is seen in
figure 5.16.

4.5.4 Boundary connectivity

The importance of non-random distribution of grain orientations or texture is
widely recognised and discussed in detail in chapters 3 and 12. However, it has
also been suggested that the non-random spatial distribution of grain misorientations

may also be important, particularly for CSL boundaries. If such boundaries have
values of properties such as strength or diffusivity which are markedly different from the
other boundaries, then clustering effects and their linking or connectivity may have an
influence on the chemical, physical or mechanical properties of the material (Watanabe
1994), and such effects are an important consideration in grain boundary engineering

(§11.3.2.3).

Fig. 4.19. The relative boundary energy for asymmetric [110] �11 tilt boundaries in
copper, as a function of boundary inclination, (after Goukon et al. 2000).

108 Recrystallization



4.5.5 Triple junctions

Although in this chapter we are mainly concerned with the properties of the grain faces
or boundaries, there is evidence that the properties of the vertices or triple junctions may
play a role in microstructural evolution and have an influence on grain growth and this
is considered in §5.5.

4.6 THE INTERACTION OF SECOND-PHASE PARTICLES

WITH BOUNDARIES

A dispersion of particles will exert a retarding force or pressure on a low angle or high
angle grain boundary and this may have a profound effect on the processes of recovery,
recrystallization and grain growth. The effect is known as Zener drag after the original
analysis by Zener which was published by Smith (1948). The magnitude of this
interaction depends the nature of the particle and interface, and the shape, size, spacing
and volume fraction of the particles. The definitions of the parameters of a second phase
distribution are given in appendix 2.8.

4.6.1 The drag force exerted by a single particle

4.6.1.1 General considerations

Let us consider first, the interaction of a boundary of specific energy � with a spherical
particle of radius r which has an incoherent interface.

If the boundary meets the particle at an angle � as shown in figure 4.20 then the
restraining force on the boundary is:

F ¼ 2�r� cos� sin� ð4:11Þ

The maximum restraining effect (FS) is obtained when �¼ 45�, when

FS ¼ �r� ð4:12Þ

As discussed by Nes et al. (1985), there have been many different derivations of this
force, but the result is usually similar to the above. It should be noted that when a
boundary intersects a particle, the particle effectively removes a region of boundary

Fig. 4.20. The interaction between a grain boundary and a spherical particle.
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equal to the intersection area and thus the energy of the system is lowered, and
boundaries are therefore attracted to particles.

Equation 4.12 predicts that the pinning force exerted by a particle should be
proportional to the grain boundary energy (�). Therefore we expect the pinning due
to low angle boundaries and low energy � boundaries to be less than for ‘random’ high
angle boundaries. There is surprisingly little evidence of this, although Humphreys and
Ardakani (1996) showed that in copper, the pinning pressure on boundaries close to
40�<111> (�7) was some 10% smaller than for other high angle boundaries.

4.6.1.2 The effect of particle shape

The particle shape, if not spherical, will have some effect on the pinning force (Ryum et
al. 1983, Nes et al. 1985). The latter authors considered the interaction of a boundary
with an ellipsoidal particle as shown in figure 4.21. Their treatment assumes that the
grain boundary meets the particle at an angle of 90� and that the particle makes a planar
hole in the boundary. They calculated the drag force for the two extreme cases shown in
figure 4.21, and showed that the maximum forces were

Case 1 F1 ¼ FS
2

ð1þ eÞ e1=3

� �
ð4:13Þ

Case 2 for e � 1 F2 ¼ FS
1þ 2:14e

� e1=2

� �
ð4:14Þ

Case 2 for e � 1 F2 ¼ FS e
0:47 ð4:15Þ

where e is the eccentricity of the ellipsoidal particle. When e¼ 1 then the particle is a
sphere, and FS is the drag from a spherical particle of the same volume. Figure 4.22
shows how F1 and F2 vary with aspect ratio for a particle of constant volume. It can be
seen that the pinning force is only significantly larger than that of a spherical particle

Fig. 4.21. The interaction of boundaries with an ellipsoidal particle,
(after Nes et al. 1985).
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for the case of thin plates meeting the boundary face-on and long needles meeting
the boundary edge-on.

Ringer et al. (1989) have analysed the interaction of a boundary with cubic particles.
The strength of the interaction depends upon the orientation of the cube relative to the
boundary and in the extreme case, when the cube side is parallel to the boundary, the
drag force is almost twice that of a sphere of the same volume. However, as this is a
special case, it is unlikely to be a very significant factor in practice.

