The z-Transform and Its Application to the Analysis of LTI Systems
The Direct z-Transform

The z-transform of a discrete-time signal $x(n)$ is defined as the power series

$$X(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$$

where z is a complex variable.

For convenience, the z-transform of a signal $x(n)$ is denoted by

$$X(z) = Z\{x(n)\}$$

whereas the relationship between $x(n)$ and $X(z)$ is indicated by

$$x(n) \longleftrightarrow X(z)$$

Since the z-transform is an infinite power series, it exists only for those values of z for which this series converges. The region of convergence (ROC) of $X(z)$ is the set of all values of z for which $X(z)$ attains a finite value. Thus any time we cite a z-transform we should also indicate its ROC.
Example

Determine the z-transforms of the following finite-duration signals.

(a) $x_1(n) = [1, 2, 5, 7, 0, 1]$

(b) $x_2(n) = [1, 2, 5, 7, 0, 1]$

(c) $x_3(n) = [0, 0, 1, 2, 5, 7, 0, 1]$

(d) $x_4(n) = [2, 4, 5, 7, 0, 1]$

(e) $x_5(n) = \delta(n)$

(f) $x_6(n) = \delta(n - k), k > 0$

(g) $x_7(n) = \delta(n + k), k > 0$

Solution. From definition (3.1.1), we have

(a) $X_1(z) = 1 + 2z^{-1} + 5z^{-2} + 7z^{-3} + z^{-3}, \text{ROC: entire } z\text{-plane except } z = 0$

(b) $X_2(z) = z^2 + 2z + 5 + 7z^{-1} + z^{-3}, \text{ROC: entire } z\text{-plane except } z = 0 \text{ and } z = \infty$

(c) $X_3(z) = z^{-2} + 2z^{-3} + 5z^{-4} + 7z^{-5} + z^{-7}, \text{ROC: entire } z\text{-plane except } z = 0$

(d) $X_4(z) = 2z^2 + 4z + 5 + 7z^{-1} + z^{-3}, \text{ROC: entire } z\text{-plane except } z = 0 \text{ and } z = \infty$

(e) $X_5(z) = 1$ [i.e., $\delta(n) \leftrightarrow 1$], \text{ROC: entire } z\text{-plane}

(f) $X_6(z) = z^{-1}$ [i.e., $\delta(n - k) \leftrightarrow z^{-1}$], $k > 0$, \text{ROC: entire } z\text{-plane except } z = 0$

(g) $X_7(z) = z^k$ [i.e., $\delta(n + k) \leftrightarrow z^k$], $k > 0$, \text{ROC: entire } z\text{-plane except } z = \infty
EXAMPLE 3.1.2

Determine the z-transform of the signal

\[x(n) = \left(\frac{1}{2}\right)^n u(n) \]

Solution. The signal \(x(n) \) consists of an infinite number of nonzero values

\[x(n) = \{1, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \ldots, \frac{1}{2^n}, \ldots\} \]

The z-transform of \(x(n) \) is the infinite power series

\[X(z) = 1 + \frac{1}{2}z^{-1} + \frac{1}{2^2}z^{-2} + \frac{1}{2^3}z^{-3} + \ldots \]

\[= \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^nz^{-n} = \sum_{n=0}^{\infty} \left(\frac{z^{-1}}{2}\right)^n \]

This is an infinite geometric series. We recall that

\[1 + A + A^2 + A^3 + \ldots = \frac{1}{1-A} \quad \text{if} \quad |A| < 1 \]

Consequently, for \(\left|\frac{1}{2}z^{-1}\right| < 1 \), or equivalently, for \(|z| > \frac{1}{2} \), \(X(z) \) converges to

\[X(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} \quad \text{ROC:} \quad |z| > \frac{1}{2} \]

We see that in this case, the z-transform provides a compact alternative representation of the signal \(x(n) \).
Region of convergence for $X(z)$ and its corresponding causal and anticausal components.
Example

Determine the z-transform of the signal

$$x(n) = \alpha^n u(n) = \begin{cases}
\alpha^n, & n \geq 0 \\
0, & n < 0
\end{cases}$$

Solution. From the definition (3.1.1) we have

$$X(z) = \sum_{n=0}^{\infty} \alpha^n z^{-n} = \sum_{n=0}^{\infty} (\alpha z^{-1})^n$$

If $|\alpha z^{-1}| < 1$ or equivalently, $|z| > |\alpha|$, this power series converges to $1/(1 - \alpha z^{-1})$. Thus we have the z-transform pair
The exponential signal \(x(n) = \alpha^n u(n) \) (a), and the ROC of its z-transform (b).

\[
x(n) = \alpha^n u(n) \leftrightarrow X(z) = \frac{1}{1 - \alpha z^{-1}}, \quad \text{ROC: } |z| > |\alpha|
\]

The ROC is the exterior of a circle having radius \(|\alpha|\). Figure 3.1.2 shows a graph of the signal \(x(n) \) and its corresponding ROC. Note that, in general, \(\alpha \) need not be real.

