ELEC442/6601 DSP: Final Exam

Dr. Amer, Concordia University, Electrical & Computer Engineering

April 22, 2010

Instructions:

- 1. ELEC442: Answer questions 1-5. ELEC6601: Answer all questions. Time given 3 hour.
- 2. Only **four** pages of two crib sheets and a basic calculator are allowed.
- 3. Return the question paper before you leave the exam room.

Q1 ______ (20 marks)

DFT: Suppose we have two four-point sequences x[n] and h[n] as follows: $x[n] = cos(\frac{\pi n}{2}), n = 0, 1, 2, 3$ and $h[n] = 2^n, n = 0, 1, 2, 3$.

- a) Calculate the four-point DFT X[k].
- b) Calculate the four-point DFT H[k].
- c) Calculate the circular convolution $*^4$ of x[n] and h[n], $y[n] = x[n] *^4 h[n]$, in any way, e.g., directly or indirectly.

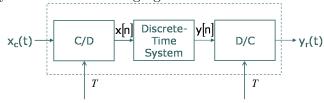
Q2 ______ (20 marks)

LTI systems and frequency response: An LTI system is described by the input-output relation y[n] = x[n] + 2x[n-1] + x[n-2]

- a) Determine the impulse response, h[n].
- b) Is this a stable system?
- c) Determine the frequency response of the system $H(e^{jw})$. Obtain a simple expression for $H(e^{jw})$.
- d) Plot the magnitude and phase of $H(e^{jw})$.
- e) Now consider a new system whose frequency response is $H_1(e^{jw}) = H(e^{j(w+\pi)})$. Determine $h_1[n]$, the impulse response of the new system.

Q3 _______ (20 marks)

Sampling: Consider the system in the following figure.



Assume that i) the discrete-time system is LTI and ii) $X_c(j\Omega) = 0$ for $|\Omega| \ge 4000\pi$.

- a) Determine the largest possible value for the sampling period T.
- b) Determine the corresponding frequency response $H(e^{jw})$ for the discrete-time system such that

 $Y_c(j\Omega) == \begin{cases} |\Omega| X_c(j\Omega) &: 1000\pi < |\Omega| < 2000\pi, \\ 0 &: \text{otherwise.} \end{cases}$

Q4 ______ (20 marks)

LTI systems and Transform analysis: Consider a causal LTI system with the system function $H(z) = \frac{1-a^{-1}z^{-1}}{1-az^{-1}}$, where a is real.

- a) Write the difference equation that relates the input and the output of this system.
- b) For what range of values of a is the system stable?
- c) For a = 1/2, plot the pole-zero diagram and shade the ROC.
- d) Find the impulse response h[n] for this system.
- e) Determine the magnitude response of this system? What type of system is this system?
- f) Give one important property of the group delay of this system?

Q5 ______ (20 marks)

Filter design: Suppose that we are given a continuous-time low-pass filter with the frequency response $H_c(j\Omega)$ such that

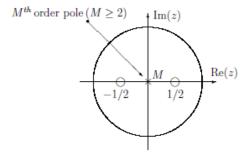
$$1 - \delta_1 \le |H_c(j\Omega)| \le 1 + \delta_1$$
, when $|\Omega| \le \Omega_p$. $|H_c(j\Omega)| \le \delta_2$, $quad$ when $|\Omega| \ge \Omega_s$.

A set of discrete-time low-pass filters can be obtained from $H_c(s)$ by using the bi-linear transformation.

- a) Assume that Ω_p is fixed, find the value of T_d such that the corresponding pass-band cutoff frequency for the discrete-time system is $\omega_p = \pi/2$.
- b) With Ω_p fixed, sketch ω_p as a function of $0 < T_d < \infty$.

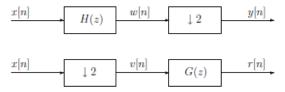
 ${f Q6}$ _______ (20 marks)

Consider the following pole-zero diagram of H(z):



Assume that H(1) = 3/4 and the ROC of H(z) is |z| > 0:

- a) Determine the system function H(z).
- b) Determine if the system H(z) possesses the following properties: stable, causal, all-pass, IIR, FIR, linear phase, generalized linear phase?
- c) Consider the following system



Find G(z) such that y[n] = r[n].