4.6.1.3 Coherent particles

If a high angle grain boundary moves past a coherent particle then the particle will
generally lose coherence during the passage of the boundary. As the energy of the
incoherent interface is greater than that of the original coherent interface, energy is
required to cause this transformation, and this energy must be supplied by the moving
boundary. Therefore, as first shown by Ashby et al. (1969), coherent particles will be
more effective in pinning boundaries than will incoherent particles.

Following the analysis by Nes et al. (1985), if the grains are denoted 1 and 2 and the
particle as 3, as in figure 4.23a, then there are now three different boundary energies �12,
�13 and �23. These boundaries meet at the particle surface, and if equilibrium is
established then

�23 ¼ �31 þ �12 cos � ð4:16Þ

and

cos� ¼
�23� �13

�12
ð4:17Þ

The drag force is then

FC ¼ 2�r� cosð�� �Þ cos� ð4:18Þ

Fig. 4.22. The drag force as a function of particle aspect ratio for the two cases
illustrated in figure 4.21, (after Nes et al. 1985).
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FC is a maximum when �¼ �/2 and �¼ 0, giving

FC ¼ 2�r� ð4:19Þ

Thus coherent particles are twice as effective in pinning a grain boundary as incoherent
particles of the same size.

The passage of a high angle boundary past a coherent particle, results in the particle
losing coherency. As a small incoherent particle will be less stable (Gibbs-Thomson
effect), there are a number of alternative interactions. For example the particle may
dissolve during passage of the boundary and re-precipitate in a coherent orientation, it
may reorient itself to a coherent orientation, or the boundary may cut through the
particle (Doherty 1982).

Dissolution – There is experimental evidence that small coherent particles can be
dissolved by a moving boundary. The problem has been discussed by Doherty (1982)
and by Nes et al. (1985). The latter authors show that in these circumstances the pinning
force due to a coherent particle is dependent not only on the particle size, but also on the
concentration of the alloy. The pinning force is given by

F ¼
2�AkTr2

3V
ln

C0

Ceq

� �
� 2�� 0r ð4:20Þ

where A¼Avogadro’s number, k¼Boltzmann’s constant, V is the molar volume of the
precipitate phase, C0 is solute concentration, Ceq is the equilibrium concentration and � 0

is the energy of the coherent interface.

Following dissolution, the particles may re-precipitate coherently behind the grain
boundary or alternatively discontinuous precipitation may occur at the boundary.

Coherent particles on a stationary boundary – If there is insufficient driving force for a
boundary to move past the coherent particles or to dissolve them then the particles will
become incoherent along the boundary. As a consequence of this, the equilibrium shape
of the particles on the boundary will alter as shown in figure 4.23b. The increase in
radius of curvature of the particles on the boundary will then cause them to coarsen at
the expense of the smaller spherical coherent particles, thus increasing the pinning of the
boundary (Howell and Bee 1980).

Passage of boundary through coherent particles – In some circumstances the precipitate
may be cut by the boundary and undergo the same orientation change as the grain
surrounding it, as shown in figure 4.23c. This has been observed in nickel alloys
containing the coherent � 0 phase (Porter andRalph 1981, Randle andRalph 1986), and in
aluminium alloys containing semi-coherent Al3Sc particles (Jones and Humphreys 2001).

4.6.2 The drag pressure due to a distribution of particles

Having considered the pinning force from a single particle, we now need to calculate the
restraining pressure on the boundary due to an array of particles. This is a complicated
problem which has not yet been completely solved.
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4.6.2.1 Drag from a random distribution of particles

For a volume fraction FV of randomly distributed spherical particles of radius r, the
number of particles per unit volume (NV) is given (appendix 2.8) by

NV ¼
3FV

4� r3
ð4:21Þ

If the boundary is planar, then particles within a distance r on either side of the
boundary will intersect it. Therefore the number of particles intersecting unit area of the
boundary is

NS ¼ 2rNV ¼
3FV

2� r2
ð4:22Þ

Fig. 4.23. The interaction between a coherent particle and a high angle grain
boundary. (a) The boundary by-passes the particle; (b) The boundary halts at the

particles; (c) The boundary cuts through the particle.
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The pinning pressure exerted by the particles on unit area of the boundary is given by

PZ ¼ NSFS ð4:23Þ

and hence from equations 4.12 and 4.22

PZ ¼
3FV�

2r
ð4:24Þ

This type of relationship was first proposed by Zener (Smith 1948), although in the
original paper because NS was taken as r. NV, the pinning pressure was half that of
equation 4.21. PZ as given by equation 4.24 is commonly known as the Zener pinning

pressure.