If we set \(\alpha = 1 \) in (3.1.7), we obtain the z-transform of the unit step signal

\[
x(n) = u(n) \leftrightarrow X(z) = \frac{1}{1 - z^{-1}}, \quad \text{ROC: } |z| > 1
\]
Determine the z-transform of the signal

$$x(n) = -\alpha^n u(-n - 1) = \begin{cases} 0, & n \geq 0 \\ -\alpha^n, & n \leq -1 \end{cases}$$

Solution. From the definition (3.1.1) we have

$$X(z) = \sum_{n=-\infty}^{-1} (-\alpha^n)z^{-n} = -\sum_{l=1}^{\infty} (\alpha^{-1}z)^l$$

where $l = -n$. Using the formula

$$A + A^2 + A^3 + \cdots = A(1 + A + A^2 + \cdots) = \frac{A}{1 - A}$$

when $|A| < 1$ gives

$$X(z) = -\frac{\alpha^{-1}z}{1 - \alpha^{-1}z} = \frac{1}{1 - \alpha z^{-1}}$$

provided that $|\alpha^{-1}z| < 1$ or, equivalently, $|z| < |\alpha|$. Thus

$$x(n) = -\alpha^n u(-n - 1) \iff X(z) = -\frac{1}{1 - \alpha z^{-1}}, \quad \text{ROC: } |z| < |\alpha|$$

The ROC is now the interior of a circle having radius $|\alpha|$. This is shown in Fig. 3.1.3.
Anticausal signal $x(n) = -\alpha^n u(-n - 1)$ (a), and the ROC of its z-transform (b).
Example

Determine the z-transform of the signal

$$x(n) = \alpha^n u(n) + b^n u(-n - 1)$$

Solution. From definition (3.1.1) we have

$$X(z) = \sum_{n=0}^{\infty} \alpha^n z^{-n} + \sum_{n=-\infty}^{-1} b^n z^{-n} = \sum_{n=0}^{\infty} (\alpha z^{-1})^n + \sum_{l=1}^{\infty} (b^{-1} z)^l$$

The first power series converges if $|\alpha z^{-1}| < 1$ or $|z| > |\alpha|$. The second power series converges if $|b^{-1} z| < 1$ or $|z| < |b|$. In determining the convergence of $X(z)$, we consider two different cases.
ROC for z-transform in Example 3.15.

Case 1 \(|b| < |a| \): In this case the two ROC above do not overlap. Consequently, we cannot find values of \(z \) for which both power series converge simultaneously. Clearly, in this case, \(X(z) \) does not exist.

Case 2 \(|b| > |a| \): In this case there is a ring in the \(z \)-plane where both power series converge simultaneously, as shown in Fig. 3.1.4(b). Then we obtain

\[
X(z) = \frac{1}{1 - az^{-1}} \cdot \frac{1}{1 - bz^{-1}}
\]

\[
= \frac{a + b - z - abz^{-1}}{z - az^{-1} - bz^{-1}}
\]

The ROC of \(X(z) \) is \(|a| < |z| < |b| \).
Properties of the z-Transform

<table>
<thead>
<tr>
<th>Property</th>
<th>Time Domain</th>
<th>Z-Domain</th>
<th>ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notation</td>
<td>(x(n))</td>
<td>(X(z))</td>
<td>(R_{22} =</td>
</tr>
<tr>
<td>(x_1(n))</td>
<td></td>
<td>(X_1(z))</td>
<td>(R_{12})</td>
</tr>
<tr>
<td>(x_2(n))</td>
<td></td>
<td>(X_2(z))</td>
<td>(R_{21})</td>
</tr>
<tr>
<td>Linearity</td>
<td>(a_1x_1(n) + a_2x_2(n))</td>
<td>(a_1X_1(z) + a_2X_2(z))</td>
<td>At least the intersection of (R_{22}) and (R_{12})</td>
</tr>
<tr>
<td>Time shifting</td>
<td>(x(n-k))</td>
<td>(z^{-k}X(z))</td>
<td>That of (X(z)), except (z = 0) if (k > 0) and (z = \infty) if (k < 0)</td>
</tr>
<tr>
<td>Scaling in the z-domain</td>
<td>(a^n x(n))</td>
<td>(X(a^{-n}z))</td>
<td>(</td>
</tr>
<tr>
<td>Time reversal</td>
<td>(x(-n))</td>
<td>(X(z^{-1}))</td>
<td>(</td>
</tr>
<tr>
<td>Conjugation</td>
<td>(x^*(n))</td>
<td>(X^(z^))</td>
<td>(R_{21})</td>
</tr>
<tr>
<td>Real part</td>
<td>(\text{Re}{x(n)})</td>
<td>(\frac{1}{2}[X(z) + X^(z^)])</td>
<td>Includes ROC</td>
</tr>
<tr>
<td>Imaginary part</td>
<td>(\text{Im}{x(n)})</td>
<td>(\frac{1}{2}[X(z) - X^(z^)])</td>
<td>Includes ROC</td>
</tr>
<tr>
<td>Differentiation in the z-domain</td>
<td>(nx(n))</td>
<td>(-z \frac{dX(z)}{dz})</td>
<td>(r_2 =</td>
</tr>
<tr>
<td>Convolution</td>
<td>(x_1(n) * x_2(n))</td>
<td>(X_1(z)X_2(z))</td>
<td>At least, the intersection of (R_{12}) and (R_{22})</td>
</tr>
<tr>
<td>Correlation</td>
<td>(r_{x_1x_2}(\ell))</td>
<td>(R_{x_1x_2}(z) = X_1(z)X_2(z^{-\ell}))</td>
<td>At least, the intersection of ROC of (X_1(z)) and (X_2(z^{-\ell}))</td>
</tr>
<tr>
<td>Initial value theorem</td>
<td>If (x(n)) causal</td>
<td>(x(0) = \lim_{n \to \infty} X(z))</td>
<td>(r_{12} <</td>
</tr>
<tr>
<td>Multiplication</td>
<td>(x_1(n)x_2(n))</td>
<td>(\frac{1}{2\pi j} \oint_{C} X_1(z)X_2^*(z^{-1}) e^{-zv} dv)</td>
<td>At least, (r_{12} <</td>
</tr>
<tr>
<td>Parseval’s relation</td>
<td>[\sum_{n=-\infty}^{\infty}</td>
<td>x(n)</td>
<td>^2]</td>
</tr>
</tbody>
</table>
TABLE 3.3 Some Common z-Transform Pairs

<table>
<thead>
<tr>
<th>Signal, $x(n)$</th>
<th>z-Transform, $X(z)$</th>
<th>ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 $\delta(n)$</td>
<td>1</td>
<td>All z</td>
</tr>
<tr>
<td>2 $u(n)$</td>
<td>$\frac{1}{1-z^{-1}}$</td>
<td>$</td>
</tr>
<tr>
<td>3 $a^n u(n)$</td>
<td>$\frac{1}{1-az^{-1}}$</td>
<td>$</td>
</tr>
<tr>
<td>4 $na^n u(n)$</td>
<td>$\frac{az^{-1}}{(1-az^{-1})^2}$</td>
<td>$</td>
</tr>
<tr>
<td>5 $-a^n u(-n-1)$</td>
<td>$\frac{1}{1-az^{-1}}$</td>
<td>$</td>
</tr>
<tr>
<td>6 $-na^n u(-n-1)$</td>
<td>$\frac{az^{-1}}{(1-az^{-1})^2}$</td>
<td>$</td>
</tr>
<tr>
<td>7 $(\cos \omega n) u(n)$</td>
<td>$\frac{1 - z^{-1} \cos \omega_0}{1 - 2z^{-1} \cos \omega_0 + z^{-2}}$</td>
<td>$</td>
</tr>
<tr>
<td>8 $(\sin \omega n) u(n)$</td>
<td>$\frac{z^{-1} \sin \omega_0}{1 - 2z^{-1} \cos \omega_0 + z^{-2}}$</td>
<td>$</td>
</tr>
<tr>
<td>9 $(a^n \cos \omega n) u(n)$</td>
<td>$\frac{1 - az^{-1} \cos \omega_0}{1 - 2az^{-1} \cos \omega_0 + a^2 z^{-2}}$</td>
<td>$</td>
</tr>
<tr>
<td>10 $(a^n \sin \omega n) u(n)$</td>
<td>$\frac{az^{-1} \sin \omega_0}{1 - 2az^{-1} \cos \omega_0 + a^2 z^{-2}}$</td>
<td>$</td>
</tr>
</tbody>
</table>
Pole-zero location

\[
X(z) = \frac{B(z)}{A(z)} = \frac{b_0}{a_0} z^{-M+N} \frac{(z - z_1)(z - z_2) \cdots (z - z_M)}{(z - p_1)(z - p_2) \cdots (z - p_N)}
\]

\[
X(z) = G z^{N-M} \frac{\prod_{k=1}^{M} (z - z_k)}{\prod_{k=1}^{N} (z - p_k)}
\]
Example of first order system

Determine the pole-zero plot for the signal

\[x(n) = a^n u(n), \quad a > 0 \]

Solution. From Table 3.3 we find that

\[X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a} \]

ROC: \(|z| > a\)

Thus \(X(z)\) has one zero at \(z_1 = 0\) and one pole at \(p_1 = a\). The pole-zero plot is shown in Fig. 3.3.1. Note that the pole \(p_1 = a\) is not included in the ROC since the \(z\)-transform does not converge at a pole.