It is clear that this calculation is not rigorous, because if the boundary is rigid as is
assumed, then as many particles will be pushing the boundary one way as will be pulling
it the other as shown in figure 4.24a, and the net pinning pressure will be nil. (This is a
similar problem to that encountered in calculating the interaction of a dislocation with
an array of solute atoms). Therefore the boundary must relax locally from a planar
configuration, as shown in figure 4.24b, if pinning is to occur.

More rigorous calculations of the Zener drag have been attempted by many authors,
and the reader is referred to the reviews by Nes et al. (1985), Hillert (1988) and Doherty
et al. (1989) for further details. However, it is concluded that the more sophisticated
calculations do not lead to relationships which differ significantly from equation 4.24,
which remains widely used. Although some early computer simulations suggested that
the Zener drag was not given correctly by equation 4.24, more recent simulations by
Miodownic et al. (2000) have confirmed the Zener relationship (see also §11.4.2).

4.6.2.2 Effects of boundary-particle correlation

The assumption of a planar or near planar boundary as required to give the Zener
pinning pressure of equation 4.24 will only be reasonable if the grain or subgrain size is
very much larger than the interparticle spacing, as pointed out by Anand and Gurland
(1975), Hellman and Hillert (1975), Hutchinson and Duggan (1978), Hillert (1988), and
Hunderi and Ryum (1992a). If this is not the case, then we need to examine, albeit in a

Fig. 4.24. Interaction of particles with (a) a rigid planar boundary; (b) a flexible
boundary.
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simplified way, the consequences. In figure 4.25 we identify four important cases. In
figure 4.25a the grains are much smaller than the particle spacing, in figure 4.25b the
particle spacing and grain size are similar, in figure 4.25c the grain size is much larger
than the particle spacing and in figure 4.25d, the particles are inhomogeneously
distributed so as to lie only on the boundaries. In all these cases there is a strong
correlation between the particles and the boundaries, although an accurate assessment
of the pinning force is difficult and is dependent on the details of the particle and grain
(or subgrain) arrangement.

Consider the particles and boundaries which form the three-dimensional cubic arrays
shown in figure 4.25. For case a, it is reasonable to assume that all the particles lie not
only on boundaries, but at vertices in the grain structure, because in these positions the
particles, by removing the maximum boundary area, minimise the energy of the system.

If the grain edge length is D, then the grain boundary area per unit volume is 3/D. The
number of particles per unit area of boundary (NA) is given by

NA ¼
�NVD

3
ð4:25Þ

where � is a factor which depends on the positions of the particles in the boundaries. For
particles on boundary faces, �¼ 1. For particles at the vertices as shown in figures 4.25

Fig. 4.25. Schematic diagram of the correlation between particles and boundaries as a
function of grain size.
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(a) and (b), �¼ 3 and hence, using equation 4.21

NA ¼
�NVD

3
¼

3DFV

4� r3
ð4:26Þ

For incoherent spherical particles the pinning pressure on the boundary (P0Z) will then
be given by

P0Z ¼ FSNA ¼
3DFV�

4 r2
ð4:27Þ

This relationship will be valid for grain sizes up to and including that shown in figure
4.25b, in which the grain size and particle spacing are the same (DC). In this situation,
the spacing of the particles on the cubic lattice (L) is equal to DC and is given by

L ¼ DC ¼ N�1=3V ¼
4� r3

3FV

� �1=3

ð4:28Þ

at which point the pinning force reaches a maximum P0Zmax given by

P0Zmax �
1:2� F

2=3
V

r
ð4:29Þ

As the grain size increases beyond DC, the number of particles per unit area of boundary
(NA) will decrease from that given by equation 4.26 and eventually reach NS as given by
equation 4.22. We can treat this transition from correlated to non-correlated boundary
in the following approximate manner.

The number of boundary corners per unit volume in a material of grain size D is given
approximately by 1/D3, and the fraction of particles lying on these potent pinning sites
is therefore, for the condition D�DC.