Pole-zero plot for the causal exponential signal \(x(n) = a^n u(n)\).
Time Domain Behaviour:

Time-domain behavior of a single-real-pole causal signal as a function of the location of the pole with respect to the unit circle.
System Function of LTI Systems

\[Y(z) = H(z)X(z) \]

\[H(z) = \frac{Y(z)}{X(z)} \]

\[H(z) = \sum_{n=-\infty}^{\infty} h(n)z^{-n} \]
System Function derived from Difference Equation

\[y(n) = - \sum_{k=1}^{N} a_k y(n - k) + \sum_{k=0}^{M} b_k x(n - k) \]

\[Y(z) = - \sum_{k=1}^{N} a_k Y(z) z^{-k} + \sum_{k=0}^{M} b_k X(z) z^{-k} \]

\[Y(z) \left(1 + \sum_{k=1}^{N} a_k z^{-k} \right) = X(z) \left(\sum_{k=0}^{M} b_k z^{-k} \right) \]

\[\frac{Y(z)}{X(z)} = H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}} \]
System Function of FIR System

Let $a_k = 0$ for $1 \leq k \leq N$

Then:

$$H(z) = \sum_{k=0}^{M} b_k z^{-k} = \frac{1}{z^M} \sum_{k=0}^{M} b_k z^{M-k}$$

There is no pole except at zero.
Example

Determine the system function and the unit sample response of the system described by the difference equation

\[y(n) = \frac{1}{2} y(n - 1) + 2x(n) \]

Solution. By computing the \(z \)-transform of the difference equation, we obtain

\[Y(z) = \frac{1}{2} z^{-1} Y(z) + 2X(z) \]

Hence the system function is

\[H(z) = \frac{Y(z)}{X(z)} = \frac{2}{1 - \frac{1}{2} z^{-1}} \]

This system has a pole at \(z = \frac{1}{2} \) and a zero at the origin. Using Table 3.3 we obtain the inverse transform

\[h(n) = 2\left(\frac{1}{2}\right)^n u(n) \]

This is the unit sample response of the system.
Inversion of z-Transform

1. Direct evaluation of by contour integration.

\[x(n) = \frac{1}{2\pi j} \oint_{C} X(z)z^{n-1}dz \]

2. Expansion into a series of terms, in the variables \(z\), and \(z^{-1}\).

Inverse z-Transform by Power Series Expansion

EXAMPLE

Determine the inverse z-transform of

$$X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$$

which converges when

- (a) ROC: $|z| > 1$
- (b) ROC: $|z| < 0.5$
Example

Determine the inverse z-transform of

$$X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$$

when

(a) ROC: $|z| > 1$

(b) ROC: $|z| < 0.5$
Solution (a)

(a) Since the ROC is the exterior of a circle, we expect $x(n)$ to be a causal signal. Thus we seek a power series expansion in negative powers of z. By dividing the numerator of $X(z)$ by its denominator, we obtain the power series

$$X(z) = \frac{1}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}} = 1 + \frac{3}{2}z^{-1} + \frac{7}{4}z^{-2} + \frac{15}{8}z^{-3} + \frac{31}{16}z^{-4} + \cdots$$

By comparing this relation with (3.1.1), we conclude that

$$x(n) = \{1, \frac{3}{2}, \frac{7}{4}, \frac{15}{8}, \frac{31}{16}, \ldots\}$$
Solution (b)

(b) In this case the ROC is the interior of a circle. Consequently, the signal $x(n)$ is anticausal. To obtain a power series expansion in positive powers of z, we perform the long division in the following way:

\[
\begin{array}{c|cccccccc}
& 2z^2 + 6z^3 + 14z^4 + 30z^5 + 62z^6 + \cdots \\
\hline
\frac{1}{2}z^{−2} − \frac{3}{2}z^{−1} + 1 & 1 & 3z + 2z^2 \\
& 3z + 2z^2 \hline
& 3z - 9z^2 + 6z^3 \\
& 7z^2 - 6z^3 \hline
& 7z^2 - 21z^3 + 14z^4 \\
& 15z^3 - 14z^4 \hline
& 15z^3 - 45z^4 + 30z^5 \\
& 31z^4 - 30z^5 \hline
\end{array}
\]

Thus

\[
X(z) = \frac{1}{1 - \frac{3}{2}z^{−1} + \frac{1}{2}z^{−2}} = 2z^2 + 6z^3 + 14z^4 + 30z^5 + 62z^6 + \cdots
\]

In this case $x(n) = 0$ for $n \geq 0$. By comparing this result to (3.1.1), we conclude that

\[
x(n) = \{ \cdots, 62, 30, 14, 6, 2, 0, 0 \}
\]
Example

Determine the inverse z-transform of

$$X(z) = \log(1 + az^{-1}), \quad |z| > |a|$$

Solution. Using the power series expansion for $\log(1 + x)$, with $|x| < 1$, we have

$$X(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} a^n z^{-n}}{n}$$

Thus

$$x(n) = \begin{cases} (-1)^{n+1} \frac{a^n}{n}, & n \geq 1 \\ 0, & n \leq 0 \end{cases}$$

Expansion of irrational functions into power series can be obtained from tables.
Inversion using partial-fraction expansion

Let \(X(z) \) be a proper rational function, that is,

\[
X(z) = \frac{B(z)}{A(z)} = \frac{b_0 + b_1 z^{-1} + \cdots + b_M z^{-M}}{1 + a_1 z^{-1} + \cdots + a_N z^{-N}}
\]

where

\[a_N \neq 0 \quad \text{and} \quad M < N \]

To simplify our discussion we eliminate negative powers of \(z \) by multiplying both the numerator and denominator of (3.4.12) by \(z^N \). This results in

\[
X(z) = \frac{b_0 z^N + b_1 z^{N-1} + \cdots + b_M z^{N-M}}{z^N + a_1 z^{N-1} + \cdots + a_N}
\]

which contains only positive powers of \(z \). Since \(N > M \), the function

\[
\frac{X(z)}{z} = \frac{b_0 z^{N-1} + b_1 z^{N-2} + \cdots + b_M z^{N-M-1}}{z^N + a_1 z^{N-1} + \cdots + a_N}
\]

is also always proper.
Inversion using partial-fraction expansion

Our task in performing a partial-fraction expansion is to express this as a sum of simple fractions. We distinguish two cases.

Distinct poles. Suppose that the poles p_1, p_2, \ldots, p_N are all different (distinct). Then we seek an expansion of the form

$$
\frac{X(z)}{z} = \frac{A_1}{z - p_1} + \frac{A_2}{z - p_2} + \cdots + \frac{A_N}{z - p_N}
$$

The problem is to determine the coefficients A_1, A_2, \ldots, A_N. There are two ways to solve this problem, as illustrated in the following example.
Example

Determine the partial-fraction expansion of the proper function

$$X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$$

Solution. First we eliminate the negative powers, by multiplying both numerator and denominator by z^2. Thus

$$X(z) = \frac{z^2}{z^2 - 1.5z + 0.5}$$

The poles of $X(z)$ are $p_1 = 1$ and $p_2 = 0.5$. Consequently, the expansion is

$$\frac{X(z)}{z} = \frac{z}{(z - 1)(z - 0.5)} = \frac{A_1}{z - 1} + \frac{A_2}{z - 0.5}$$

A very simple method to determine A_1 and A_2 is to multiply the equation by the denominator term $(z - 1)(z - 0.5)$. Thus we obtain

$$z = (z - 0.5)A_1 + (z - 1)A_2$$
Now if we set \(z = p_1 = 1 \) in (3.4.18), we eliminate the term involving \(A_2 \). Hence

\[
1 = (1 - 0.5)A_1
\]

Thus we obtain the result \(A_1 = 2 \). Next we return to (3.4.18) and set \(z = p_2 = 0.5 \), thus eliminating the term involving \(A_1 \), so we have

\[
0.5 = (0.5 - 1)A_2
\]

and hence \(A_2 = -1 \). Therefore, the result of the partial-fraction expansion is

\[
\frac{X(z)}{z} = \frac{2}{z - 1} - \frac{1}{z - 0.5}
\]
General Partial-Fraction Expansion Procedure (Single Poles)

The example given above suggests that we can determine the coefficients A_1, A_2, \ldots, A_N, by multiplying both sides by each of the terms $(z - p_k), k = 1, 2, \ldots, N$, and evaluating the resulting expressions at the corresponding pole positions, p_1, p_2, \ldots, p_N. Thus we have, in general,

\[
\frac{(z - p_k)X(z)}{z} = \frac{(z - p_k)A_1}{z - p_1} + \cdots + A_k + \cdots + \frac{(z - p_k)A_N}{z - p_N}
\]

Consequently, with $z = p_k$, (3.4.20) yields the kth coefficient as

\[
A_k = \left. \frac{(z - p_k)X(z)}{z} \right|_{z=p_k}, \quad k = 1, 2, \ldots, N
\]
Example