X ¼
1

NV D3
ð4:30Þ

When D¼DC then from equation 4.28 we find X¼ 1. Thus as the grains grow, a
diminishing fraction of particles is able to sit at the grain corners.

The number of corner-sited particles per unit area of boundary is then

NC ¼ XNVD ð4:31Þ

The remaining particles will sit on grain boundaries or grain edges or lie within the
grains. In this simple analysis we assume that the particles which are not sitting at
grain corners are intersected at random by boundaries and therefore the number per
unit area is

Nr ¼ 2rNVð1�XÞ ð4:32Þ
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Thus the total number of particles per unit area of boundary is NcþNr and, using
equation 4.23, the pinning pressure is given by

P00Z ¼ �r�½XNV Dþ ð1�XÞ2NV r� ð4:33Þ

or, when D�DC

P00Z ¼ �r�
1

D2
þ ð1�

1

NV D3
Þ2NV r

� �
ð4:34Þ

In figure 4.26, we show the pinning pressure on the boundary as a function of the grain
size. It can be seen that as the grain size increases, the pinning pressure rises according
to equation 4.27, peaks when the grain size approaches DC and eventually falls
(equation 4.33) to the Zener pinning pressure as given by equation 4.24.

It should be noted that actual values of the peak pinning pressure discussed here
are based on a very simple geometry and are not accurate. However, the principle that
the pinning pressure varies in a manner similar to that shown in figure 4.26
is undoubtedly correct and has some important implications for recovery, recrystalliza-
tion and grain growth of particle-containing materials which will be discussed in later
chapters.

4.6.2.3 Drag from non-random particle distributions

In many alloys the particles may not be randomly distributed. Of particular
importance is the situation in which the particles are concentrated in planar bands
as shown in figure 4.27. This type of structure is often found in rolled products such
as Al-killed steels, most commercial aluminium alloys, and products made by powder
metallurgy. In many cases the individual particles are also rod or plate-like and
aligned parallel to the rolling plane. Nes et al. (1985) have modelled the case shown
in figure 4.27a and have calculated the grain aspect ratio following primary
recrystallization.

Fig. 4.26. The effect of grain size on the Zener pinning force for a given particle
dispersion.
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Fig. 4.28. (a) Transmission electron micrograph illustrating the pinning of low angle
boundaries by planar arrays of small oxide particles in a rolled aluminium billet

produced by powder metallurgy, (TD plane sections); (b) Optical micrograph of the
same material after recrystallization showing an elongated grain structure,

(Bowen et al. 1993).

Fig. 4.27. The interaction of boundaries with planar arrays of particles. (a) The effect
of boundary orientation on pinning; (b) Propagation of a boundary through planar

arrays of particles, (after Nes et al. 1985).
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Let us assume that spherical particles of radius r are aggregated in bands of thickness t,
which are spaced a distance of L apart. A boundary AB lying parallel to the planar
bands experiences a drag

PPZ ¼
PZL

t
ð4:35Þ

where PZ is the drag pressure if the particles are uniformly distributed as given by
equation 4.23.

The drag on a boundary lying perpendicular to the bands depends strongly on the
shape of the boundary. For example the curved boundary segment BC in figure 4.27a
does not experience any pinning. However, if the boundary is long, e.g. segment DE,
and if the driving pressure is uniformly distributed the average pinning pressure is PZ.
In either case, the pinning force is significantly greater in the direction normal to the
bands and this anisotropy will be reflected in the shape of the grains or subgrains. Nes
et al. (1985) have shown that the boundary is expected to propagate in a staggered
manner as shown in figure 4.27b. Figure 4.28a is a transmission micrograph of a
rolled powder metallurgy aluminium sheet product showing how bands of small oxide
particles interact with the low angle boundaries and affect the shape of the subgrains
during recovery, and figure 4.28b is an optical micrograph of the same material
after recrystallization, which clearly shows how interaction of the aligned oxide
particles with high angle boundaries results in an elongated grain structure after
recrystallization.

Another important situation in which non-random particle distribution may occur is
when the second-phase particles are precipitated onto pre-existing low or high angle
boundaries (e.g. Hutchinson and Duggan 1978). In this case, as shown schematically in
figure 4.25d, all (or most) of the particles lie on the boundaries. The effective number of
particles per unit area of boundary is given approximately by equation 4.27 with � in
equation 4.26 equal to 1, and the pinning force (PX) by

PX ¼ FSNA ¼
�DFV

4r2
ð4:36Þ
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