Determine the partial-fraction expansion of

\[X(z) = \frac{1 + z^{-1}}{1 - z^{-1} + 0.5z^{-2}} \]

Solution. To eliminate negative powers of \(z \) we multiply both numerator and denominator by \(z^2 \). Thus

\[\frac{X(z)}{z} = \frac{z + 1}{z^2 - z + 0.5} \]

The poles of \(X(z) \) are complex conjugates

\[p_1 = \frac{1}{2} + \frac{1}{2} \left(-1 \right) \]

\[p_2 = \frac{1}{2} - \frac{1}{2} \left(-1 \right) \]

and

Thus

\[\frac{X(z)}{z} = \frac{z + 1}{(z - p_1)(z - p_2)} = \frac{A_1}{z - p_1} + \frac{A_2}{z - p_2} \]

we obtain

\[A_1 = \left. \frac{(z - p_1)X(z)}{z} \right|_{z = p_1} = \left. \frac{z + 1}{z - p_2} \right|_{z = p_1} = \frac{1}{2} + \frac{1}{2} \left(-1 \right) = \frac{1}{2} - \frac{1}{2} \]

\[A_2 = \left. \frac{(z - p_2)X(z)}{z} \right|_{z = p_2} = \left. \frac{z + 1}{z - p_1} \right|_{z = p_2} = \frac{1}{2} - \frac{1}{2} \left(-1 \right) = \frac{1}{2} + \frac{1}{2} \]
Multiple Order Poles (Example)

Determine the partial fraction expansion of

\[X(z) = \frac{1}{(z+1)(z-1)^2} \]

Solution. First, we express (3.4.23) in terms of positive powers of \(z \), in the form

\[X(z) = \frac{A_1}{z + 1} + \frac{A_2}{z - 1} + \frac{A_3}{(z - 1)^2} \]

(3.4.24)

\(X(z) \) has a simple pole at \(p_1 = -1 \) and a double pole \(p_2 = p_3 = 1 \). In such a case the appropriate partial fraction expansion is

\[X(z) = \frac{z^2}{(z + 1)(z - 1)^2} = \frac{A_1}{z + 1} + \frac{A_2}{z - 1} + \frac{A_3}{(z - 1)^2} \]

(3.4.25)

The problem is to determine the coefficients \(A_1 \), \(A_2 \), and \(A_3 \).

We proceed as in the case of distinct poles. To determine \(A_1 \), we multiply both sides of (3.4.24) by \((z + 1) \) and evaluate the result at \(z = -1 \). Thus (3.4.25) becomes

\[\frac{(z + 1)X(z)}{z} = A_1 + \frac{A_2}{z - 1} + \frac{A_3}{(z - 1)^2} \]

which, when evaluated at \(z = -1 \), yields

\[A_1 = \frac{(z + 1)X(z)}{z} \bigg|_{z = -1} = 1 \]

Next, if we multiply both sides of (3.4.24) by \((z - 1)^2 \), we obtain

\[\frac{(z - 1)^2X(z)}{z} = A_2 + (z - 1)A_3 \]

(3.4.26)

Now, if we evaluate (3.4.25) at \(z = 1 \), we obtain \(A_3 \). Thus

\[A_2 = \frac{(z - 1)^2X(z)}{z} \bigg|_{z = 1} = 1 \]

The remaining coefficient \(A_3 \) can be obtained by differentiating both sides of (3.4.25) with respect to \(z \) and evaluating the result at \(z = 1 \). Note that it is not necessary formally to carry out the differentiation of the right-hand side of (3.4.25), since all terms except \(A_2 \) vanish when we set \(z = 1 \). Thus

\[A_3 = \frac{d}{dz} \left(\frac{(z - 1)^2X(z)}{z} \right) \bigg|_{z = 1} = \frac{3}{4} \]

(3.4.27)
The generalization of the procedure in the example above to the case of an \(m \)th-order pole \((z - p_k)^m \) is straightforward. The partial-fraction expansion must contain the terms

\[
\frac{A_{1k}}{z - p_k} + \frac{A_{2k}}{(z - p_k)^2} + \ldots + \frac{A_{mk}}{(z - p_k)^m}
\]

The coefficients \(\{A_{ik}\} \) can be evaluated through differentiation.
Causality and Stability

- A system is causal if,
 - \(h(n) = 0 \) for \(n < 0 \)
- So, an LTI system is causal if and only if the ROC of \(H(z) \) is exterior of a circle with radius \(r < \infty \).

- An LTI System is BIBO stable if the unit circle lies in the region of convergence of \(H(z) \).
A linear time-invariant system is characterized by the system function

\[H(z) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}} \]

\[= \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{2}{1 - 3z^{-1}} \]

Specify the ROC of \(H(z) \) and determine \(h(n) \) for the following conditions:

(a) The system is stable.
(b) The system is causal.
(c) The system is anticausal.
Causality and Stability (Example)

Solution. The system has poles at $z = \frac{1}{2}$ and $z = 3$.

(a) Since the system is stable, its ROC must include the unit circle and hence it is $\frac{1}{2} < |z| < 3$. Consequently, $h(n)$ is noncausal and is given as

$$h(n) = \left(\frac{1}{2}\right)^n u(n) - 2(3)^n u(-n - 1)$$

(b) Since the system is causal, its ROC is $|z| > 3$. In this case

$$h(n) = \left(\frac{1}{2}\right)^n u(n) + 2(3)^n u(n)$$

This system is unstable.

(c) If the system is anticausal, its ROC is $|z| < 0.5$. Hence

$$h(n) = -\left[\left(\frac{1}{2}\right)^n + 2(3)^n\right] u(-n - 1)$$

In this case the system is unstable.
One-sided z-Transform

The one-sided or unilateral z-transform of a signal $x(n)$ is defined by

$$X^+(z) \equiv \sum_{n=0}^{\infty} x(n)z^{-n}$$

We also use the notations $Z^+\{x(n)\}$ and

$$x(n) \leftrightarrow_{Z^+} X^+(z)$$
Determine the z-transforms of the following finite-duration signals.

(a) $x_1(n) = \{1, 2, 5, 7, 0, 1\}$
(b) $x_2(n) = \{1, 2, 5, 7, 0, 1\}$
(c) $x_3(n) = \{0, 0, 1, 2, 5, 7, 0, 1\}$
(d) $x_4(n) = \{2, 4, 5, 7, 0, 1\}$
(e) $x_5(n) \rightarrow \delta(n)$
(f) $x_6(n) = \delta(n - k), k > 0$
(g) $x_7(n) = \delta(n + k), k > 0$
One-sided z-Transform (Examples)

Solution.

\[x_1(n) = \{1, 2, 5, 7, 0, 1\} \xleftarrow{\mathrm{z^+}} X_1^+(z) = 1 + 2z^{-1} + 5z^{-2} + 7z^{-3} + z^{-5} \]

\[x_2(n) = \{1, 2, 5, 7, 0, 1\} \xleftarrow{\mathrm{z^+}} X_2^+(z) = 5 + 7z^{-1} + z^{-3} \]

\[x_3(n) = \{0, 0, 1, 2, 5, 7, 0, 1\} \xleftarrow{\mathrm{z^+}} X_3^+(z) = z^{-2} + 2z^{-3} + 5z^{-4} + 7z^{-5} + z^{-7} \]

\[x_4(n) = \{2, 4, 5, 7, 0, 1\} \xleftarrow{\mathrm{z^+}} X_4^+(z) = 5 + 7z^{-1} + z^{-3} \]

\[x_5(n) = \delta(n) \xleftarrow{\mathrm{z^+}} X_5^+(z) = 1 \]

\[x_6(n) = \delta(n - k), \quad k > 0 \xleftarrow{\mathrm{z^+}} X_6^+(z) = z^{-k} \]

\[x_7(n) = \delta(n + k), \quad k > 0 \xleftarrow{\mathrm{z^+}} X_7^+(z) = 0 \]
One-sided z-Transform (Properties)

Shifting Property

Case 1: Time delay

If

$$x(n) \xrightarrow{z} X^+(z)$$

then

$$x(n-k) \xrightarrow{z} z^{-k}[X^+(z) + \sum_{n=1}^{k} x(-n)z^n], \quad k > 0 \quad (3.6.2)$$

In case $x(n)$ is causal, then

$$x(n-k) \xrightarrow{z} z^{-k}X^+(z) \quad (3.6.3)$$

Proof

From the definition (3.6.1) we have

$$Z^+[x(n-k)] = z^{-k} \left[\sum_{l=-k}^{-1} x(l)z^{-l} + \sum_{l=0}^{\infty} x(l)z^{-l} \right]$$

$$= z^{-k} \left[\sum_{l=-1}^{-k} x(l)z^{-l} + X^+(z) \right]$$

By changing the index from l to $n = -l$, the result in (3.6.2) is easily obtained.
Example

Determine the one-sided z-transform of the signals

(a) $x(n) = a^n u(n)$
(b) $x_1(n) = x(n - 2)$ where $x(n) = a^n$

Solution.
(a) From (3.6.1) we easily obtain

$$X^+(z) = \frac{1}{1 - az^{-1}}$$

(b) We will apply the shifting property for $k = 2$. Indeed, we have

$$Z^+\{x(n - 2)\} = z^{-2}[X^+(z) + x(-1)z + x(-2)z^2]$$

$$= z^{-2}X^+(z) + x(-1)z^{-1} + x(-2)$$

Since $x(-1) = a^{-1}, x(-2) = a^{-2}$, we obtain

$$X_1^+(z) = \frac{z^{-2}}{1 - az^{-1}} + a^{-1}z^{-1} + a^{-2}$$
Properties (Time Advance)

Case 2: Time advance

If

\[x(n) \overset{z^+}{\longrightarrow} X^+(z) \]

then

\[x(n + k) \overset{z^+}{\longrightarrow} z^k \left[X^+(z) - \sum_{n=0}^{k-1} x(n)z^{-n} \right], \quad k > 0 \tag{3.6.5} \]

Proof From (3.6.1) we have

\[Z^+\{x(n + k)\} = \sum_{n=0}^{\infty} x(n + k)z^{-n} = z^k \sum_{l=0}^{\infty} x(l)z^{-l} \]

where we have changed the index of summation from \(n \) to \(l = n + k \). Now, from (3.6.1) we obtain

\[X^+(z) = \sum_{l=0}^{\infty} x(l)z^{-l} = \sum_{l=0}^{k-1} x(l)z^{-l} + \sum_{l=k}^{\infty} x(l)z^{-l} \]

By combining the last two relations, we easily obtain (3.6.5).
Example (Time Advance)

With \(x(n)\), as given in Example 3.6.2, determine the one-sided \(z\)-transform of the signal

\[x_2(n) = x(n + 2)\]

Solution. We will apply the shifting theorem for \(k = 2\). From (3.6.5), with \(k = 2\), we obtain

\[Z^+(x(n + 2)) = z^2 X^+(z) - x(0)z^2 - x(1)z\]

But \(x(0) = 1\), \(x(1) = a\), and \(X^+(z) = 1/(1 - az^{-1})\). Thus

\[Z^+(x(n + 2)) = \frac{z^2}{1 - az^{-1}} - z^2 - az\]
Properties (Time Advance)

With \(x(n)\), as given in Example 3.6.2, determine the one-sided \(z\)-transform of the signal

\[x_2(n) = x(n + 2) \]

Solution. We will apply the shifting theorem for \(k = 2\). From (3.6.5), with \(k = 2\), we obtain

\[Z^+\{x(n + 2)\} = z^2 X^+(z) - x(0)z^2 - x(1)z \]

But \(x(0) = 1\), \(x(1) = a\), and \(X^+(z) = 1/(1 - az^{-1})\). Thus

\[Z^+\{x(n + 2)\} = \frac{z^2}{1 - az^{-1}} - z^2 - az \]
Final Value Theorem

Final Value Theorem. If

\[x(n) \xrightarrow{z^+} X^+(z) \]

then

\[\lim_{n \to \infty} x(n) = \lim_{z \to 1} (z - 1)X^+(z) \quad (3.6.6) \]

The limit in (3.6.6) exists if the ROC of \((z - 1)X^+(z)\) includes the unit circle.

The proof of this theorem is left as an exercise for the reader.

This theorem is useful when we are interested in the asymptotic behavior of a signal \(x(n)\) and we know its \(z\)-transform, but not the signal itself. In such cases, especially if it is complicated to invert \(X^+(z)\), we can use the final value theorem to determine the limit of \(x(n)\) as \(n\) goes to infinity.
Final Value Theorem (Example)

The impulse response of a relaxed linear time-invariant system is \(h(n) = \alpha^n u(n), \ |\alpha| < 1 \). Determine the value of the step response of the system as \(n \to \infty \).

Solution. The step response of the system is

\[
y(n) = h(n) * x(n)
\]

where

\[
x(n) = u(n)
\]

Obviously, if we excite a causal system with a causal input the output will be causal. Since \(h(n), x(n), y(n) \) are causal signals, the one-sided and two-sided \(z \)-transforms are identical. From the convolution property (3.2.17) we know that the \(z \)-transforms of \(h(n) \) and \(x(n) \) must be multiplied to yield the \(z \)-transform of the output. Thus

\[
Y(z) = \frac{1}{1 - \alpha^z} \frac{1}{1 - z^{-1}} = \frac{z^2}{(z - 1)(z - \alpha)}, \quad \text{ROC: } |z| > |\alpha|
\]

Now

\[
(z - 1)Y(z) = \frac{z^2}{z - \alpha}, \quad \text{ROC: } |z| < |\alpha|
\]

Since \(|\alpha| < 1 \), the ROC of \((z - 1)Y(z)\) includes the unit circle. Consequently, we can apply (3.6.6) and obtain

\[
\lim_{n \to \infty} y(n) = \lim_{z \to 1} \frac{z^2}{z - \alpha} = \frac{1}{1 - \alpha}
\]